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Abstract

Computer Graphics since its existence has been striving to visualize its represen-
tations of surfaces and objects to accurately match their real life counterparts.
We investigate the correctness of the ambient occlusion effect produced with
the use of a distance to the closest surface metric. This value is obtained from
a signed distance function/field. We evaluate the robustness of the method as
well as its ease of use. We also test how this applies to a polygon mesh con-
verted into a 3D texture of distance values and included into our scenes. For
rendering images we use our GPU implementation of ray marching in the form
of sphere tracing and we compare the results to the ones produced by a ray
tracing framework.
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Chapter 1

Introduction

In producing movies or games a lot of effort is put in making convincing im-
ages [IKSZ03, Lan02]. However, the correctness of a image in terms of its realism
rarely overshadows the time cost of obtaining it. Methods like radiosity can re-
quire a great amount of time before they produce a correct effect. That is why
computing global illumination with it is not a first choice for movie or game
making.

In these areas of application, focus is on developing other techniques or modi-
fying already existing ones that strive to achieve a certain degree of believable
realism while at the same time producing images in an acceptable time. One
of such influential works is the one by Zhukov et al. in [ZIK98] where the
authors propose an ambient light illumination model based on the concept of
obscurance. The authors work has been widely used and refined by the movie
industry and production rendering community as it is stated in [KL05].

This thesis has a similar purpose. It will primary focus at the topic if the
ambient occlusion effect computed with the use of a ray tracer implementation
can be acquired with the use of distance fields and maintain a certain degree of
acceptable realism.

As stated in [KL05] the ambient occlusion technique itself is a simplified version
of the obscurance model proposed by Zhukov et al. Ambient occlusion can be
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(a) Render time ∼ 47 minutes (b) Render time ∼ 46 minutes

Figure 1.1: Reference images of a Stanford Bunny on a ground plane

defined like it is by Klehm et al. in [KRES11] as a nonphysically-based approx-
imation of environmental lighting. Its use can give the impression of having
global illumination calculated for the rendered scene. As the main advantages
of the method the authors give high performance in estimating the average oc-
clusion of surfaces which influences the shading result. Moreover, the authors
mention that, this estimation is done without taking into consideration the light
sources in the scene, and that is why the result can lack of certain realism due to
the missing influence of directional occlusion and lighting. The technique and its
variations are quite popular in real-time and off-line rendering due to the high
ratio of realism to image production time. The topic is still an active area of
research notably in the fields for video games and movies as stated in [MFS09].
Some of the focus might be a specific case of occlusion, like self-occlusion or
occlusion resulting between objects. For a broader overview of the concept the
reader is referred to the aforementioned source.

The goal for this thesis is to be able to achieve results similar or as close as
possible to the ones presented in Figure 1.1, or satisfying a certain degree of
realism using distance fields and ray marching (or its variants). However, an
additional condition is that scene visible in the aforementioned figure would be
rendered in interactive frame rates by the implementation made for the purpose
of this master thesis.

Images such as those in Figure 1.1 and similar (where it is stated) will be
considered as reference ones and are obtained with the use of a modified (to
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include ambient occlusion) CPU implementation of a ray tracer framework used
in the 02576 Physically Based Rendering course held at DTU [Fri12] which
implementation was provided by Jeppe Revall Frisvad. The rendering is done
with the use of an Intel R© Core

TM
i5-750 Processor. The model used in the figures

is that of the Stanford Bunny [Tur00]. It was chosen since of its availability as
well as its fairly detailed surface structure.

The dimensions of the reference images as well as those generated for this thesis
are of 512 × 512 pixels unless otherwise stated. Due to the formating of the
thesis these are shrunk to fit the space provided for them in the layout. This
might cause some artifacts or make some artifacts in the images (that resulted
from using a specific technique/implementation method) less visible. In such
cases areas of vital importance for an image will be displayed unscaled alongside
the full image.

The structure of the thesis was chosen such that each chapter will bring the
reader closer to the solution for the goal of this thesis. Moreover intermediate
steps in the process will be accompanied by results for them. The reason for
this decision was to allow the reader to see the effects of each vital step and
allowing for a greater and easier understanding of the matter at hand.

1.1 Notes on implementation

We have implemented the sphere tracing algorithm on the GPU and we based
it on the presented solution by Iñiqo Quilez in [nQ08b]. The implicit surface
rendering is done in the pixel shader (also referred to as the fragment shader),
which is applied to a screen representation made out of two triangles occupying
the whole screen area.

The color value for each pixel is determined by the fragment shader program
running for that pixel. Because of that, the implementation traces a ray for each
pixel taking advantage of the parallel execution of fragment shader programs
on the GPU. Thus many rays are traced at the same time for a group of pixels
and that number depends on hardware capabilities of the GPU.

It is vital to state that the implementation requires a GPU with programmable
fragment processing units, and that not all GPU architectures will be able to
run the code. This is because some of the shader instructions or their number
might not be adequate for older GPU architectures.
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Chapter 2

Background

In computer graphics in order to visualize a surface one needs, first of all, to
define its representation and based on that how the rendering process will be
accomplished. This chapter will elaborate on that matter and define surface
representations and methods used for rendering in the thesis.

2.1 Surface representations

As indicated in [Men96] there exist two main representations of surfaces that are
used in geometric modeling and computer graphics: parametric and implicit.

In the parametric case the author mentions that an implicit surface can be
defined as a set of points x in space that are represented by a set of coordinates
(x, y, z) which have been parameterized by some variables s and t. This yields
an equation of the form:

x(s, t) = (x(s, t), y(s, t), z(s, t)) (2.1)

where the parameters s and t belong to a certain domain. For example as it can
be seen from [Wei] that a sphere centered at the origin of a coordinate system
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can be defined in a parametric form with the use of its spherical coordinates:

x(s, t) = r cos(s) sin(t) (2.2)
y(s, t) = r sin(s) sin(t) (2.3)
z(s, t) = r cos(t) (2.4)

where r is the radius of the sphere, s is a parameter representing the azimuthal
coordinate such that s ∈ [0, 2π] and t is a parameter representing the polar
coordinate such that t ∈ [0, π].

Menon in [Men96] as examples of parametric methods lists non-uniform rational
B-splines or NURBS and briefly lists the motivations for such methods among
which he states an important property for computer graphics which is as an
efficient evaluation of points on the surface.

However, of interest for this master thesis are implicit surfaces. These, as men-
tioned by Menon have advantages over parametric surfaces. One of them being,
that the surface to surface intersections calculations, as the author states: “are
much more computationally (numerically as well as topologically) tractable”.
Menon mentions that an implicit surface can be defined as the zero contour of
a function, that is:

f(x) = f(x, y, z) = 0 (2.5)

where as given by Hart in [Har93] f : R3 → R and x ≡ (x, y, z) ∈ R3. Moreover,
by evaluating that function for any given point x in space, one can apart from
assessing if the point is on the surface determine if the point is enclosed by or
outside of it. Hart in his paper represents this as follows:

x ∈ Å⇔ f(x) < 0 (2.6)
x ∈ ∂A⇔ f(x) = 0 (2.7)

x ∈ R3 −A⇔ f(x) > 0 (2.8)

where A represents a closed solid that is described by the implicit function f .
Here the solid’s interior is denoted as Å, its surface as ∂A and exterior as R3−A.
Hart explains, that the above notational assumption regarding the assessment
of a point’s position with respect of the closed solid A can be understood “via
point-set topology, that the implicit function is negative inside the solid, zero
on its surface and positive outside”. This description of an implicit function
denoting a surface will be used in this thesis. Hart mentions that it is the most
common one found in literature.

Menon in [Men96] amongst other advantages of implicit methods gives that
these provide mathematical tractability, are useful for modeling operations like
blending, boolean operations and other.
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There also exist explicit methods as is stated by Menon and these for example
can define the surface in the form:

y = g(x) (2.9)
z = k(x) (2.10)

However, the author explains that this form of representation is quite limiting.
For example, for a given x it is impossible to get multiple values of y, thus in
order to do so one must use multiple curve segments. Menon identifies three
major areas of work based on implicit surfaces. These include algebraic surfaces,
blobby objects and functional representations.

Hart in [Har96] states that the most common studied form of implicit surfaces
are algebraic ones and when introducing the subject provides as an example the
representation of a sphere, which can be given by the equation:

x2 + y2 + z2 − r2 = 0 (2.11)

Where as before r denotes the radius of the sphere and its center is at the
center of the coordinate system. In the above form the sphere is represented by
a second degree polynomial function. As stated in [Men96] surfaces described
by a second degree polynomial function are know as a quadric implicit surfaces.
Menon also mentions that algebraic surfaces defined by equations of polynomial
of order 3 and 4 are also typically used yet at the bulk of interest are mostly
quadric surfaces.

In [Har96] Hart also states that the sphere can be represented in a geometric
form using a distance metric. The general form of the implicit equation of (2.5)
for the sphere then becomes:

f(x) = ‖x‖ − r (2.12)

The ‖x‖ is defined as the Euclidean magnitude and equals to
√
x2 + y2 + z2.

It can be said that in this form the sphere is represented by a distance function.
As the author states, these kind of functions "measure or bound the geometric
distance to their implicit surfaces".

Hart defines the function f in its general form as a continuous mapping f :
Rn → R by the use of which one can implicitly describes the set A ⊂ Rn as the
locus of points fulfilling he condition:

A = {x : f(x) ≤ 0} (2.13)

As previously indicated the implicit surface is defined by the value of f being
zero and by so denoting the boundary of ∂A, the negative value of f denotes
the interior Å, whereas the positive the exterior Rn −A.



8 Background

Hart in his paper also provides definitions 2.1 and 2.2 that help in the description
of distance functions. These will be repeated here for the reader’s convenience
and because of their use in the later sections of this thesis.

Definition 2.1 The point-to-set distance defines the distance from a point
x ∈ R3 to a set A ⊂ R3 as the distance from x to the closest point in A,

d(x, A) = min
y∈A
‖x− y‖ (2.14)

Definition 2.2 A function f : R3 → R is a signed distance bound of its
implicit surface f−1(0) if and only if

|f(x)| ≤ d(x, f−1(0)) (2.15)

If equality holds for (2.15), then f is called a signed distance function.

As indicated by [Har96], [Men96] and explained in [Gol83] for quadric surfaces
the algebraic representation has some limiting disadvantages compared to the
geometric representation. Among the main reasons given when considering im-
plementation are the numerical errors resulting from operations on floating point
data that have limited accuracy and which are used for describing the surface.

When considering distances to objects or surfaces usually one deals with the
notion of a distance field. As indicated in [JBS06] a distance field is a repre-
sentation of space where each point in that space can be described by a value
of a distance from that point to the closest point on a surface belonging to
that space. The authors discuss methods for generating distance fields, their
applications and representations. One form of representation of a distance field
is storing the distance values in a voxel grid. The distance based function de-
scribed by (2.12) is another form of representation of a distance field which in
this particular case contains only the distance information to the surface of a
sphere.

2.2 Rendering solutions

As Hart indicates in [Har96] there exist several methods for rendering implicit
surfaces. One of them is the polygonization of implicit surfaces which allows to
take advantage of the graphical pipeline and rasterization techniques. However,
this process of representing the surface by the use of polygons might result in the
loss of detail of the surface and may not accurately detect disconnected sections
of the surface.
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As another method Hart mentions that ray tracing is a noteworthy technique
for visualizing implicit surfaces. In ray tracing the ray equation is given by the
form:

r(t) = ro + trd (2.16)

where ro denotes the point in space from which the ray originates, rd represents
the ray direction and is given by a unit vector, t is the distance traveled by the
ray and finally r(t) is the point in space that the ray has reached after traveling
the distance t from its origin.

In order to find the intersection point or points of the ray and the implicit
surface the following procedure is carried out. For a three dimensional space of
real numbers we insert the ray equation defined in the domain r : R→ R3 into
the function f that describes the implicit surface defined in f : R3 → R and the
acquired result is a composite function F = f ◦ r spanning other F : R → R.
The solution to the equation are all the distances t the given ray has traveled
that satisfy the condition:

F (t) = f(r(t)) = 0 (2.17)

To solve that equation root finding methods are applied and the choice of the
method depends on the type of function F (t). As Hart states, for polynomi-
als of degree four or less there exist analytical solutions, yet for an arbitrary
function one needs to use a general robust root finder, which often requires
more information about the function which can for instance be acquired from
its derivative.

The root finding methods have a drawback of finding usually more than one
intersection point of the ray and the implicit surface. From all the traversal
t values that satisfy the equation (2.17) only the smallest one is taken into
consideration. Ray marching and sphere tracing mitigate this by only focusing
on determining the first root of the aforementioned equation. The process of
doing so is elaborated in the following sections.

2.2.1 Ray marching

In standard constant step ray marching as indicated by[PH89] the ray equation
of (2.16) takes the form of:

r(k) = ro + ∆t k rd (2.18)

where ∆t is the predefined step size and k ∈ {0, 1, 2, ...} is the step number. Sam-
pling the ray at fixed intervals is a basis for some of the solutions for volumetric
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Algorithm 2.1 Ray marching
1: k = 0
2: d = 0
3: while k < kmax do
4: d = f(r(k))
5: if d ≤ 0 then return k∆t . intersection
6: k = k + 1

7: return 0 . no intersection

rendering as Hart suggest in [HST89]. In particular the method is quite simi-
lar to the volumetric rendering technique of ray-casting which overview among
other can be found in [Elv92].

In [PH89] the ray marching algorithm is used for rendering the Hypertexture.
The ray marching process starts from the point identified as the first intersec-
tion (from the camera’s side) of the ray with the parallelepiped bounding the
Hypertexture volume. The ray is marched in fixed steps and the ray equation
has the form of (2.18). For each such step the representation of the surface is
sampled and the opacity values are accumulated. The condition for ceasing the
sampling along the ray is when the accumulated opacity value reaches unity,
or when the ray leaves the parallelepiped encapsulating the Hypertexture vol-
ume. Those are also the same termination conditions for standard ray-casting
of volumetric data as described in [Elv92].

The incorporation of this algorithm to rendering of implicit surfaces defined
by (2.7) is given in algorithm 2.1 and can be described as follows. The ray is
marched in constant steps at which the function F (k) = f(r(k)) is evaluated.
That function is a modification of the one given by equation (2.17) by incor-
porating the new ray equation of (2.18). The marching ends when the first in
the sequence of return values of the function F (k) is zero or negative which
respectively indicates that an intersection has taken place with the surface ∂A
or the ray has marched into the interior Å. For both cases the resulting ray
traversal distance k∆t, being the number of steps times the step size is used to
describe/identify the surface point. The ray marching also ends when the max-
imal predefined number of ray marching steps tmax has been reached without
the ray intersecting the surface.

It should be noted, however, that the distance that the ray travels between
steps ought to be as small as possible in order to better estimate the boundary
region of A. If the steps are too large one can traverse too far into the interior
Å and therefore loose accuracy of the overall surface shape. This is visible for
the middle ray in figure 2.1. The surface here is depicted by the blue contour,
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Figure 2.1: Ray marching. Surface represented by the blue contour, green dots
are sampling points along the ray whose spacing is determined by
the step size.

and steps taken along the ray are visible as green dots. Moreover, it is even
possible to miss the surface completely or some parts of it if the step size is not
properly determined as it is suggested in [Don05]. This situation is depicted by
the bottom ray of the aforementioned figure. As indicated before, because of
the step size the first intersection of the ray and the surface it is not detected,
but only the second intersection when the sampled point happened to be taken
on the surface.

Hart mentions in [Har96] that ray marching suffers from performance issues
since it requires fine sampling along the ray, in order to achieve adequate level
of detail. In sphere tracing, however, the step size is not constant but it varies in
size depending on the distance to the surrounding geometry as the next section
will explain.

2.2.2 Sphere tracing

Sphere tracing as Hart defines it in [Har96] is a robust technique for ray tracing
implicit surfaces. In this approach we still march along the ray, however, the
step size is determined by the distance obtained from a distance function from
a given sample point.

Sphere tracing has been first introduced in [HST89] where the authors used this
technique to visualize 3-D Deterministic Fractals. In order to help visualize
and describe this method the authors form a concept of unbounding volumes.
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These are defined as volumes that are guaranteed not to contain any part of a
surface we intend to render. For a given sampled point in space we are interested
in finding an adequate volume representation centered at that sampled point.
If one knows the distance from the sampled point to the closest point on the
surface, then that distance can be treated as a radius of a sphere. This sphere
then forms an unbounding volume which is guaranteed not to intersect with the
surface (except for the point of the surface which lies at the length of the radius
away from the center of the unbounding sphere) or contain any part of it. The
radius of the unbounding sphere is obtained by evaluating the distance function
for a given sampled point in space.

It is noteworthy to point out that in the authors’ case the distance obtained is
called a distance estimate. The choice for the name is given by the fact that
the distance cannot be computed efficiently for the deterministic fractal objects
they render, therefore they use methods to approximate the actual distance to
the surface. However, if we deal with the rendering of an object such as a sphere
represented by the implicit equation (2.12) we are able to accurately asses the
closest distance to the surface for any point belonging to the domain.

To visualize the surface the authors use the camera model of an eye, which is
a pinhole camera model with the image plane placed in front of it [PH10].
In [HST89] the ray traversal is described in the following way. The ray is
marched from the eye through the image plane to the object. At each given
point along the ray the radius of the unbounding sphere is estimated and used
as the distance by which the ray will traverse. Several steps are taken since
the actual distance towards the surface along the ray may be larger than the
evaluated distance for a given point on the ray. This procedure ends when the
surfaces is reached. The process of sphere tracing is visible in figure 2.2. Here
the two bottom rays intersect the surface. Of note is that, as it can be seen
sphere tracing does not suffer from the drawbacks indicated for ray marching
in the previous section in the description of the intersections of the surface and
the rays.

Moreover, the other condition for termination is when the ray has traversed the
maximum predefined distance without having approached the surface [Har96].
This might mean that the ray does not intersect the surface (the top ray of the
figure 2.2) or that the surface is farther away than the maximal allowed ray
traversal distance. Hart also mentions that the name of sphere tracing took its
origins “form the property that the ray intersections are determined by sequences
of unbounding spheres”.

In the process of rendering surfaces this thesis will mostly use the ray equation
of (2.16) unless otherwise stated. It is the same one as given in [Har96].
However, in [HST89] it is provided in a different form (stated inductively) and
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Figure 2.2: Sphere tracing. Green circles represent unbounding spheres and
black dots their centers

includes a modification whose purpose is to speed up the ray traversal. This will
be discussed in another section of this thesis. Nevertheless, the same method
of determining the ray direction is used. The ray direction rd is a unit vector
(which is referred also by the authors as a unit slope vector of the ray) and
determined from the equation:

rd =
px,y − ro
|px,y − ro|

(2.19)

Here, as previously ro denotes the ray origin. The variable px,y represents a
point on the image plane. The notation of ray direction has been changed to
make it consistent with the one already used in this thesis.

As Hart explains in [Har96], and as it was indicated in section 2.2 of this thesis
the equation F (t) (2.17) is used to find the intersection point. However, now
the function f(x) is a distance estimating function like the geometric distance
function for the sphere(2.12).

Evaluating that equation with respect to the procedure of the ray traversal
described in this section allows us to find the first positive root (with respect
to the smallest distance traveled by the ray form the eye to the surface) of
F (t). Hart defines that root as the “limit point of the sequence defined by the
recurrence equation”:

ti+1 = ti + F (ti) (2.20)

The initial point is being defined here as t0 = 0. The author states that the
"sequence converges if and only if the ray intersects the implicit surface". The
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Algorithm 2.2 Sphere tracing
1: t = 0
2: d = 0
3: while t < D do
4: d = f(r(t))
5: if d < ε then return t . intersection
6: t = t+ d

7: return 0 . no intersection

above allows Hart to state that “this sequence forms the kernel of the geometric
implicit surface rendering algorithm”. This for the readers convenience is taken
from [Har96] and shown as Algorithm 2.2. The t as previously defined, denotes
the distance the ray has traversed, f is the distance function of the implicit
surface. The variable D is the maximal distance the ray can traverse before the
ray marching process terminates. By its use the far plane of the camera is also
defined. The convergence test of equation (2.20) is visible in the if statement.
Here ε denotes the desired precision of the convergence test and it is usually a
very small number.

The rendered images of this thesis are mostly acquired by using the algorithm
of 2.2 unless stated otherwise.
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Rendering of implicit
surfaces

Though the primary goal is rendering of the images resembling those of Figure
1.1, this chapter sets an intermediate goal of rendering shapes that can be easily
defined analytically in terms of distance to the surface. This will allow for an
simpler introduction of concepts that will lead to the end result.

For serving the purpose of visualization of the intermediate goal the reference
images of Figure 3.1 will be used. The models used there have been defined with
the use of polygon meshes. Their rendering is acquired with the ray tracing
framework mentioned in Chapter 1. The next sections will elaborate on how
similar results can be achieved with implicit surfaces defined with the use of
distance functions.

3.1 Lighting model

In order to visualize the implicit surfaces one needs to decide on a lighting model
to use. The model chosen here is based on the Phong lighting model as described
in Chapter 5 of [FK03]. The resulting color of the surface point I(x) will be
acquired from a sum of ambient, diffuse and specular lighting contributions.



16 Rendering of implicit surfaces

(a) Sphere triangle count: 18240. Render
time ∼ 20 minutes. View 1

(b) Box triangle count: 12. Render time
∼ 20 minutes.

Figure 3.1: Reference images of simple shapes

The emissive contribution normally being a part of the model is not considered
here since we will not be rendering any emissive materials.

I(x) = ambient + diffuse + specular (3.1)

As a light source a single directional light was chosen and each term of the above
equation is defined as follows. The ambient contribution being:

ambient = ka(x)Ia (3.2)

where ka(x) is the point’s ambient reflectance and Ia is the color of the incoming
global ambient light. The diffuse contribution can be defined as:

diffuse = kd(x)Id max(n · l, 0) (3.3)

Where kd is the surface point’s diffuse color, Id stands for the color of the
incoming diffuse light. The dot product is between the surface point’s unit
length normal n and the unit vector l denoting the direction to the light source
from the surface point. The specular term is given as follows

specural = facing ks(x) Is max(n · h, 0)shininess (3.4)

Here, ks denotes the point’s specular color, Is defines the color of the incoming
specular light. The h is a unit vector halfway between the vector denoting the
direction towards the eye from the surface point and the light vector l. The
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shininess exponent determines how much a given surface appears to be shiny.
The facing parameter is defined as follows:

facing =

{
1 if n · l > 0
0 otherwise (3.5)

In order to do the lighting calculations the information about the surface normal
is required. As given in [HST89] the normal can be computed by using the
gradient of the distance field for a given point on the implicit surface. The
aforementioned method with the use of the distance function is presented in 3.1:
Here n denotes the normal which is given by a three component vector, and as

Algorithm 3.1 Normal calculation for a point on the surface
nx = f(x+ ε, y, z)− f(x− ε, y, z)
ny = f(x, y + ε, z)− f(x, y − ε, z)
nz = f(x, y, z + ε)− f(x, y, z − ε)

previously f is the distance function. The ε stands for a value by the use of
which for a given surface point the neighbouring points along the coordinate
axes are accessed. The correctness of the normal calculation will be affected
based on the magnitude of ε. Because of that it is usually chosen to be a small
number.

After computing the normal it should be normalized. The authors also mention
that the 6-point gradient might be extended to versions where 18 or 26 samples
are taken. This is usually done when we are of need of a better estimate of the
normal and the 6-sample point method does not produce the expected result.
Such a scenario might arise when the representation of a distance field is a
"loosely" spaced voxel grid, from which we take our distance values. Therefore,
taking more samples should approximate the surface point normal better.

3.2 Initial rendering

Since the shape of the sphere is considered well known and whose mathematical
description was used in the Chapter 2 of this thesis it was chosen as a candidate
for an initial rendering of an implicit surface.

The results of rendering a sphere described by equation (2.12) and using the
implicit surface rendering Algorithm 2.2 with the previously discussed lighting
model are visible in Figure 3.2. The color of the sphere determined from the
diffuse, ambient and specular contributions is visible in 3.2a, whereas in 3.2b
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(a) Diffuse, ambient and specular term (b) Diffuse and ambient term

(c) Aliasing: sphere’s image left part (d) Aliasing: sphere’s image bottom part

Figure 3.2: Sphere

its color is determined only by the diffuse and ambient contribution. Unless
otherwise stated, the latter will be the default contributing terms for rendered
surfaces throughout this thesis since the reference images of Figure 1.1 and
Figure 3.1 do not have a specular contributing component.

Like ray tracing, sphere tracing is prone to aliasing. This can be clearly seen in
the bottom and left part of the rendered sphere’s image. The unscaled afore-
mentioned parts are given by Figures 3.2c and 3.2d respectively.

3.3 Basic operations on implicit surfaces

Hart in [Har96] and Quilez in [nQ08a] provide signed distance functions for
common geometric objects like the sphere, plane, cone and other along with the
operations that can be performed on them. Hart provides these in a form of



3.3 Basic operations on implicit surfaces 19

mathematical notation whereas Quilez in already coded form. Since this thesis
is greatly influenced by Hart’s paper the mathematical notation will be also
used here.

As Hart defines it, implicit surfaces can be transformed in a procedure involving
two steps. The first one is the application of the inverse transformation to the
space the implicit surface is said to reside in (that is the domain of the implicit
function). Then the points in that transformed space are queried with the
distance function of the implicit surface. The transformed implicit surface can
be written as:

f(T−1(x)) = 0 (3.6)

where f(x) is the distance function of the implicit surface and T−1(x) is defined
as the inverse of the transformation T (x) that we want to apply to the implicit
surface.

Not all transformations preserve the distance that would be returned from the
distance function of the transformed surface. That is, it may happen that
the distance returned is not an actual distance from a given point in space to
the closest point on any surface. However, a group of transformations called
isometries after their application provide the correct distance to the transform
surface. In this group are transformation such as translations, rotations and
reflections. After applying these transformations the distance value returned
form the distance function need not be altered to compensate the effects of the
transformation. This as Hart defines it can be written as:

d(x, I ◦ f−1(0)) = d(I−1(x), f−1(0)) (3.7)

where the I stands for an isometry transformation, and f−1(0) for a given
implicit surface.

Scaling an implicit surface on the other hand does not preserve the distance and
the result from a distance function of the scaled surface needs to be adjusted.
Hart gives, the transformation of a uniform scale as

S(x) = sx (3.8)

where s is the scale factor. Its inverse is given by:

S−1(x) =
1

s
x (3.9)

which allows for defining the distance to the scaled implicit surface as:

d(x,S(f−1(0))) = sd(S−1(x), f−1(0)) (3.10)
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The distance returned form the distance function of the scaled implicit surface
is multiplied by the scale factor s in order to preserve the accurate distance
information. For more examples and information about the transformations
that can be carried out on implicit surfaces defined by the distance metric the
reader is referred to the aforementioned references.

Implicit surfaces can also be created for example with the use of operations like
union, subtraction and intersection on other implicit surfaces for which their
signed distance functions are known.

The union of two implicit surfaces A and B is defined by Hart as the minimum
distance from either of their distance functions fA and fB respectively, and it
is written as:

d(x, A ∪B) = min(fA(x), fB(x)) (3.11)

As previously the x stands for the sampled point in space. On the other hand,
the distance to the intersection of two implicit surfaces the author states as:

d(x, A ∩B) ≥ max(fA(x), fB(x)) (3.12)

The subtraction operation uses the description of the signed distance function
to the complement of an implicit surface. The distance to the complement of
an implicit surface A is given by Hart as:

d(x,R3 \A) = −fA(x) (3.13)

The subtraction of the implicit surface B from A based on the one given by
Quilez can be written as:

d(x, A ∩B) ≥ max(fA(x),−fB(x)) (3.14)

As it is stated by Hart the distance to a list of implicit surfaces is the small-
est distance originating from their respective distance functions. Therefore, in
addition to combining surfaces the union operation allows for inclusion of more
implicit surfaces which do not have to be in contact with each other in the scene.

For instance the inclusion of flat ground to the image 3.2b is achieved by first
defining the distance function for it. It can be represented by a plane P which
distance function is given by Hart as (3.15).

f(x) = d(x, P ) = x · n− h (3.15)

It is defined with the use of the unit normal n with the point of intersection
hn. The h defines the relative placement of the plane with respect to the plane
perpendicular to the normal n and intersecting the origin of the coordinate
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(a) Initial camera position (b) Another camera position

(c) Left part of figure 3.3a (d) Left part of figure 3.3b

Figure 3.3: Sphere and ground

system. The operation x · n stands for the dot product of the sampled point
and the unit normal of the plane P . Then a scene consisting of a sphere and
the plane has its distance function used in sphere tracing Algorithm 2.2 given
as:

f(r(t)) = min(fG(r(t)), fS(r(t))) (3.16)

Where fG(r(t)) stands for the singed distance function of the plane given by
equation (3.15) and fG(r(t)) stands for the signed distance function of the sphere
given by (2.12).

The result of placing the plane beneath the sphere is depicted in Figure 3.3a.
The relative placement is achieved by adjusting the h variable of equation (3.15).

In the image of 3.3a the ground does not suffer from any aliasing as it is more
clearly visible in the unscaled left part of it as presented in 3.3c. This is because
of a quite large maximal ray traversal distance set for producing this figure, as
well as the parallel placement of the camera with respect to the ground plane.
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Algorithm 3.2 Hard shadows
1: t = tmin
2: d = 0
3: while t < D do
4: d = f(rS(t))
5: if d < ε then return 0 . in shadow
6: t = t+ d

7: return 1 . not in shadow

On the other hand when the same maximal ray traversal distance has been
set and the camera position has changed the aliasing of the ground is now
apparent in as seen in Figure 3.3d which is the unscaled left part of Figure 3.3b.
The images in this section seem to lack depth this can be mitigated by adding
shadows as described in the next section.

3.4 Shadows

Hard shadows are easily obtained much like in ray tracing. The procedure
involves sphere tracing from a surface point towards the direction of the light
source until a surface intersection is determined or the maximal ray traversal
distance is surpassed. The distance to the light source for a given surface point
is usually that maximal ray traversal distance or it might be a minimal arbitrary
value that is adequate for the scene geometry like for instance in the case of a
directional light source.

The traversal here will be done on the shadow ray which is described by equation
(3.17) that differs slightly from the standard ray equation of (2.16) by using a
different starting point and direction of traversal.

rS(t) = x + t rLd (3.17)

Here, the origin of the ray is now the surface point x which has been previously
determined by sphere tracing Algorithm 2.2. The direction rLd of the shadow
ray is a unit vector having the direction from the surface point x towards the
light source.

In [nQ11] Quilez provides method for obtaining hard shadows, which is pre-
sented as Algorithm 3.2. The reader might notice that this algorithm looks
very similar to the standard sphere tracing Algorithm 2.2. There are however,
some differences. For instance the ray is defined now as the shadow ray rS(t)
of equation (3.17) and that the distance function f is the distance function
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(a) Whole image (b) Hard shadow aliasing

Figure 3.4: Sphere and ground scene, hard shadows

of the scene itself. Moreover, the algorithm’s return value denotes something
else. Here the value 1 indicates that the shadow ray rS(t) did not intersect any
surface when the maximal ray traversal distance D has been reached. On the
other hand, the value 0 means that the ray has intersected with a surface and
therefore the surface point x is in shadow.

There is one additional change that might not be noticeable at first. The variable
t is initialized to a tmin value (determined per rendered scene) which should be
defined with the relation to ε as tmin � ε. If it were otherwise, the considered
point x would be deemed in shadow, since of the initial value of d fulfilling the
if branch condition of d < ε. The reader might remember that the if condition
was responsible for the determination if the sampled point along the ray was of
the surface in the sphere tracing Algorithm 2.2. In the case of the hard shadows
Algorithm 3.2 when the initial traversal t would be zero then the sampled point
returned by the shadow ray equation would be the surface point x resulting in
a distance d of 0 and triggering the if branch. Therefore, setting the initial
shadow ray traversal to a value tmin allows the point x not to "shadow itself".

Applying hard shadows to the scene containing the sphere and the ground results
in an image visible in Figure 3.4a.

As it can be seen in the unscaled Figure 3.4b the hard shadows also suffer from
aliasing.
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Algorithm 3.3 Soft shadows
1: t = tmin
2: d = 0
3: shadow = 1
4: while t < D do
5: d = f(rS(t))
6: if d < ε then return 0 . in shadow
7: shadow = min(shadow, scale ∗ d/t)
8: t = t+ d

9: return shadow . not in shadow

Additionally, Quilez proposes a technique for obtaining soft shadows with a
penumbra region. He argues that since distance fields provide global informa-
tion of the surrounding scene geometry by inspecting a point in space with a
distance function they become quite useful at obtaining some of the more re-
alistic illumination and shading techniques. The method described by Quilez
for obtaining soft shadows with a penumbra region can be written as shown in
Algorithm 3.3.

Comparing the soft shadow Algorithm 3.3 with the one for producing hard
shadows 3.2 shows that the former is changed by an addition of line 7. This
allows for inspecting the closeness of the ray to the surrounding geometry of the
scene given by the distance d, along with the traversal t of the ray at the time
of inspection during the ray marching process. As Quilez points out these two
variables help us in assessing and forming the penumbra region along with the
soft shadows. The reasoning for their use in the form of equation of line 7 is the
following.

When the ray was close to intersecting a surface but failed to do so the minimum
distance d recorded along the traversal of the ray will be quite small. In this
case and depending on its value one can say that the point from which the ray
originated from is in the penumbra region and adjust its shading accordingly.
That is, the closest the ray was to intersecting an surface the darker the point
should be.

Additionally, what influences the shading is taking into account the distance the
ray has traversed when testing the distance to a surface. For instance, for two
rays originating from two different surface points and having the same minimum
recorded distance to a surface, the one having traversed less when the minimum
distance has been recorded should be made darker.

Keeping track of the minimum penumbra factor of d/t (as Quilez calls it) allows
for assessing the shading of a point with respect to the above considerations.
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As Quilez mentions the scale variable affects the visualization of the penumbra
region making the shadows more hard or soft. The application of the soft
shadow Algorithm 3.3 results in the images of Figures 3.5 and 3.6. The camera
position was changed to better illustrate the results. These also show the effects
of setting the penumbra factor’s scale to different values.

By comparing Figures 3.5c and 3.5d it is also visible that the penumbra scale
factor also has an effect on the sphere’s shading. This is mostly visible in the
transitional region from the sphere’s surface being illuminated to going into self
shadow.

What is noticeable is that the shadows do not have the aliasing artifacts as it
was in the case with hard shadows of Figure 3.4b. Moreover, one can try to set
the scale parameter to such a value that will mimic the effects of anti-aliasing
for hard shadows as Figure 3.6 illustrates.
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(a) Penumbra factor scale 4 (b) Penumbra factor scale 16

(c) Shadow region of figure 3.5a

(d) Shadow region of figure 3.5b

Figure 3.5: Sphere and ground scene, soft shadows, penumbra scale 4 and 16
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(a) Penumbra factor scale 64 (b) Hard shadows

(c) Shadow region of figure 3.6a

(d) Shadow region of figure 3.6b

Figure 3.6: Sphere and ground scene, soft and hard shadows
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3.5 Ambient occlusion

3.5.1 Background

Many may state that to produce convincing photorealistic images one has to
also take into account the global illumination effects that are the result of diffuse
interreflections. Such view among other, is taken into consideration in [IKSZ03].
In order to achieve such images the authors state that one usually uses methods
like radiosity or ray tracing. However, adequate results are obtained after a
lengthy time period and the processes themselves do require significant amounts
of memory. Moreover, as the authors mention setting up such methods and their
use is not considered to be trivial, therefore they are not used by artists very
often. In movies or games for that matter more stress is put on the general
vision of the director of how the scene should look like than its realism and
if it corresponds to the general vision of the artistic style of the given work.
Therefore, it is more often vital to produce images that are rendered quickly,
which may not be physically correct, but are aesthetically pleasing.

In [ZIK98] a method aiming to achieve illumination effects of occlusion similar
or correct up to a certain degree to those acquired from radiosity but in a
shorter time period is presented. There the authors Zhukov et al. devised the
concept of obtaining these effects by computing the obscurance of a given point
in the scene. As it is explained the property tells how much a given surface
point is open and by its use the authors introduce their “empirical ambient light
illumination model”. It accounts for the lack of secondary light ray reflections
that would be contributing to a point’s illumination if it were not for occluding
surfaces and the degree of that occlusion is the focus of the measurement. As
the authors point out this is opposite to radiosity where the contribution to the
illumination is the measured intensity from secondary reflections.

As it is stated in the paper most local illumination models use ambient light to
account for secondary diffuse reflections and treat it as a value that is constant
for the whole scene. This is also true for the Phong lighting model used so
far in this thesis for rendering implicit surfaces and as it can be seen these
lack a certain degree of realism. With the use of ambient light Zhukov et al.
in the paper simulate indirect illumination by combining it with a model that
reproduces the darkening effects of obscured areas by taking into account the
"geometric obscurance in these areas".

The paper by Zhukov et al. has been a basis for many others like [IKSZ03]
and [KL05]. In the latter Kontkanen et al. mentions that the ambient occlusion
idea is considered to be a special case, a simplification of the model proposed
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Figure 3.7: Hemisphere sampling for Ambient Occlusion

by Zhukov et al. and that this technique has become quite popular in the movie
industry under the influence of which it has undergone some refinement. Since
of it being the simpler model it will be explained first. As the authors define
it, ambient occlusion is linked to the attenuation of ambient light which is the
result of the occlusion of nearby geometry and can be given by the following
formula:

OA(x,n) =
1

π

∫
Ω

V (x,ω)bω · ncdω (3.18)

As before x defines the surface point and n its normal as ilustrated in Fig-
ure 3.7. The function V (x,ω) determines the visibility in the direction defined
by the direction vector ω. The visibility function is said to be equal to unity
if in the direction ω a surface is found (ergo an occluder) and zero otherwise.
The integration takes over a hemisphere of directions Ω which orientation is
with accordance to the normal n and centered at the point x. The authors un-
fortunately do not provide explicitly the explanation why in this case the floor
operator is used in the expression: bω · nc. Yet after consultation in [PH10]
it is assumed that the authors might have meant the absolute value of the dot
product between vectors ω and n. This will be left here as it is in its current
form for consistency reasons.

OA(x,n) will take on a value of between 1 and 0. The full occlusion of a point is
repressed by value 1, whereas the value 0 denotes no occluding geometry influ-
encing that point. As the authors state multiplying the constant ambient term
of (3.2) in the Phong’s model by 1−OA(x,n) gives considerably better results
and allows for an approximation of some of the effects received from comput-
ing the full global illumination. There the computation of ambient occlusion in
production rendering as the authors indicate is usually done on the surfaces of
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each object and the results are stored as vertex attributes or texture maps for
later use.

The authors also relate equation (3.18) to the Zhukov et al. obscurance illumi-
nation model, in which the obscurance W can be given as:

W (x,n) =
1

π

∫
Ω

ρ(d(x, ω))bω · ncdω (3.19)

Kontkanen et al. point out that as it can be seen from the above the place of the
visibility function was taken by ρ(d(x,ω)) which can be understood as follows.
The purpose of the distance function d is to provide the distance of the first
intersection of the ray shot from the surface point x in the direction ω with an
occluding surface. The function ρ on the other hand as the authors define it is
a mapping of a distance suitability.

That distance suitability is elaborated more by Zhukov et al. in [ZIK98] and
by Iones et al. in [IKSZ03]. In the latter the authors there aim to achieve an
distance ambient effect based on the values of the function ρ being in the range
between and including 0 and 1. This will measure the magnitude of ambient
light coming from the direction ω. Moreover, the properties that the function
should fulfil have been defined by the authors as follows:

ρ(d) =

{
0 for d = 0
1 for d = +∞ (3.20)

ρ′(d) =

{
> 0

0 for d = +∞ (3.21)

ρ′′(d) < 0 (3.22)

The above, as the authors state, describes a function that is monotonous and
increasingly smooth. The function produces the value 0 for the intersection dis-
tance being 0 which means that the given surface point is fully occluded. The
highest value of the function is bounded by the asymptotical value 1 and the
function is characterised by a monotonous decreasing derivative. To summarise,
the above reflects a function that describes the increase of ambient light con-
tribution the further the intersection point is with the maximal value 1 if no
such point is detected. Iones et al. suggest that for the ρ function a family of
functions given by the equation:

ρ(d) = 1− e−τd (3.23)

would be fitting. The τ is defined as a positive parameter.

The obscurance value W given by equation (3.19) for any surface point x is
in the range 0 ≤ W ≤ 1 and depicts the local geometric properties of the
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surroundings of the surface point. The value 0 denotes that the point is fully
occluded, whereas the value 1 means that there in no occlusion by surrounding
geometry, and as the authors state the point is "fully open". Iones et al. assume
that the openness of a point measures its brightness, that is, it is a measure of
the intensity of the ambient light reaching that point, and by doing that form
a reflected intensity equation for a surface point:

I(x) = Iaka(x)W (x) (3.24)

The ka(x) is the diffuse reflectance for ambient light. The above equation does
not take into account any light sources just the ambient contribution part. If the
surface point is not occluded the equation then becomes I(x) = Iaka(x) which
is the same as the ambient contributing part for the Phong lighting model and
same as the ambient contribution of equation 3.2 used in the lighting model of
this thesis. The authors mention that obscurance can be computed for static
scenes without the dependence on light sources and stored in obscurance maps
for future use.

Since the obscurance concept relies on the geometric properties of the scene the
idea of it has been further revised by Evans in [Eva06a] where the author uses
it with the conjunction of distance fields. Inquiring the signed distance function
about a point surroundings can lead to a general idea about its surroundings
which are of use in estimating the amount of ambient light reaching that surface
point.

Evans in his paper is interested in finding the amount of sky visibility for any
point in the scene that would undergo lighting computations and based on that
the shading of the point itself. He defines features that his algorithm for ap-
proximating global illumination should have. The key ones are the following.
There exist “dark contact shadows” of objects which are in contact with each
other, thus an object can be an occluder and/or an occludee. Another thing is
to be able to register darker regions in creases and valleys of complex surfaces.
Moreover, what is of contrast to other methods is that the algorithm will sup-
port a scene and the multiple objects in it that do not have to be static and can
move freely or even deform.

As Evans explains the distance values returned from a signed distance function
allow us to asses how much an object/surface is occluded, or more precisely as
the author defines it: to measure the visibility of the sky from any point in the
scene considered for shading. This, relates to the obscurance notion that was
mentioned in previous paragraphs, and its influence in devising this method.

Before Evans method is introduced it is noteworthy to mention about the con-
vention he uses for representing distance fields. The author uses the opposite
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(a) Sample point q along the direction of
the normal originating from the surface
point x

(b) Unbounding sphere radius equal to the
distance between sample point q and
surface point x

(c) Unbouding sphere radius influenced by
the red surface

(d) Unbounding sphere radius influenced
by the geometry of the blue surface

Figure 3.8: Signed distance function as an occlusion measure

of those for surface interior and exterior that were defined by equations (2.6)
and (2.8). That is, Evans considers the return value for the distance function
inside the surface as a positive value, whereas the return value for the distance
function to be negative for the space enclosing the surface.

However, in order to be consistent with the representation already used here in
this thesis, Evans reasoning concerning values of distance fields and their use in
equations will be adjusted accordingly. Moreover, the terminology introduced so
far in this thesis will also be incorporated into the description of Evans method.

The explanation for using distance fields as a source of information about the
amount of ambient light reaching a surface point is justified as follows. Consider
sampling the distance field in the direction of the normal of a surface point x.
The sampling distance is defined beforehand and is given to be dq. The sample
is taken at point q that is of distance dq away from the surface point x as it is
illustrated in Figure 3.8a. If the distance function is queried for the point q it
returns an distance which is the unbounding sphere radius and defined as rq,
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which is visible in Figure 3.8b. If it happens that the surface point x is not
occluded by either other surfaces or the surface itself as it is in this case then
there exist an equality dq = rq.

On the other hand if in the vicinity of sampled point q there exists another
surface point which is closer than the point x the situation is different. In the
case of Figure 3.8c that closer point is of another surface, whereas in Figure 3.8d
it is an another point on the same surface. Then the following inequality holds
for both cases dq > rq. In his paper Evans suggests that the difference of values
of dq and rq can be used in the measurement of the occlusion of surface point
x.

In order to better estimate the amount of occlusion usually several samples are
taken. As Evans explains it in the absence of occluders one expects the following
equation to hold true:

imax∑
i=0

f(x + din) =

imax∑
i=0

di (3.25)

Where f is the singed distance function describing the scene, and n is the surface
normal originating from point x. The maximal number of sampled points in
the direction of n away from x is given by imax. The distance relations of the
samples are such that: di < di+1 with d0 = 0.

As the author states, any difference between the two sides of equation (3.25)
can be used as an estimate of a point’s occlusion or the openness of the space
around it and the author chooses to measure that by the use of the following
equation:

C = eτ
∑imax

i=0 (di−f(x+din)) (3.26)

The τ variable is set to define the overall contrast. Evans elaborates that each
sample at a distance di is used to asses the occlusion effects of objects at that
distance. The C stands for the approximation of ambient occlusion and is the
output of the shader as the author defines it.

In Evans approach the distance flied is computed for the entire scene and stored
in a volume texture and then the information stored there is used for assessing
the global illumination. The scene itself can be constructed out of objects repre-
sented as polygons. Because of this the author states that his algorithm is rather
limited to small scenes. Moreover, Evans sums up in his presentation [Eva06b]
that the unphysical nature of these lighting effects by using approximations of
the occluding geometry is somewhat difficult to apply in complex scenes. The
author also mentions that though these might not reflect how these effects would
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look like in real life they give the viewers adequate approximations in helping
them visualize and understand the scene.

In this thesis the current approach was to represent surfaces by their distance
functions and not to compute the distance field based on the scene geometry
and store it in a 3D texture. Therefore, no mater how large the procedural
scene will be the technique for using the distance from the distance functions
can still be used for obtaining the effects of ambient occlusion on an arbitrary
procedural scene. Moreover, some of the techniques that Evans describes later
in his paper do not apply here. For example, the determination of the distance
of sample points, since it is influenced by the dimensions of the texture volume
representation that stores the signed distance function (distance field).

On the other hand Quilez in his presentation [nQ08b] modifies slightly Evans
approach. The sampling method described previously can be written in another
form using the ray equation. A ray cast from the surface point x in the direction
of the normal n at that surface point, is defined as:

rn(k) = x + ∆t k n (3.27)

The ray equation is similar to the one used for constant step marching of (2.18).
The only difference except for notation, is the ray’s direction. The variable
k ∈ {0, 1, 2, ...} denotes the sample number and ∆t is the step size of the samples.
Then in the case of no occlusion as in Figure 3.8b the following holds:

f(rn(k)) = ∆t k (3.28)

The above, for that case can be generalized for a number of samples (as it was
respectively in the equation (3.25)):

kmax∑
k=1

f(rn(k)) =

kmax∑
k=1

∆t k (3.29)

The zero has been omitted from the k domain since the result there will always
be the same. Samples are taken a certain amount of times defined by kmax. In
the case of scenarios depicted by Figures 3.8c and 3.8d the above equation will
turn into an inequality.

kmax∑
k=1

f(rn(k)) <

kmax∑
k=1

∆t k (3.30)

For obtaining the ambient occlusion Quilez defines the equation:

AO = 1− s
kmax∑
k=1

1

2k
(k ∆t− f(rn(k))) (3.31)
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Algorithm 3.4 Ambient Occlusion
1: k = 1
2: d = 0
3: occlusion = 0
4: while k < kmax do
5: d = f(rn(k))
6: occlusion = 1

2k (k∆t− d)
7: k = k + 1

8: return 1− clamp(s occlusion, 0, 1)

Where s is a scale variable determining the darkening effects of the occlusion.
For A0 value range is between 0 and 1 and similarly to obscurance W of equa-
tion (3.19) 0 stands for full occlusion of a surface point, whereas 1 means no
occlusion. The AO behaves similarly to the function ρ of equation (3.23) in the
sense that, as Quilez states it, the further away surfaces contribute less to the
occlusion than the nearby ones.

Based on the solution presented by Quilez the ambient occlusion algorithm is
given in Algorithm 3.4. The procedure is based on the concept of constant step
ray marching of Algorithm 2.1. One of the notable differences is the change of
the ray equation to the one of 3.27 and that there are no explicit intersection
checks. As previously stated the ray now is marched from the surface point in
the direction of its normal for a maximal number of steps defined by kmax. At
each step the occlusion is estimated and the result accumulated. Usually for the
value of kmax a couple of steps are sufficient. Quilez in his presentation mentions
that around 5 steps will be adequate. This of course varies with respect to the
scene complexity as well the step size yet it barely reaches high values. This
might be attributed to the observation by Zhukov et al. when they described
their model that the lighting of a point is mostly affected by the geometry in its
vicinity.

The initial step is for k = 1. The 0 value is removed form the k domain since
we will not have any use for it in our computations by measuring the distance
to the surface point itself. The s as stated previously is a scale influencing the
darkening effects of surface points being occluded. The end result is clamped to
the range between 0 and 1 since that is the result we expect to use in for the
variable A0 in the ambient term of equation (3.32).

Similarly as in the obscurance case the ambient term previously given by equa-
tion(3.2) now becomes.

ambient = Iaka(x)AO (3.32)
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(a) Sphere traced: sphere and ground
plane with AO addition

(b) Reference image, render time ∼ 20
minutes

Figure 3.9: Addition of ambient occlusion. Sphere, ground scene. View 1

3.5.2 Rendering results

Continuing in the process of achieving our goal of rendering images as closely
resembling the referenced ones, the results of application of ambient occlusion
Algorithm 3.4 are shown in Figures 3.9a and 3.10a. The reference images for
these are 3.9b and 3.10b respectively.

The first view of the scene depicted in Figure 3.9 illustrates that by an appro-
priate selection of color values and other parameters in the previously presented
algorithms and equations it is possible to achieve quite similar results. How-
ever, while keeping the same settings, the differences become more apparent
when the scene is displayed in another view depicted in Figure 3.10. Of notice
is the shading of the sphere. The reference image displays a gradual change in
color from the sphere’s top to its bottom. However, in our image that is not the
case. A change in the color is only noticeable near the bottom of the sphere.
This is due to the fact that from a certain height of the sphere the geometry
that contributed to the occlusion (in this case the ground) is no longer regarded
as an occluder. In these cases the equation (3.29) holds.

The difference is more apparent when viewing just the ambient occlusion con-
tribution like the one in Figure 3.11.
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(a) Sphere traced: sphere and ground
plane with AO addition

(b) Reference image, render time ∼ 20
minutes

Figure 3.10: Addition of ambient occlusion. Sphere, ground scene. View 2.

(a) Sphere traced: sphere and ground.
Ambient occlusion influence

(b) Reference image. Ambient occlusion
influence. Render time ∼ 20 minutes

Figure 3.11: Sphere, ground scene. Ambient occlusion contribution



38 Rendering of implicit surfaces

Algorithm 3.5 Distance function for a signed box, version 1
1: di = |x| − b
2: c = max(dix,max(diy,diz))
3: return min(c, ‖max(di, 0)‖)

The occlusion contribution is depicted as darkened areas. The sky background
has been left here as it was, in order to better visualize the contours of the ground
and the sphere. The difference in both images is quite noticeable. Our image
also displays some banding effect on the ground. That is, the occlusion does
not uniformly change in color as result of which some "rings" of different shades
of gray are noticeable. This is attributed to taking steps of finite length along
the ray when determining the occlusion. The result of the reference image in
Figure 3.11b is achieved by a cosine-weighted hemisphere sampling and checking
the visibility of the sky.

The reader might wonder why the sphere in the reference image 3.10b appears
brighter than the one sphere traced in the Figure 3.10a, considering that the
opposite is true in Figure 3.11 for the ambient occlusion contributions of the
respective methods. The reason for this is that the ambient reflectance ka(x) is
of a higher value for the reference images.

Both views in Figures 3.9 and 3.10 have the same respective (for each method)
ambient contribution as depicted in 3.11. The reason for that is that no lighting
is taken into consideration in determining the occlusion and it only depends
on the geometry of the scene, which for both views in this particular case the
contributing geometry is the same.

For producing the image like the one with the box in Figure 3.1b we first need to
define a distance function for it. Quilez gives one in [nQ08a] and it is repeated
here in algorithm 3.5: The box is centered at the origin of the world space. As
previously x denotes a point in space. Here b stands for the bounds of the box.
For instance b = (0.5, 0.5, 0.5) would result in creation of a box having dimen-
sions 1× 1× 1 that is di = (1, 1, 1). The operator | · | stands for absolute value,
‖ · ‖ for the length of the vector. The max and min operators are respectively
the maximum and minimum operators. The max(di, 0) is understood as: apply
the maximum operator to each component of the vector di along with 0 as the
second argument and save the results as a vector having the same number of
components as the original vector di.

The result of rendering the box is given in Figure 3.12a. The aliasing here is
more apparent than in the case of rendering the sphere, though the only change
was the use of a different implicit surface (that is the box). All the parameters
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(a) Box rendered with algorithm 3.5 (b) Box rendered by with algorithm 3.6

(c) Bottom corner part of the box
from 3.12a

(d) Bottom corner part of the box
from 3.12b

(e) Ambient occlusion contribution
of 3.12c

(f) Ambient occlusion contribution
of 3.12d

Figure 3.12: Box and ground scene version 1

determining how the scene looks like have been left unchanged, including the
ones for "soft shadows". It can be seen that the box edges and the shadows
are affected as it is visible in Figure 3.12a. Also the determination of ambient
occlusion is affected by this as it can be seen by apparent black dots in the
aforementioned figure and in Figure 3.12e. Additionally, although we are able
to render the shape itself correctly ambient occlusion contribution in the outside
corner areas of the box does not seem to look right with respect to other regions.
Upon careful inspection the reader might notice that the Algorithm 3.5 does not
produce correct distance values around the corners of the box.

This is taken into account in Algorithm 3.6 with the use of which Figure 3.12b
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Algorithm 3.6 Distance function for a signed box, version 2
1: di = |x| − b
2: res = max(dix,max(diy,diz)) . Distance for inside the box
3: if res > 0 then
4: res = ‖max(di, 0)‖ . Distance for outside the box
5: return res

is rendered. The ambient occlusion contribution is visible in Figure 3.12f. The
corner region now looks more plausible than the one from Figure 3.12e. The
Figures 3.12a and 3.12b have been cropped to show only the vicinity of the box
on the ground and that is why no sky part is visible in these images.

What is of interest here that can be taken form Algorithm 3.5 is that we are
able to render shapes for which we "underestimate" the distance to its surface.
In this particular case the underestimation happened just in the corner regions.
The steps along the ray will be smaller in those regions as the result of the
undounding sphere radius not being correctly estimated and leading to a slower
convergence of the sequence of equation (2.20). Though it might not directly
influence the "spacial" visualization of the surface, it has an impact on the
computation of occlusion as it was illustrated by the previous Figure 3.12.

It is interesting to note that if we had overestimated the distance then we might
have had similar issues as the ones that were discussed for the constant step
ray marching Algorithm 2.1. That is: we might have gone through the surface
(or some parts of it) or not precisely have estimated the surface point position
in space. These both cases would have consequences for later computation of
ambient occlusion.

The results of rendering the box and ground scene along with the reference
images are visible in Figure 3.13. The ambient occlusion contributions for these
images are also provided. On the left side are images obtained by sphere tracing
and on the right side are their reference counterparts. The images have been
cropped (removing the sky background) in order for them to fit on one page.
It is still quite visible how the ambient occlusion contribution differ from the
sphere traced images to the reference ones. Of notice is the result that estimated
the amount of occlusion in the region in the vicinity of the box corners depicted
in Figures 3.13g and 3.13h. The latter image determines the surface points
there to be less occluded than the points near the sides of the box. The situation
is quite different for the former image, the occlusion in these areas is determined
to be the same.

Moreover, for producing these images the ambient occlusion parameter values
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(a) Box rendered by the use of Algo-
rithm 3.6

(b) Reference image: render time ∼ 20
minutes

(c) Bottom of the box from 3.13a (d) Bottom of the box from 3.13b

(e) Ambient Occlusion influence (f) Ambient Occlusion influence in refer-
ence image: render time ∼ 20 minutes

(g) Bottom of the box from 3.13e (h) Bottom of the box from 3.13f

Figure 3.13: Box and ground scene comparison
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Algorithm 3.7 Ambient Occlusion with normal modification
1: k = 1
2: d = 0
3: occlusion = 0
4: while k < kmax do
5: r = x + ∆t k n
6: d = f(r)
7: occlusion = 1

1.1k (‖nk∆t‖ − d)
8: n = n + αu
9: k = k + 1

10: return 1− clamp(s occlusion, 0, 1)

in Algorithm 3.4 have been changed with respect to those that helped to achieve
the images of the sphere and ground of Figures 3.9 and 3.10 and those of box and
ground of Figure 3.12. This was done in order to show that this method is not
as robust as the one from the reference images and some adjusters usually are
made when introducing new geometry to the scene. Moreover, the new settings
make the rendered images of 3.13 slightly more in accordance with the reference
images than those of 3.12. As it is mentioned in [Chr11] the parameters for
the ambient occlusion Algorithm 3.4 do not have an "obvious default settings".
Ergo they usually change depending on the scene complexity or what type of
occlusion the user would like to make more apparent.

Evans in [Eva06a] mentions that in order to better approximate the sky effect
one can influence the surface point normal. He gives the following formula for
changing the normal per each sample step:

n = n + αu (3.33)

Here α denotes a parameter for which Evans used the value of 0.5 in his pa-
per. The vector u denotes the upward pointing unit vector of the scene. The
Algorithm 3.4 has been modified with this addition and its new version is given
in Algorithm 3.7. The changes with reference to the previous version of the
algorithm include as follows. The addition of line 8 to include equation (3.33).
Line 7 incorporates the occlusion estimate from a sample point along the new
normal. And also changes the base of the power from to 2 to 1.1 (this number
seemed to work for the case described in the following paragraphs). And finally
the ray equation in line 5 has been given explicitly for better illustration of the
influence of the normal there in that equation.

When applying new algorithm to render again the sphere and ground scene of
3.10 we receive the following result in figures 3.14a and 3.15a.
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(a) Sphere and ground plane with AO ad-
dition of Algorithm 3.7

(b) Reference image, render time ∼ 20
minutes

Figure 3.14: Addition of ambient occlusion. Sphere, ground scene. View 2.
Version 2

(a) Ambient occlusion influence using Al-
gorithm 3.7.

(b) Reference image. Ambient occlusion
influence. Render time ∼ 20 minutes

Figure 3.15: Sphere, ground scene. Ambient occlusion contribution. Version
2
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(a) Ground and sphere scene using the
modified algorithm

(b) Ambient occlusion influence of fig-
ure 3.16a.

Figure 3.16: Sphere, ground scene. Ambient occlusion contribution. Version
3. Depicting the differences in assessment of the magnitude of
occlusion for surface points of the sphere and ground when both
are determined by Algorithm 3.7 with the same values of param-
eters.

The reference images are the same as those of 3.10b and 3.11b and have been
copied here for the readers convenience. As it can be seen from the images
in 3.14a and 3.15b the application of the modified ambient occlusion Algo-
rithm 3.7 makes the sphere traced images more closely resemble the reference
ones. The reader must wonder at this point why this change has not been
introduced earlier in this section. This is because of two reasons, presented
below.

The first reason being that in order to produce the images of 3.14a and 3.15b
both versions versions of the ambient occlusion algorithm are need to be used.
The Algorithm 3.4 is used for determining the occlusion of the points belong-
ing to the ground while the modified ambient occlusion Algorithm 3.7 just to
determine the occlusion of points belonging to the sphere. The reason for this
can be depicted in Figure 3.16 when only the new algorithm is used for both
the sphere and the ground.

What can be seen here is that when making the sphere’s shading resemble the
one from the reference images by setting appropriate values in the modified
ambient occlusion algorithm the shading of the ground is then considerably
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influenced.

The second reason is the algorithm result when other surfaces are in the vicinity
of the sphere as it will be illustrated in the next paragraphs.

Having presented distance functions for a box and a sphere one can also test
how the effects of ambient occlusion look like when those shapes are in near
vicinity of each other. These are presented in Figure 3.17. In Figure 3.17a the
scene is rendered with the use of the previous ambient occlusion Algorithm 3.4.
However, in the Figure 3.17b both the sphere and the box use the modified
ambient occlusion algorithm, whereas the ground uses the previous one. Figure
3.17c shows the reference image.

It can be clearly seen that the occlusion using the new algorithm in Figure 3.17b
is quite exaggerated when keeping the same parameter values that were used
for rendering Figure 3.14a. Moreover, the box seems to have the effect of being
highlighted near its top. On the other hand Figure 3.17a was rendered with
the same parameter values as Figure 3.10a and the ambient occlusion effects are
very close to the ones for the reference image.

The above cases hopefully show, how hard it is to set the correct parameters
that would work for a generic scene. Usually, each scene, or scene configuration
will have specific values by the use of which a specific effect would be tried to
be achieved. This is unlike the case in the reference images where the method
for obtaining these there is robust.

The sphere traced rendered scenes of this chapter are all displayed in interactive
frame rates for the resolution 512 × 512 and these have been rendered on a
NVIDIA GeForce GTX 560 Ti graphic card. The frame rates for all cases
greatly exceeded 60 frames per second.
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(a) Use of ambient occlusion Algorithm 3.4
for the whole scene of box, sphere and
ground

(b) Use of ambient occlusion Algorithm 3.4
for the ground, and Algorithm 3.7 for
the sphere and box

(c) Reference image, render time ∼ 20
minutes

Figure 3.17: Sphere, Box and ground scene



Chapter 4

3D textures as implicit
surfaces

It may seem at first that the Stanford Bunny might be quite challenging to
render considering that this thesis deals with surfaces defined with the use of
their distance functions, whereas the bunny is given by a representation of a
mesh of 69.451 triangles [Tur00]. However, there exist a solution in defining
the distance function for that model. One might think of it being the manip-
ulation of distance functions of known implicit surfaces in order to obtain the
bunny shape. This however, would be quite hard to achieve since of the very
cumbersome process of having to deal with many implicit shapes along with the
operations and deformations applied to them.

Therefore, another method for obtaining the distance function was chosen. The
process involves placing the model in a bounded three dimensional grid and
sampling the distance values to the surface for every point in that grid. The raw
floating point data representing the distance values (minimum distance to the
surface for a given grid point) is then read in and stored as a 3D distance texture
of appropriate size. This will serve as a representation of a distance function
describing the surface of the bunny. It is vital to state that the domain of the
distance function is no longer x ∈ R3 but bounded by the texture coordinates
and these being in the [0, 1] range. The tool MeshDistance with the help of
which the triangle mesh was transformed to a grid of distance values was of the
GEL (GEometry and Linear algebra) framework [GEL].
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Algorithm 4.1 Distance function for a cube sized 3D texture
1: textureBoundary = (0.5, 0.5, 0.5)
2: textureShell = (0.05, 0.05, 0.05)
3: di = |x| − textureBoundary + textureShell
4: res = ‖max(di + textureShell, 0)‖ . for x outside 3D texture space
5: c = max(dix,max(diy,diz))
6: if c < 0 then
7: x = x + textureBoundary
8: res = lookupTexture(texture,x) . for x in 3D texture space
9: return res

Figure 4.1: Texture boundary concept

However, before the conversion process commences from 3D mesh to the 3D
distance texture the Stamford Bunny mesh has to be altered in some areas. This
is because the model itself contains 5 holes in the mesh [Tur00] and these need
to be closed in order to obtain the correct representation from the MeshDistance
tool.

Upon obtaining the representation of the bunny as a 3D texture distance field
its distance function can be constructed as we have done in algorithm 4.1. This
distance function will allow for placing the texture inside the scene. The addi-
tion to the scene is done like previously described using the union operator of
equation 3.11.

The procedure in the algorithm in general terms involves a creation of a box
like in algorithm 3.6 which is centered at origin and bounded by the dimensions
satisfying the property |x| ≤ (0.5, 0.5, 0.5) (given by the variable textureBound-
ary). This is because the 3D texture is placed inside that box and the textures
considered here are represented as cubes of dimensions 1×1×1. The Figure 4.1
will serve as a help in explaining what the algorithm does. As it was said previ-
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ously the texture is bounded by a cube/box that is defined by textureBoundary
and in the figure illustrated by the blue box. Texture samples of interest to
us are those bounded by the green box. Those outside the green box but still
bounded by the blue one, are of the texture, yet since they are on the boundary
region of the texture they may contain distance values that might be invalid. In
this way we are remedying this by disregarding that region for texture lookups.
The textureShell value given here in the algorithm and used in the process of
estimating that boundary region was deduced by try and error and may change
for a different texture. However, of interest is that that value would be as small
as possible to get the largest region in which texture data can be looked up.

The process in the algorithm commences as follows. At first we estimate a
point’s distance to the red box in the Figure 4.1. The points location here is
not checked relative to the red box, but computation in lines 3 and 4 assumes
that the point is outside of the red box and calculates the distance from it to
the nearest point on the red box. By what was already seen with sphere tracing
is that using this distance value the ray will be traced up to the red surface/box
if an intersection is determined and won’t be able to pass into the interior of the
surface. The overall spacing of the red box relative to the green one is such that
the space of potential texture lookup values bounded by the red box would be
as large as possible while allowing the ray to pass through the green surface and
at the same not pass through the red one. In this case the "relative" spacing of
the red box and the green one was determined by the textureShell variable, but
can be set to any other variable that is found to work for a particular texture.

If the ray has passed through the green surface which is determined by lines 5
and 6 then we know that the ray is in the texture region we are interested in.
Therefore, we can now asses the distance to the implicit surface represented by
distance values in the texture by looking it up. Before that, however, we need
to account the point’s relative position to the texture coordinates, this is done
in line 7. The distance lookup then is done in line 8 with the lookupTexture
function. Ergo, this distance is returned by the distance function if the tray has
entered the green bounding region. Otherwise, the distance to the red bounding
region is returned as was indicated previously by line 4.

What is of importance is that when creating the 3D texture there exist some
"outer" region containing distance values but in which the surface itself is not
stored there. In the spacial representation this would be the space surrounding
the red surface but bounded by the blue one. Moreover, the surface itself should
be contained in the red bounding region, the "inner" region, in order for the
distance to it to be assessed correctly. Additionally, it is assumed that the
distance returned by the texture lookup is in accordance with the scale of the
scene otherwise an appropriate bound needs to be applied to it.
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(a) No ambient occlusion computation (b) Initial ambient occlusion computation

(c) Occlusion artefacts on the bunny’s face (d) Occlusion near the bunny’s feet

Figure 4.2: Stanford Bunny as a 3D distance texture

In this distance function form of Algorithm 4.1 we are able to perform operations
on it like the ones from section 3.3. Using the union operator of equation 3.11 we
include the bunny representation into our scene. The rendered result is visible
in Figure 4.2a in which no ambient occlusion is assessed. Of note is that the ε
value in the normal estimation Algorithm 3.1 needs to be adjusted to account
for for the voxel spacing in the texture. If it isn’t the bunny representation
might have a "grainy" look if the value is too small.

The texture used here is of 192× 192× 192 dimensions, with the inner region’s
dimensions being 128× 128× 128. These dimensions proved to be adequate for
our purpose of visualizing the model of the bunny. The inner region was chosen
such, so that when the ambient occlusion sampling commences, we are still
able to access the texture region for obtaining distance values. Therefore this
sampling should not leave past the texture bound. However, when the Ambient
occlusion calculation is turned on the following result is achieved as visible in
Figure 4.2b.
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Algorithm 4.2 Distance function for a cube sized 3D texture. Version for
ambient occlusion
1: textureBoundary = (0.5, 0.5, 0.5)
2: textureShell = (0.05, 0.05, 0.05)
3: di = |x| − textureBoundary + textureShell
4: res = k∆t . for x outside 3D texture space
5: c = max(dix,max(diy,diz))
6: if c < 0 then
7: x = x + textureBoundary
8: res = lookupTexture(texture,x) . for x in 3D texture space
9: return res

It can be seen that the bounding red box contributes to the ambient occlusion
result. Also there exist some artifacts on the bunny’s face from the left side as
it can be seen in Figure 4.2c. Apart from that the area near the bunny’s feet
seems to have the occlusion correctly determined as it is depicted if Figure 4.2d.

To mitigate this bounding red box influence a special distance function for the
bunny texture needs to be created and provided to the ambient occlusion algo-
rithm. We do so as explained in the following paragraphs.

Currently for f(x) in the of sphere tracing Algorithm 2.2 and ambient occlusion
Algorithm 3.4 the following function is used:

f(x) = min(fG(x), fB(x)) (4.1)

Where, fG(x) and fG(x) respectively denote the distance functions of the
ground (equation (3.15)) and the bunny (of Algorithm 4.1). This above equation
will remain the same for the sphere tracing algorithm, yet it will be changed to:

f(x) = min(fG(x), fBA(x)) (4.2)

in the ambient occlusion algorithm. Where fBA(x) denotes the ambient occlu-
sion version of the signed distance function for the bunny 3D texture, and it is
given in Algorithm 4.2. With respect to Algorithm 4.1 the only change is made
in line 4. Here, the k∆t is the value from the ambient occlusion algorithm that
will be passed to the distance function for each step an determines the sample
point along the ray equation of (3.27). What this means is that when we have
left the bounds of the texture (or more precisely the values of interest enclosed
by the green box) we want the bunny’s surface not to influence the occlusion
computation. On the other hand if the sample point is in the green region then
the distance value stored in the 3D texture is returned. This simple change
allows for producing the image in Figures 4.3a and 4.3c. These are contrasted
with the their respective reference images given by Figures 4.3b and 4.3d. The
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Algorithm 4.3 Fake Ambient Occlusion effect
1: occlusion = (1− (n · u))
2: return 1− clamp(s occlusion, 0, 1)

differences in shading are quite noticeable. This is attributed to the methods of
estimation of the ambient occlusion. The algorithm used for the sphere traced
rendered images is the one of Algorithm 3.4. If on the other hand we use Al-
gorithm 3.7 where we added the changing normal the results are not better as
it can be seen in the Figures 4.4a and 4.4c. A similar effect to the reference
images is achieved in Figures 4.4b and 4.4d. However, this is a result of a trick in
determining the ambient occlusion for each surface point of the bunny which is
given in Algorithm 4.3. What is exploited here is the observation that the lesser
the angle between the point’s normal n and the scene’s unit upwards vector u
the brighter the point is. The effect can be adjusted by having the occlusion
variable multiplied by the scale value s. As in the case of each ambient occlu-
sion value it is clamped between 0 and 1. Using this algorithm will mean that
the bunny’s surface ambient occlusion value will not be influenced by a nearby
occluder.

The effects of an occluder in the form of box can be seen in Figure 4.5. For the
sphere traced images of Figures 4.5a and 4.5c the standard ambient occlusion
Algorithm 3.4 was used. Of interest is the fact that the bunny’s face is deter-
mined to be more occluded in the reference images than in the sphere traced
ones. However, the opposite happens for the degree of influence the bunny has
on the box. In the sphere traced Figure 4.5c the box is much more occluded by
the bunny than in the reference Figure 4.5d.

The setting of the ambient occlusion for this chapter proved to be a challenge.
Only the result from Figures 4.4b and 4.4d were close to match the reference
images of Figures 4.3b and 4.4d. Unfortunately, the method for producing these
images used a form of a trick to determine the possible occlusion of the surface
of the bunny. Moreover, its drawback is that it does not reflect the influence of
nearby occluders. Probably, if one invests enough time it would be possible to
find a function that would in a better way determine the self occlusion of the
bunny and the occlusion caused by other surfaces. Nevertheless, we were able
to render the representation of the bunny stored in a distance field 3D texture
and include it to our scene consisting of analytic implicit surfaces. The sphere
tracing like in the previous chapter was also done in interactive frame rates.
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(a) Sphere traced: bunny as a 3D distance
texture

(b) Reference image, render time ∼ 45
minutes

(c) Sphere traced: bunny as a 3D distance
texture

(d) Reference image, render time ∼ 45
minutes

Figure 4.3: Stanford Bunny as a 3D distance texture, comparison with the
reference images
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(a) Result from Algorithm 3.7 (b) Fake ambient occlusion effect

(c) Result from Algorithm 3.7 (d) Fake ambient occlusion effect

Figure 4.4: Stanford Bunny as a 3D distance texture, other ambient occlusion
results
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(a) Result with using Algorithm 3.4 (b) Reference image, render time ∼ 40 min

(c) Result with using Algorithm 3.4 (d) Reference image, render time ∼ 40 min

Figure 4.5: Bunny, box and ground scene
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Chapter 5

Antialiasing

Sphere tracing as it was seen in the figures in the previous chapters is prone to
the effects of aliasing. Taking from ray tracing we can apply similar techniques
in order to remove these aliasing artifacts, such as symbolic prefiltering methods
or those based on resampling [Mit90]. In the latter the increase of the sampling
rate can be computationally expensive since each sample requires a ray casting
calculation to be made. However, we would like to refrain from generating more
primary rays (those that determine ray-surface intersection) since they can be
quite computationally expensive in sphere tracing [nQ08b], especially on surface
edges/boundaries.

Of interest to us are however, the symbolic prefiltering techniques that allow us
to achieve antialiasing with the use of only one ray per pixel like cone tracing
and the use of covers. Hart in [Har96] uses both of these methods in conjunction
with sphere tracing to achieve antialiasing.

In standard ray tracing a pixel is represented as a point on the screen. The
motivation for developing cone tracing is that the pixel could be represented by
an area on the screen as Amanatides mentions in [Ama84]. The ideal solution
is to have the ray repressed as a pyramid with its apex at the eye. Its base
would then be defined with the use of the area on the screen enclosed by the
pixel borders that the sides of the pyramid intersect. This representation, how-
ever, would make intersection calculations not trivial, and therefore Amanatides
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suggest an approximation in representing the ray with a cone.

When the cone intersects a surface it bounds a surface area. We now need to
determine which point on it will contribute to the shading. In order to estimate
that “representative”, Hart in [Har96] uses among other the concept of covers.
These are defined as offsets of a pixel length bounding the implicit surface from
the outside and inside. Moreover, the author states that “a ray-cover intersection
indicates a cone-object intersection”. In terms of the implicit surface represented
by its signed distance function f(x), its outer cover can be defined as f(x)− rp,
whereas, its inner cover as f(x + rp). The rp is the radius of the pixel and as
the authors suggest in [HD91], it can be approximated with its maximal value
for a given ray traversal distance t as:

p(t) =
2 tan θ/2

Nh
t (5.1)

Here θ is the field of view and Nh stands for the horizontal resolution. The rp
in fact is the approximation of “the horizontal extent of a pixel projected at a
distance t from its ray origin”. Taking into account the suggestion in [Bar86] we
will modify the above equation to take into account the possibility of changing
the resolution of the window. The above equation then becomes:

p(t) =
2 tan θ/2

max(Nh, Nv)
t (5.2)

where we take now the highest value being either the horizontal Nh or vertical
Nv resolution for determining the pixel size.

Hart states in [Har96] that, the antialiazing algorithm will sphere trace the inner
cover. In Figure 5.1 it can be visible what happens when a cone intersects a
surface. Near the intersection point the sequence of unbounding spheres comes
within the bounds of the cone. The notion of covers allows to determine that
the best approximation for the “representative” point, as Hart defines it, is “the
point along the section of the ray closest to the surface”. This being the center
of the smallest sphere (with respect to pixel size) that is bounded by the cone.

The condition defining the cone intersection with the surface can be given as:

f(x) ≤ rp (5.3)

This will be usually fulfilled by a sequence of unbounded spheres from which
the one with the smallest radius is taken as the representative sample, as it can
be seen in Figure 5.1. The radius of the unbounding sphere is now defined as
rp + f(x) which is also the step of the ray traversal. It is vital to note that this
may take the ray traversal through the surface as it was the case with constant
step ray marching.
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Figure 5.1: Cone surface intersection. Based on Figure 7 from [Har96]

Having chosen the representative sample we now determine what is the area of
the cone surface intersection. Hart, determines that with the assumption that
smooth implicit surfaces exhibit local planarity. The problem is brought down
to calculating the “fraction of coverage of a disk of radius rp by an intersecting
half-plane of signed distance f(x) from its center”. This is given by Hart as:

α =
1

2
−
f(x)

√
r2
p − f(x)2

πr2
p

− 1

π
arcsin

f(x)

rp
(5.4)

Thompson in [Tho90] gives two variants of an equation for calculating the in-
tersection of a circle and a half plane depending if the circle’s center is inside
or outside of the half plane. However, because of the sign information that the
signed distance function provides both cases are covered by the above equation.

The parameter α is defined here as the percentage of coverage and represents the
degree of the cone intersection. It is treated as an opacity and it is accumulated.
With its use, the blending of the current representative sample’s color and the
blended color of other samples can be determined. For this we have used the
over operator as given by [PD84]:

cO = cA + cB(1− αA) (5.5)

It is used for back to front image composition process. Here the surface A is
over the surface B, with αA denoting the opacity of the surface A. The values of
cA and cB are color values already multiplied by their respective alpha values.

Using this operator requires from us to keep track of all the representative
points indicated by the minimum unbounding sphere radius of a cone intersec-
tion. The color value of the pixel is then computed by compositing the color
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(a) aliased version (b) antialiased version

(c) aliased version (d) antialiased version

Figure 5.2: Aliased and antialiased basic implicit surfaces, part 1

values of these representative samples in the back to front order. Amanatides
mentions of keeping a list of eight samples, whereas we impose a limit of four in
our implementation. This is because, keeping track of and storing the minimum
unbounded sphere radius in a sequence proved to be computationally expen-
sive in our case. The frame rates achieved are around 60 frames per second for
images of 512× 512 resolution, however, for larger resolutions they drop consid-
erably. The aliased images and their antialiased counterparts are displayed in
Figures 5.2 and 5.3. The ground in both figures has been replaced by "flattened"
box.

The antialiased solution that we implemented does not take into account the
antialiasing of edges which if projected from the cameras perspective would lie
on the object they belong to. This was done in order to maintain the interactive
frame rate. This can be visible in Figure 5.2d and can be compared to the aliased
version of Figure 5.2c. However, blending with the background or with other
surfaces is done properly as it can also be seen in Figure 5.3b.
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(a) aliased version (b) antialiased version

(c) aliased version (d) antialiased version

(e) ambient occlusion contribution, aliased
version

(f) ambient occlusion contribution, an-
tialiased version

Figure 5.3: Aliased and antialiased basic implicit surfaces, part 2

In Section 3.5.2 it was indicated that the black dots visible previously among
other in Figures 3.12f and 3.13g existed there because no antialiasing was im-
plemented. The aliased version of the ambient occlusion contribution in Fig-
ure 5.3e show their existence, whereas the antialiased version does not have
these as shown in Figure 5.3f. Figures 5.3c and 5.3d show how these areas look
when illuminated with the rest of the lighting model.

The effects of applying the antialiasing algorithm on the bunny 3D distance
texture can be seen in Figure 5.4. As it can be seen these improve the rendering
result.
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(a) aliased version (b) antialiased version

(c) aliased version (d) antialiased version

(e) aliased version (f) antialiased version

Figure 5.4: Aliased and antialiased 3D Stanford Bunny distance texture



Chapter 6

Conclusions

In this thesis we have focused on producing images with the use of sphere tracing
and distance fields. Our main motivation was to render images resembling the
ones acquired from the ray tracing framework.

We have started with the introduction of implicit surfaces and the methods on
how to render them. Following that, we defined the lighting model, and showed
how to add and render more surfaces in the scene. Moreover, we have described
how shadows are obtained and how to produce the effect of ambient occlusion.
This allowed us to render results which we could then compare to the ones in
the reference images.

The comparisons mainly revolved around the topic of how the ambient occlusion
effect was depicted by each method for a given object representation or scene
configuration. In this process we noted that for shapes like the sphere it is
possible to achieve similar looking results in both methods. However, in general
the results produced by both methods differed. This is mainly because of what
is considered to be the indicator of occlusion for these methods. Based on it
their limitations can be determined.

Though the distance from the distance function was used to estimate the geom-
etry surrounding a given point it proved itself not that accurate with respect to
method used for producing the reference images. Some additions to the ambi-
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ent occlusion algorithm were proposed to better asses the sky visibility yet these
produced adequate results in only certain cases. Moreover, we found out that
the same parameter configurations of the ambient occlusion algorithm are not
necessarily suitable for other scenes or rendered surfaces.

In the process of rendering our results, we have found it also quite difficult to
accurately determine the correct parameters of the ambient occlusion algorithms
that we have presented. This is because they do not take from any physical
model.

We have also, introduced a method for producing a distance function for a object
represented by a 3D distance field. This allowed us to render an object like the
Sanford Bunny using our sphere tracing implementation. Though the surface
of the bunny was rendered correctly the ambient occlusion effect differed from
the one in the reference image.

Finally, we have addressed the issue with aliasing by implementing a solution
based on cone tracing with the use of covers.

The overall comparison has made us believe that relying on just the distance
value of the distance function in the way presented in the ambient occlusion
algorithms is not a reliable indication of occlusion. However, we base this ob-
servation on the comparison with the results obtained from the ray tracing
framework. It is vital to note that in some cases, if it were not for reference
images if would be quite hard to asses the correctness of the results, since some
of them looked very plausible. Moreover, the advantage of the sphere traced
approach is that it allows us to view the scene in interactive frame rates. One
of the possible applications of this is the ability to create a quick approximation
of the results of the reference ray tracing method.

6.1 Future work

The over operator used for image composition in the antializing Chapter 5
required from us the storage of the smallest undbounding sphere radius for a
given cone intersection. The this storage requirement for computing antialiasing
might be mitigated by the use of the under operator for front to back image
composition as given in [IKLH04]. Its application could bring performance
benefits which would be worth investigating.

Another topic that we would like to investigate is the rendering of fractals, and
sphere tracing is quite capable of doing that [HST89].
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The addition of fur to the Bunny would also be an interesting choice. This can
be achieved by the use of the “Hypertexture” model [PH89]. The acquisition of
distance values to the “Hypertexture” is also elaborated in [Har96].
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