Geometric Operators on Boolean Functions

Jeppe Revall Frisvad andPeter Falster*

Informatics and Mathematical Modelling, Technical University of Derlma

Key words array-based logic, Boolean functions, geometric operators, irfer@mopositional reasoning.

Abstract

In truth-functional propositional logic, any propositional formula egemts a Boolean function (according to
some valuation of the formula). We describe operators based ontBg€azwncept of constructing coordinate
systems, for translation of a propositional formula to the image of a Bodleaction. With this image of a
Boolean function corresponding to a propositional formula, we proaettte orthogonal projection operator
leads to a theorem describing all rules of inference in propositionabméas In other words, we can capture
all kinds of inference in propositional logic by means of a few geomeparators working on the images of
Boolean functions. The operators we describe, arise from the nielaeodiarray-based logic and have previ-
ously been tightly bound to an array-based representation of Booleatidns. We redefine the operators in an
abstract form to make them independent of representation such thad l@ager need to be much concerned
with the form of the Boolean functions. Knowing that the operators caitydssimplemented (as they have
been in array-based logic), shows the advantage they give with tesmatomated reasoning.

1 Introduction

If we accept a truth-functional conception of propositidogic, any propositional formula represents a Boolean
function. Taking this point of view, we describe using opera.on Boolean functions: (a) An efficient mechan-
ical way for translation of propositional formulae to Boafefunctions (Sections 2.2-2.5); (b) how any kind of
inference in propositional logic can be captured by gedicatconcepts (Sections 2.6-2.8); (c) that regardless of
the representation employed for the Boolean functionspftezators are applicable (Section 3).

An analogy of Boolean logic with coordinate-geometry wasvamby Mautner in 1946 [17]. He introduced the
idea of a many-dimensionkdgical coordinate systenie. a discrete cartesian coordinate system where eash axi
represents a Boolean variable, and thereby he connectddd@ologic to the mathematical group of geometric
transformations. Mautner’s investigations go far beydnslinto the realm of invariant theory and Boolean tensor
algebra. These algebraic investigations are not necei&sadhe theory we are about to develop. Realizing that we
can treat the image of a Boolean function as geometry is, evell-important for appreciation of the following
sections. At some points in Section 2 the reader may find timatheory could advantageously be reformulated
using Boolean tensors instead of Boolean functions. Wewaagesof this, but have for the time being chosen not
to elongate this paper by the algebra necessary for a refatiom

In the spirit of Mautner’s analogy, the foundation of the g@dric operators which we give a more abstract
form in this paper, were laid by Franksen in 1979 [7]. He stibthat disjunctive projection in a logical coordinate
system can “prove the theorems of divalent logic by comparat(projection is described in Sec. 2.6); that
an outer product can construct the relation between twabkes on matrix form; and that “the operation of
putting indices equal, is the operational implementatibmepeated propositions in a propositional function”
(i.e. colligation, see Sec. 2.5).

Through a generalization of these fundamental operatienabling them to operate on many-dimensional
arrays, the niche area of array-based logic was developigsificesent state in [8, 9, 10, 18, 23]. The functional
or operational notation describedamray theoryhas traditionally been used to account for the operatord imse
array-based logic. Array theory was developed by Trencheok, see eg. [19, 20].

* e-mail: jrf@imm.dtu.dk
** e-mail: pfa@imm.dtu.dk

2 J. R. Frisvad and P. Falster. Geometric Operators on Boolean Functions

The purpose of this paper is to propose a synergy of the abstepresentation independent notation used
for Boolean functions (e.g. in [28]) and the array theoretitation used in array-based logic. Through such a
synergy, we will be able to show that geometric operationtherimages of Boolean functions make sense at a
high level of abstraction in propositional reasoning. Irntjgalar, we are able to show that the image of a Boolean
function represented by an arbitrary propositional rutean be found by use of outer products and the picking
of diagonal hyperplanes (i.e. the operation of settingdesliequal or colligation) instead of finding the value of
the rule set for every possible valuation of the proposéiaariables which it contains. In addition, we are able
not only to prove the theorems of divalent logic by compotats did Franksen, but also to prove that disjunctive
projection leads to a formula which capture all rules of iafece in propositional reasoning (see Sec. 2.7).

2 Boolean Functions

Take an arbitrary rule set (or set of propositional formuldescribing the relation between propositional
variablespy, ..., p,. By a valuatiorw : {p1,...,p,} — {0,1}, any such rule set represents a functforaking
n Boolean values as argument and returning a single Booldar.vBach argument of corresponds to one of
the propositions in the rule set, and the returned vélus, . .., ay,) € {0,1} for ar, = v(px) Withk =1,...,n,
states whether a particular valuation (or interpretatafrihe propositional variables is trug)(or false ().

It will often be the case that only some of the propositioraiables are asserted (or known, or bound) to be
true or false. Suppose we know the valuepaindp;, then a new Boolean functiofy is desired such that it is
represented by a propositional formulan which only the variableg, ..., pi—1,Pi+1,- - Pj—1,Pj+1,- - -+ Pn
appear. The derived functigiy should be found according to the known valuep,aindp;. This is accomplished
simply by letting f; equal f with fixed valuesa; = v(p;) anda; = v(p;). In that way, the Boolean functiofy
corresponds to the result of deductive inference on theed figlues. This is the kind of inference described by
the Stoic modi (modus ponens, modus tollens, etc.) and wéhsayt relies on external influences, that is, the
fixation of some propositional variables leading to a cosidn according to a rule set.

The rule set itself can also lead to a conclusion on the oeldtetween a subset of the propositional variables.
We could say that such conclusions are internally presethieimule set. This kind of inference is inherent in the
syllogistic reasoning founded in the Greek school of logpecially in Aristotle’s Prior and Posterior Analytics.
While the logic of Aristotle is often thought of as notions fwedicate logic, it should be realized that any formula
of predicate calculus over a finite domain, can be transtatadormula of propositional calculus. When we refer
to the Aristotelian syllogism in propositional calculuse wefer to the transitive law

pP1L=p2 , P2=D3
p1 = p3

which is not a direct translation of the syllogism in predécaalculus, since that would require us to know the
domain of the predicates involved. The transitive law ibeatan analogy.

To find a conclusion “internally present in a rule set”, weksadunction f; describing the relation between
only some of the propositional variables appearing in theesat representing;, but in this case none of the vari-
ables are asserted. In the traditional Aristotelian sydiagone intermediate variable is eliminated. Conceptually
the idea is to find the relation between a subset of varialplpeaxing in the rule set. Suppose we wish to exclude
not one, but two propositional variables from a set of formeylsayp; andp;. This is done by the principle of
excluded middle vV —p) such thatf/, returnsl if any one of the combination@;, a;) € {0, 1} returnsl when
a; anda; are inserted as arguments fofin other words,

/
falar, - aim1,aip1, . a5-1,a501, .-, an)
= \/ flar, oo aim1,b1, @001, 051,02, 541,505 an)
b1,b2€{0,1}

wherei, j,n € Nandi < j < n.

These two concepts of inference are surprisingly generdhdt, most forms of inference can be based on the
elimination of variables as it is described above. In thivfaing, we define a number of operators some of which
have a geometrical meaning in a logical coordinate systdmsé& operators are inspired by the two concepts of
inference and can not only prove, but also replace the lbgiées of inference (the Stoic modi, the Aristotelian
syllogism, etc.).

Table 1 The four possible Boolean functioifs € By , i = 1,2, 3,4. The image is ordered such that the first number in the takjlg(§
and the second i;(1).

Image State Term
01 True Affirmation
10 False Negation
11 Indefinite Tautology
00 Impossible Contradiction

2.1 Fundamentals

Definition 2.1.1 (Boolean functions)Let B,, ,,,, wheren,m € N, denote the set oBoolean functionsf :
{0,1}" — {0,1}", and letB,, stand forB,, ;.

For functionsf € B,, there are™ different inputs each of which can be mapped tor 1, hence, there exist
22" functions inB,, [26]. Consider the?' = 4 possible Boolean functions iB;, see Table 1. A function
f € By can specify the state of a single logical proposition.

Definition 2.1.2 For every ordered pair of Boolean valués,b) € {0,1}2 there exists exactly one Boolean
functionf, , € B; such thatf, ,(0) = e and f, (1) = b.

Applying a fundamental principle of mathematics, namely $iplitting of arguments, any Boolean function
f:{0,1}*+" — 10,1} can also be described as a function

I {07 1}k X {Oﬂ l}n - {07 1} - {07 1}k - ({Oa l}n - {07 1}) = {07 1}k — By

from {0, 1}* into B,,. The splitting of arguments of a Boolean function is esséidi our theory. Therefore we
introduce

Definition 2.1.3(Nested Boolean functiond)et B* denote a set ofiested Boolean functions: {0,1}* — B,
such that(ay, ..., a;) € {0,1}* maps to a Boolean functione B,,.

Strictly speaking the notion of a nested Boolean functiomasnecessary sindB® = B,, ., but it will ease
the introduction of the operators presented in the follgwin

Proposition 2.1.4 A nested Boolean functioh€ B* contains2* nested elementg € B,,,i = 1,...,2".

A note on notation. Throughout the paper we employ left dasiity with respect to operators and arguments
as well as occasional infix notation. We employ the notati@t for anyg € By, any fi, ..., fr € B,, and any
a € {0,1}", wheren, k € N,

9(f1@), ..., fi(@) = g(fr, .., f)(@)

and we allow for infix notation it = 2. In addition, we employ the common notation for indexing.t Le
I ={1,...,n} be anindex set and let m € N be natural numbers. Given ah= (z1,...,z,) and an index
vectory € I"™, we havery = (zi,,. .., i,).

In the following section a propositional rule set is giveroenial definition.

2.2 Rule Sets

In reasoning, an autonomous agent, or whatever systemdevedi is equipped with a set of propositional for-
mulae often referred to as a rule base or a rule set. The ptogpas formulae can be established by any choice
of connectives which correspond to Boolean functions, €,0\, Vv, =, <, <. The connectives: (hegation)
andV (disjunction) suffice to construct a formula representing possible Boolean function [26], but for the
theory we are about to develop, the choice of connectivelsis oonsequence. Boolean functions corresponding
to commonly employed connectives will be referred to by tamas listed in Table 2.

In the remainder of the text, we lgt, po,... refer to propositional variables. A rule base or rule set for
reasoning is then defined by

4 J. R. Frisvad and P. Falster. Geometric Operators on Boolean Functions

Table 2 The names we use for Boolean functions corresponding to conyreamployed connectives.

Connective Corresponding Boolean function Term

aff Affirmation

= non Negation

A et Conjunction

V vel Disjunction

= imp Implication

& bii Biimplication

= cimp Converse implication

Definition 2.2.1 (Propositional rule setA propositional rule seis a propositional formulad = A(p1,...,pn)

in which a finite number of propositional variables appearprapositional rule set is constructed from a set of
propositional formulaek by

A= N\ C.

CeR

We say that the rule set fslfilled by a valuation (or interpretation) : {p1,...,pn} — {0,1} if v(A) = 1,
wherev(A) denotes the value of by the valuationy.

The purpose of the following three sections is to construcbawhich can translate a propositional rule set
A= A(ps,...,pn) to the corresponding Boolean functign : {0,1}" — {0, 1} defined by

falay,...,an) =v(A(p1,...,pn)) , Wherea; =v(p;)fori=1,...,n .

While this may seem like a superfluous thing to do, it is neaggssace we intend to do reasoning by projections
in the image of the Boolean function corresponding to a rate By definition the image of a Boolean func-
tion is easily, but very inefficiently, determined througimgputation of every possible valuation of the formula
representing the Boolean function. However, there is @&batternative which is based on the construction of
coordinate-systems. That is what we wish to advocate in@ec®.3, 2.4, and 2.5.

2.3 Reduction

Any pair of Boolean valuega, b) € {0,1}? corresponds to an unary Boolean functifn, € B; (Def. 2.1.2)
and, of course, any binary Boolean functigre B, can be invoked on a pair of Boolean values to produce a
single Boolean value = g(a, b). We find it convenient to introduce an operator naR&DUCE which allows

us to invoke a binary Boolean function on an unary Booleawstion such that

c= g(aa b) = REDUCE(g)(fLL,b) .

Sometimes it is also sensible to reduce an arbitrary Bodigaction according to one of the binary Boolean
functions (in particular this makes sense for disjunctiod aonjunction, that is, fovel and et respectively,
cf. Tab. 2). Therefore we may as well giRDUCE a more general definition. BY,, for n € N we denote the
set of all functionals,, : B,, — {0, 1}, then we have

Definition 2.3.1(REDUCE) Letx/ € T;, for f € B, be the functional defined forc B,, by
Xb, = F(f(- - (f(g(@r), 9(@2)), 9(@3)), - -), g(@an))
whered, ds, . .., d2» denotes the canonical enumeration of thelimensional Boolean vectoig € {0,1}"
given bya; = (i1,...,i,) Withi, = [(i —1)/2°7!] mod2 for wv=1,...,n.
Then the operatoREDUCE : By — T, is defined by

REDUCE, (f) = x/ .

The idea of this operator is to allow for reduction of a nesBemlean functionf,,, € B to a Boolean
functiong; € By, using one of the binary Boolean functions. To accomplish, e define an operator reducing
eachpossible nested element of a nested Boolean function tayeddoolean value. BY/,, ;. we denote the set
of all operators),, . : BX — By, then we have

Definition 2.3.2(EACH) The operatofEACH,, ;. : T,, — U, i, is defined fory,, € T,, and f,, x € B i by

EACHn,k(Xn)(fn,k) =XnO fnk »

whereo is the composition operator, i.e.

EACH, 1 (Xn)(fak) (a1, ar) = Xn(far(ar, ..., ar))
forall aq,...,a; € {0,1}.
Now, pick an arbitrary nested Boolean functign, € BY. Using the binary Boolean functionel € Bs
(i.e. disjunction).f,, », can be reduced to a Boolean functigne By, in the following way:
gk = EACHmk(REDUCEn(U@l))(f71,7k) .

This is referred to as a disjunctive reduction of a nested@&ofunction. If, for examplef;, 5, is defined by

fn,k(yh“wyn)(‘rlv"’vxk) = fnJrk(yla'-'7yn7x17"'7xk))

then

EACH,, x(REDUCE,, (vel))(fnx)(z1,...,Tk) = \/ frnsr(ar, ..., an, 21, 28) .
(a1,...,an)€{0,1}

For anyn € N we refer to the functionaREDUCE,, (f2) as thereduction transform offs € Bs, and to
shorten the notation, we den®&DUCE, (f2) by the same symbol as the connective corresponditfg. tdhis
means that a disjunctive reduction of the Boolean funcfipp can be written as

gk = EACH,, (V) (fn,k)
and that, for example,

=(aff) = imp(0,1) =1 .

2.4 Cartesian Product and Outer Product

To compute the image of a Boolean function from the formufaesenting it in propositional calculus without
testing each possible valuation, we must find a way to revhigeformula into the world of Boolean functions.
As the first step in this endeavor, we replace each occurrehaepropositional variable in the formula by a
Boolean function inB;. This is done in a manner such that any non-negated varialdep] is replaced by
aff and any negated variable (e:gg) is replaced byron. These Boolean functions replacing propositional
variables are then connected by application of an operattbret connectives in the formula (or, more precisely,
to the reduction transform of the binary Boolean functiorresponding to the connectives in the formula). This
operator is founded in the concept of a cartesian produetdmst the images of Boolean functions. We have

Definition 2.4.1(cart) Letcarty, ,,, : By X By, — B{”m, wheren, m € N, denote the cartesian product of two
Boolean functions, such thatff, € B, andg,, € B,,:

Cartn,m(fna gm)(xh cee 7xn+m)(0) = fn(l'la ce 7xn)
Cartn,m(fm gm)(xlv cee 7xn+m)(1) = gm(xn-i-lv e amn-&-m) s

wherezxy, ..., x,,, are Boolean variables.

6 J. R. Frisvad and P. Falster. Geometric Operators on Boolean Functions

Note thatcart finds unary Boolean functions corresponding to a pair offienosalues. This is closely related
to the usual notion of a cartesian product, ordyt does not find the cartesian product of two sets, but rather the
cartesian product of two function images.

The nested Boolean function resulting from the cartesiadymt of two Boolean functions has exactly a form
which can be reduced to a normal Boolean function by the ¢g@eFaACH and any of the reduction transforms
corresponding to a connective (cf. Sec. 2.3). Usiagg and EACH we can define the outer product between
two arbitrary Boolean functions according to the reducti@msform of a binary Boolean function. This outer
product is the operator we use to translate the connective$armula of propositional calculus into the world of
Boolean functions. As in the previous sectionfgtfor n € N denote the set of all functionals, : B,, — {0,1}
and letV,, ,, for all n, m € N denote the set of all operatafs ., : By, X By, — Bnim.-

Definition 2.4.2 (OUTER) The outer product operatodUTER,, ., : T1 — V,, , is defined fory; € 11,
fn € By, andg,, € B,, by

OUTERn,m (Xl)(fnv gm) = EACHl,n+m (Xl)(cartn,m(fnv gm)) .

Infix notation is allowed for use witb UTER such that

OUTERn,'rn (Xl)(f’ru g’m) = fn OUTERn,m (Xl) 9m -

In the preceding paragraphs we have described replacerhpnbmositional variables with unary Boolean
functions and replacement of connectives Wit TER applied to the reduction transforms corresponding to
them. While this may be a way to translate a propositional tdand to the Boolean functiorf 4 which it
represents, it remains to be shown that the resulting Badlaaction actually has the image that we desire. In
the following, letop1, ops, ... denote binary connectives.

Theorem 2.4.3Let A = A(ps, ..., pn) denote the propositional formula given by
Ay op1 A2 op2 ... Opn—1 Ap

where4,, i = 1,...,n, are sub-formulae for which the image of the correspondingl&an functionf,, is
known. The sub-formulae may contain any of the variaples. . , p,,. Then for the Boolean functiofy repre-
sented byA it holds for any valuation : {p1,...,p,} — {0, 1} that

falar,...;an) = v(A(p1,...,pn))
= (fA1 OUTER(Opl) . OUTER(Opn_l) fAn)(al, ey (ln) 5

wherea; = v(p;) fori =1,...,n.

Proof. The result follows immediately from the definitiorigem prior to the theorem. As we work with left
associativity it suffices to prove that

fAl op Ay — fAl OUTER(OP) fA2 9

where f4, € B, and f4, € B, are two arbitrary Boolean functions corresponding to thie-feumulae

Ai(p1,-..,pn) @nd Az (ppt1,- -, Dntm). Letb € By be the binary Boolean function corresponding the con-
nectiveop. Then
fa, OUTER,, n,(op) fa, = EACH; 4 (REDUCE;(b))(carty m(fa,, fa,))

= REDUCEl(b) e} cartn,m(fAl s fAz) .
Continuing with an arbitrary valuatiom, = v(p;) fori = 1,...,n + m we get

(REDUCE; (b) o carty, m(fa,, fas)) (@1, Gntm)
= REDUCE; (b)(carty, m (fa,, fa,)(a1, ..., an +m))

b(fA1 (ala ey an)a fAz (anJrlv cee 7an+m))

which is the value off 4, op 4, for the given valuation. To complete the proof, we must beaberthat any
formula can be decomposed into sub-formulae with a knowrganand binary connectives in-between them.
This is certain since we can always reach sub-formulae wdnieteithemp; or —p;, i = 1,...,n + m, for which
the corresponding Boolean functions afe andnon respectively. O

As it is the case for the traditional cartesian product betwsets, the list of arguments is ordered for the
function returned byart and, hence, it is also ordered for for the function returng@ TER. This means
that after translation of a formula to a Boolean functiom, thsulting Boolean function will have an argument for
each occurrence of each propositional variable in the ftamAnd the arguments correspond to the valuation of
variables in the same order as the variables appear in thaufar

If we had imposed the necessary algebra on our theory andilgeddt using Boolean tensors rather than
Boolean functions, the@ UTER would denote the traditional outer product between two Baoltensors (only
according to an arbitrary binary Boolean function instefwholtiplication). Hence, we have shown that an outer
product can be employed for translation of a propositionaiiila to the Boolean function which it represents.
This is most often far more efficient than computation of gymsssible valuation for the formula. The process
we have described in which simple sub-formulae are replagdshown Boolean functions and connected using
reduction transforms corresponding to the connectivesetmeen the sub-formulae, works for any choice of
connectives and any representation of the Boolean furgtion

Example 2.4.4 Consider the following rule set composed of a set of two psitfmnal formulae:

Rule 1 P1 = P2
Rule 2 p2 = p3 -

This is equivalent to the formuld(p;, p2,p3s) = (p1 = p2) A (p2 = p3). A Boolean functionfy € By
corresponding to the rule set can be constructed as follows:
rn=ry = aff OUTER; (=) aff
fa r1 OUTER2 2(A) 2
wherery, 2 € Bs. The resulting functiory; is effectively a Boolean function corresponding to the eé If
a; = v(p;) fori =1,2,3, fa(a1,az,as, as) returns whether a particular valuation fulfills the rule@enot. This
follows from Theorem 2.4.3:
fa(ai,a2,a2,a3) = OUTER22(A)(r1,72)(a1, a2, a2, a3)
= et(ri(ay,a2),r2(az,az))
= et ((aff OUTER; (=) aff)(a1,a2), (aff OUTER; (=) aff)(az,as))
= et (imp(aff (a1),aff (a2)),imp(aff (az), aff (as)))
= et(imp(ay,az),imp(as,as))
v((p1 = p2) A (p2 = ps3)) -
Note thatr; = ro = imp and, hence, we could have construcfganerely as

fa =imp OUTER22(A) imp .

2.5 Colligation

It shows in Example 2.4.4 that the function obtained afteoracatenation may have several arguments valuated
by the same propositional variable. This is clearly inexget It may also be desirable to rearrange the list of
arguments. To handle these issues we have

Definition 2.5.1(fuse) Let] = {1,...,k} be an index set, and let k € N be natural numbers such that< n,
thenfuse, 1, : I" x B,, — By, is defined forf,, € B, andv € I"™ by

fusen ik (¥, fu) (@1, .y 2k) = fu(Tiy, .o, 24,)

wherez, ..., z; are Boolean variables.

8 J. R. Frisvad and P. Falster. Geometric Operators on Boolean Functions

The process of setting two arguments of a Boolean functiaralelp each other is referred to eslligation.
A term used by Peirce [24] and Whewell before him. See also ibrugsion by Franksen and Falster [10].
Geometrically we pick a diagonal hyperplane in the imagefahation f € B,, to obtain the image of a function
g € B,_1. fuse does this repeatedly until a function iy, £ < n, is obtained. Henceuse is the first of
the operators we have described which has a direct geondgipretation in a logical coordinate-system. The
importance ofuse shows through

Proposition 2.5.2 The image of a Boolean function represented by a propositiate set, can be found through
operations orthe image®f known Boolean functions corresponding to the formulaksar-formulae composing
the rule set.

The result follows sinc® UTER andfuse can work exclusively on the images of Boolean functions.otiigh
outer products of image spaces according to reductionftrans corresponding to connectivd8UTER can
translate any propositional rule set into a Boolean fumctiath one argument for each appearance of each
propositional variable in the rule set (cf. Theorem 2.43)bsequentlyuse can eliminate the redundant argu-
ments and rearrange the remaining arguments as appropyiaieking diagonals and interchanging axes in the
image of the translated Boolean function. In this way,dbkigated formof a Boolean function represented by a
propositional rule set, can be found. Here colligated famdfined by

Definition 2.5.3 (colligated form) Let A be the formula describing a propositional rule set and fgtbe the
Boolean function represented by the rule set. Therctikgated form off4 is a function equivalent tg 4 in
which no arguments are valuated by the same propositiondie in A. A function in its colligated form is
referred to as aolligated Boolean functian

Example 2.5.4 In continuance of Example 2.4.4 we can now eliminate themddnta, argument and obtain a
function f3 € B3 describing the same relation betwaanp,, andps. This could be written as

fa(ai,a2,a3) = fa(ai,a2,a2,a3) ,

or at a higher level of abstraction as

f3 = fuses 3((1,2,2,3), fa) -

2.6 Projection

Since the picking of a diagonal hyperplane in the image of ael&m function is useful, it might be interesting to
define and interprgirojection

Let f € B, be the colligated form of a Boolean function represented pyogositional rule set in which the
propositional variableg, ..., p, appear. Suppose we want to project the imag¢ oh a subspace spanned
by £ < n of the Boolean variables whiclfi takes as argument. Thereby we would obtain a functioa
B, describing, according to the projection, the relation leetwthe remaining Boolean variables valuated by
Diys- - Dip, Where the indices,, . .. i, € {1,...,n} are mutually distinct.

To perform such a projection we must first be able to split thage off. This is exactly the point of nested
Boolean functions. We have

Definition 2.6.1(split) Let] = {1,...,n} be anindex set, and let & € N be natural numbers such that< n,
thensplit,, : I"™* x B, — Bf_, is defined forf,, € B, and7 € I"~* by

Splitn,k(fv fn)(leﬂ T 7xjk)(xi1v T 7xin—k) = fn(xlv s vxn) ’

wherez, ...z, are Boolean variables. Ik > 0, then7 € I* exists. Otherwiseplit(, f,)() = f,.. All
indices in7 and 7 must be mutually distinct. Furthermore the indicegriare ordered such that, < j,41 for
v=1,...,k— 1. Thusyis given implicitly by the indices i which are not irv.

Thinking of a circle (both circumference and interior of #iecle) describing the projection of a sphere on a
plane, we may similarly project a relation (suchfasientioned before) on a subspace of its image. This is done
through a disjunctive reduction of the nested Boolean fondiound usingsplit. As previously we lefT,, for
n € N denote the set of all functionajs, : B,, — {0,1}, and byW,, ; for n, k € N with k¥ < n we denote the
set of all operators,, . : I""* x B,, — By, wherel = {1,...,n} is an index set.

Definition 2.6.2(PROJECT)The operatoROJECT,, ;. : T,, — W, ; is defined fory,, € T,,, f, € B,, and
7€ 1" * by

PROJECTH,k (X’n) (i‘) f’n) = EACHn—k‘,k (Xn) (5phtn,k‘ (;7 fn)) 3

where the indices i are mutually distinct and have the functionality of poigtiout the arguments gf,, to be
eliminated by projection.

To eliminaten — k < n arguments of a Boolean functigh € B,, by projection, we point out the indices
of the arguments that we wish to eliminate using I"~* wherel = {1,...,n} is an index set. We cannot
eliminate the same argument more than once therefore tieesihy’ must be mutually distinct. The remaining
arguments, that is, the axes in the imageg @n which f is projected, are given by the indicesfirwhich were
not pointed out i, Let 7€ I* denote these indices. The Boolean funcijon B), resulting from the projection,
is independent of , but the arguments af will be valuated by the same propositional variables as theraents
of f pointed out byy. To find out whether one Boolean function implies anotherainy possible valuation, we
have

Definition 2.6.3(entail) LetI = {1,...,n + m} be an index set with, m € N. The functional
entaily, ,, : [" x I"™ x B, x B, — {0,1}
is defined fow' e 1", 7€ I'™, f, € B,,andg,, € B, by

entaily, 1, (7, 7, frs gm) = A (fuse((i1, .-, in, 415 - -, Im)s fn OUTER(=) gm))

whereA and=- denote the reduction transforms of the binary Boolean fonstcorresponding to the connectives
denoted by the same symbols. If

entaﬂn,m(ijv fnagm) =1,

we write f,, En.m (7, 7)gm and say thatf,, entailsg,, in the given context.

When a Boolean functiorf € B,, entails a Boolean function € B,,, it is said to be avalid inferenceto
substitutef by g, but not conversely. Entailment can, hence, be referred thecorrectness criteriorof a rule
of inference. In Section 2.7, a rule of inference will be giveeformal definition based on the functiorakail.
First, however, we will show that disjunctive projectiorvalid inference.

Theorem 2.6.4LetI = {1,...,n} be anindex set, let = A(py, ..., p,) be the formula describing a proposi-
tional rule set, and leff4 € B,, be the colligated form of a Boolean function representechieyrtile set. Then
for every index vectaf € I"~* with & < n in which all indices are mutually distinct, it holds that

fA ':n,k ((17 e 7”)7.T)PROJECT7L,I<(\/)(7: f) 5
wherejare the indices il which are not irz.

Proof. LetA = A(ps,...,pn) be any formula describing a propositional rule set, andflete B,, be
the colligated Boolean function represented by it. Let {1,...,n} be the appropriate index set and pick an
arbitraryz € I"~* with & < n in which all indices are mutually distinct. Lgtc I* be given by the indices if
which are not ir; then we have the following for an arbitrary valuation= v(p;) withi = 1,... n:

entail, r ((1,...,n),7, fa, PROJECT,, ,(V)(%, fa))
= /\ imp (fA(alv ce 7an)7 EACHn—k,k(v)(Sphtn,k(a fA))(_OJ_‘))

ai,...,an€{0,1}

- N imp(falar.. . a,), REDUCE, _y(vel)(split, , (7. f4)(@7)))
at,y..., an€{0,1}

= N imp | falar,. . an), \/ split(7, fa)(@7) (b, ... bng) | =1 .

ai,...,an€{0,1} b1,...,bn_x€{0,1}

10 J. R. Frisvad and P. Falster: Geometric Operators on Boolean Functions

The last equality holds because for any vafugas, ..., a,) = 1 there is a = @ such that the same function
value is a part of the disjunction given as the second argtiofehe implicationimp. O

Disjunctive projectionPROJECT(V)) corresponds, then, exactly to the syllogistic reasoniescdbed in-
troductorily. It is indeed interesting to note that we caavdia parallel between inference and projection in the
image of a Boolean function. The depth of this observatiohhe explored in the next section after a simple
example.

Example 2.6.5 Further elaborating on Example 2.5.4, we can find the reldiEtweery; andp, according to
the original rule set defined in Example 2.4.4. This is dona blsjunctive projection of the image ¢f on the
plane (in a logical coordinate-system) spanned by argusrare and three of;:

f2 = PROJECT;52(V)((2), f3) -
We can then calculate that

fo(z1,22) = PROJECT32(V)((2), f3)(21,x2)
EACH, »(V)(splits 5((2), f3)) (21, 22)
REDUCE; (V)(splitz 5((2), f3) (21, z2)
vel(f3(1,0,72), f3(z1,1,72))
vel(f4(x1,0,0,22), fa(x1,1,1,22))
vel(et(imp(x1,0),imp(0, 22)), et(imp(x1, 1), imp(1, 22)))
(
(

= wel(et(non(z1),1), et(1, aff (x3))
= wel(non(zy),x2)

Why we can conclude thgt = imp, proving the Aristotelian syllogism.

2.7 Rules of Inference

There seems to be no universal agreement upon a formal defioftinference. Nevertheless a correctness crite-
rion for inference has been established by the concept afler@nt. A rule of inference could then be described
as a pairf A, C) whereA is a propositional rule set ar is a propositional formula whicH entails. Or it could

be described, in terms of the Boolean functions whichndC represent, as an operator transforming a Boolean
function such that the resulting Boolean function fulfile torrectness criterion by ways of the functioaalail.

It should, however, be noted that what we in the followingerdb as trivial inference, some would not call
inference at all since the inferred conclusion would be tbei@us. The paradox of defining inference is well
described by Jones [15]. The definition we adopt is very bianadl the reader should feel free to confine our
definition of a rule of inference for example by rejectiontoé trules of inference that we refer to as trivial. Only
very few and simple corrections in the theory that followsandobe necessary to accommodate a more restricted
definition of inference.

Definition 2.7.1 (rule of inference)A rule of inferences an operatory : B, — B, which, for at least one
combination of» € N andm € N, transforms at least one Boolean functire B,, into a Boolean function in
By, suchthatf =, .. (v,7)x(f)forsome’e {1,...,n+m}"andje {1,...,n+m}™.

Let us take an example of how Definition 2.7.1 can be emplolyethe following, we letl denote the constant
function returning truth) for any argument, and we I8tdenote the constant function returning falseho®d (
for any argument.

Example 2.7.2 Suppose we have an operator B,, — B,, which transforms an arbitrary number of zeros (val-
ues of falsehood) in the image of its argument to ones (valfizsith) in the image of the resulting transformed
function. This rule can be defined by

by (f) = vel(f,9)

11

wheref, g € B,,. Observe that there are no inferences suchfhat, ,, (z,2)¢(f), wherer= (1,...,n), which
can not be described by this definitionwfand

imp(f, vel(f, g)) = vel(non(f), vel(f, g)) = vel(vel(non(f), f),) = vel(1,g) = 1

ensures that there are no invalid inferences resulting frasrule of inference.

To be specific, the quite general rule of inferegiogan lead us to more well-known rules of inference. Suppose
g1 = tmp andgs = cimp. Now two well-known and very specific rules of inference apgheny,, andi,,,
respectively, are applied to e.f.= bii. We have

g, (bid) = imp and g, (bii) = cimp ,
or the corresponding representation in propositionalutatc

PEq PEq
p=q = DpEgq

i

wherep andq are propositional variables and the expression abovernbeshtails the expression below the line.

Note that the functionaintail and, hence, rules of inference describe a relation betweeralues (images) of
Boolean functions for some arguments, not a relation betBamlean functions in general. Therefore many dif-
ferent operators may describe the same rule of inferencendiémg on the index vectors chosen for the entailment
relation. To accommodate this construction, we introdheecbncept of equivalent forms.

Definition 2.7.3(equivalent forms)Let I = {1,..., k} be an index set with = max(n, m) andn, m € N. For
rel™letA; = Ai(p1,...,pn) @and Ay = As(py,, ..., pi,) be propositional formulae, and Igly, and f4, be
the Boolean functions which they representd{fand A, are logically equivalentf,, and f4, are referred to
asequivalent forms

For any two equivalent formg,, and f4, there (trivially) exists a Boolean functiai € B,, ,, such that

fa, = fa,0er .

We lete € B, ,,, for anym, denote any Boolean function for whigh e is an equivalent form of € B,,.

Example 2.7.4 The idea of equivalent forms is merely to state that Booleactions such as

fla1,az2,a3) = v((p1 = p2) A (p2 = p3))

and

g(az,as,as,a1,as) = v((p1 = p2) A (p2 = p3))

are equivalent forms, and we can use the synatioldenote any equivalent form ¢t
g(£2)£3; x23w17$4) = (f © 6)($2,$3,l’2,$1, fE4) = f(.’L'l,fL'27l'3) .

The notion of equivalent forms reveals a trivial rule of irgiecey : B,, — B,,, which is valid for anyf € B,,.
The rule is, of coursex(f) = f o e and we can observe that colligation and reductiorf ¢d its reduced form
red(f) (i.e. removal of all fictive arguments) is a trivial rule ofémence which is contained in this formulation
of x. Another trivial rule of inference : B, — B,, which is valid for alln,m € N and anyf € B,, is
x(f) = 1. We say thatl is theleast restrictive form off and following the same line of thoughtd(f) is the
most restrictive form irB,, of f € B,,. The result of an inference is, however, often a Booleantfandaking a
different number of arguments. Therefore we introduce

Definition 2.7.5(most restrictive form iB,,, of f € B,,) Letl = {1,...,n+m} be anindex setwith, m € N.
Forve I"andje I™ let Ay = A1(piy,---,pi,) and As = As(pj,, ..., pj,,) be propositional formulae, and
let f4, and f4, be the Boolean functions which they represent. ffiost restrictive form inB,,, of f4, € B, is
defined by the Boolean functigh, € B, for which fewest argumentsc {0, 1} exist such thaf 4, (d) = 1,
while it is true thatfa, =nm (2,7)fA4,-

12 J. R. Frisvad and P. Falster: Geometric Operators on Boolean Functions

As a continuation of this definition let € B,, andg € B,, denote two arbitrary Boolean functions. If there
exists at least one more value of truth in the image tfan what exists in the image ¢f that is, if there is at
least one more argumedite {0,1}"™ such thaty(@) = 1 than there are arguments such tfi&f) = 1, then we
say thaty is less restrictivahan f and conversely that is more restrictivehang.

Pick two arbitrary Boolean functionf g € B,,. If f is more restrictive thag, thenf =, ,, (¥,7)g, where
7=(1,...,n), but conversely it imotthe case thaj |=,, ., (7,7)f. Hence, we can always derive a less restrictive
form from a more restrictive one, why if we have the most ietite form of a relation, no new knowledge can be
obtained from a less restrictive form. Hence, we are firstlafiterested in rules of inference which find the most
restrictive form inB,,, of f4 € B,,, whereA is the propositional formula representirig. Moreover it suffices
to investigate rules of inference transforming the cotkglform of a Boolean function since any propositional
rule set in whichn propositional variables appear, can be described by ayatdiil Boolean functiofi € B,,.

Theorem 2.7.6LetI = {1,...,n} be an index set, and let,,» € N be any two natural numbers. For all
non-trivial rules of inferencey : B,, — B,, taking a colligated Boolean functiofi € B,, as argument, there
exists ar’ € I*¥ with 0 < k < n, such that

X(f) = PROJECT, n_(V)(7, f) o €

is the most restrictive form i, of f € B,,. If k = 0, there are only trivial rules of inference finding the most
restrictive form inB,,, of f € B,,.

Proof. Letx : B, — B, be an arbitrary rule of inference defined for at least oneragg in its colligated
form. Supposg € B,, is any one of the colligated Boolean functions whijckransforms intoy(f) € B,, such
that f =, . (B,7)x(f) forsomer e {1,...,n+m}" andjy € {1,...,n+ m}™. The number of indices if
which are not iry’is denoted: € N. Note thatt < n.

Let 4; and A, be formulae representing and x(f) respectively in propositional calculus. Then the index
vectors? and 7 point out the propositional variables appearingdin and A, which valuate the arguments of
f andx(f). Pick an arbitrary valuation of the propositional variables appearing4n and A,, and leta €
{0, 1}" denote the corresponding argumentfaindb € {0, 1}™ the corresponding argument gff). From the
definition of entailment (Def. 2.6.3), the options we have)are operators which ensure thafifa) = 1, then
x(£)(b) = 1, butif f(@) = 0, theny(f)(b) can return either truetj or false ().

Fork = 0. All indices in7are also infwhy m > n. Sincem > n, there exists an equivalent form in any set
of Boolean functions3,,,. An equivalent formy € B,, of f is also the most restrictive form iB,,, of f € B,,.
This means thay is given trivially asx(f) = f o e for all n,m € N with £ = 0. Hence, ifk = 0, only trivial
rules of inference exist finding the most restrictive forny, of f.

Fork = n. No indices inZ’are also iny. If f = 0, thenx(f) = 0 is the most restrictive form i, of f. If
there is a single € {0,1}™ such thatf(@) = 1, it is necessary that(f) = 1, sincea could be the argument
of f for any argument of(f). A functional which reduceg to 0 if f = 0 and1 otherwise iISREDUCE,, (vel)

(cf. Def. 2.3.1). Since a Boolean valugdr 1) could be regarded as a Boolean function taking no argumeets
have0 = 0 o e andl = 1 o e. But then

x(f) = REDUCE, (vel)(f)ce

whenk = n.

For0 < k < n. Let7” € I* be the indices imwhich arenotin 7, and let7” € I™ "** pe the indices i1y’
which arenotin 7. Furthermore let € I"~* be the indices which areothin 7and inj. Using Def. 2.6.1 we
have the following two equations

f@ = split, , (", (@) (d@)

X(H®) = splity i (77 () B) (B5r) = sPlity, i (77, () (@) (by) -

Sincey is a rule of inference, it must hold thet =, ., (7,7)x(f). Hence, according to the definition of
entailment (Def. 2.6.3), it follows that

imp(splitn,nfk(,z‘/v f)(_)ﬁ)(_)?/)v Sphtm,nfk(j/v X(f))(_’ﬁ)(f’)) =1.

13

Recall that an arbitrary valuation was chosen, why thistis for all@ € {0,1}™ andb € {0,1}™. But then it is
also true that

plity, (7',) (@) ot (7 7)splity, 1 (7 x(F))(@)

and sinceh = split,, ,, (7", x(f))(@5) € Bm-n+i denotes a part of the image @f f), then forx(f) to
be the most restrictive form of € B,, it is also necessary thatis the most restrictive form itB,,, 5 of
g =split,, ,_ (", f)(d7) € B.

Since no indices i’ are also indices ifi’, the relation betweegqandh corresponds exactly to the case where
k = n described above. This means thaj i 0, thenh = 0. Otherwiseh = 1. This relation can be described
perfectly by an operatap : By, — By,_,+ defined by (g) = h.

At this point it should be observed that either

-

X(F)(®) = split,,, ,,_ (7", x(£))(@7)(by) = ¥ (g)(by) = 0(by)

or

X(F)(B) = splity,, (7" x(f))(@5) (b5) = ¥ (9)(by) = 1(by)

This means that the arguments pointed ouybhave no influence whatsoever on the value returneg iy
(because we are finding the most restrictive fornjp of f € B,,). If we replace the operata¥r by a functional

¢ : By — {0,1} defined by¢(g) = 0if g = 0, and¢(g) = 1 otherwise, the fictive arguments can be represented
by an equivalent form of o split (@, f) (cf. Def. 2.7.3). In other words,

n,n—k

-,

X(HE) = $(9)(by) = &lg) = &(splity, (7", £) (@) = (& 0 splity, (7", £))(@5)
= (£ osplity (7,) (b5) = (€ 0 sDlit,, (7",) 0 €)(D)
which, using Definitions 2.3.2 and 2.6.2, can be rewrittefollews
X(f) - (5 © Splitn,n—k(iﬁv f)) ce= EACHk’,n—k(5)(Sphtn,n—k(7/7 f)) oe
= PROJECT,, ,— (&)@, f)oe .

From the definition of¢ we observe (in a similar manner as the case wliere n) that the functional
REDUCE(vel) : By, — {0,1} is the exact equivalent ¢f for all £ € N, why ¢ = REDUCE(vel) = V
(cf. Sec. 2.3). Finally if we return to the case whére: n, that is, wherei;» = d, we have

REDUCE, (vel)(f) oe = V(split,, (7. /)()) o e = (Vosplit, (7 f))() o e
PROJECT,,o(V)(Z, f)() o € = PROJECT, o(V)(Z. f) o e .

Therefore, since the rule of inferenge: B,, — B,, was chosen arbitrarily, and since the valuatiowas
chosen arbitrarily, we can conclude that for all non-tlivides of inferencey : B,, — B,, taking a colligated
Boolean functionf € B, as argument, there exists &nc I* with 0 < k£ < n, such that

X(f) = PROJECT,, ,,—(V)(@', f) ce
finds the most restrictive form iB,,, of f € B,,. Proving exactly what was required. O

A corollary follows immediately from Theorem 2.7.6, Examfa.7.2, and the notion of a colligated Boolean
function (Def. 2.5.3).

Corollary 2.7.7 LetI = {1,...,n} be an index set, and let,n’,m,k € N be natural numbers such that
k <n < n'. For every rule of inferencg’ : B, — B,, there is an equivalent rule of inferenge: B,, — B,
transforming the colligated equivalent ¢f, namelyf € B,,, into the same Boolean functior{f) = x/(f’) €
B,,. For the equivalent rule of inferenog there exist, it > 0, ag € B,_; and an7 € I* such that

Xg(f) = (9 VPROJECT(V)(% f)) o e .
For k = 0 there exist g € B,, such that

Xg(f):(g\/f)oe .

14 J. R. Frisvad and P. Falster: Geometric Operators on Boolean Functions

This means that orthogonal projection and union of Booleenttions in a many-dimensional logical coor-
dinate system, is all we need for any kind of inference in pediional logic. While it follows from Theorem
2.7.6 that all the most restrictive forms resulting fromeirgihce can be found through projection, we emphasize
that Corollary 2.7.7 provides a formula from which any ruténference for propositional logic can be obtained.
Still the most restrictive forms are the most interestingrfe that we can infer. The reason being, as mentioned
before, that we can derive a less restrictive form from a mesérictive one, but not conversely. Therefore the
rules finding the most restrictive forms are sometimes ttgrohes which are accepted as true rules of inference.
This point of view is reflected in the early analogies betwegic and algebra.

De Morgan writes [21, p. 27]: “Speaking instrumentally, wisacalledeliminationin algebra is what is called
inferencein logic.”! And since elimination in algebra can be accomplished thnaarthogonal projection of a
surface on the space spanned by a few axes, this indicatd3¢hdorgan had thoughts about inference similar
to what we arrive at in Theorem 2.7.6. He even states that amecompare the forms of logic in reasoning with
the laws of linear perspective in painting” [21, pp. 26—2fkreby coming even closer to the analogy between
projection and inference (except for the fact that we empldiilogonal projection rather than the perspective
projection used by a painter trying realistically to reprod a three-dimensional scene).

Since Boole was also working on an analogy between logic &ebea, he was investigating the relation
between inference and elimination. In fact one of the keytsain his celebrated Laws of Thought is to address
the question “Whether deductive reasoning can with prophetregarded as consisting only of elimination” [2,
pp. 239-240], and he writes subsequently: “I reply, thasoaang cannot, except by an arbitrary restriction of
its meaning, be confined to the process of elimination”. Ippgut of Boole’s conclusion, Peirce remarked in a
footnote that “De Morgan (“On the Syllogism,” No. Il., 1858, 84) goes too far [...] if he means, as he seems to
do, that all inference is elimination” [285184n]. And this is exactly what we have also discovered. Thirary
function g in Corollary 2.7.7 has exactly the purpose of including b# tules of inference which can not be
described by projection/elmination, namely those resglin a less restrictive form. Boole and Peirce may have
rejected the idea of all inference as elimination becausesirhilar observation.

Boole’s analogy between logic and algebra was founded irndis of two-valued polynomial functions to
represent propositional rule sets, De Morgan’s approactthe other hand, was oriented towards systems of
linear equations or inequalities to represent the sameg.tHmthe tradition of De Morgan it was discovered in
1991 by Hooker [12] that everything which can be inferredrra rule set about a restricted set of propositions,
can be found through logical projection. A result which isysimilar to our Theorem 2.7.6. The context and
definitions prior to Hooker's proof is, however, completdlfferent from and not as general as ours. The reason
being that any propositional formula must be rewritten alase in Hooker’s treatment whereas we impose no
restrictions on the representation of Boolean functiopsasented by a propositional formula. As De Morgan,
Hooker also does not mention rules leading to less resteiftirms.

Having now described how inference can be drawn on a ruleysptdjection, it may be that we have a rule
set specifying the relation betweerpropositional variables. Suppose we want to assert truthleehood to a
numberk < n of these propositions and draw a conclusion on the relatatwden the remaining propositions
in the rule set. To do inference by projection, it would beassary to include the assertions in the rule set. In
the following section we describe a simpler option for diragvinference in this special case where a number of
propositions are simply asserted.

2.8 Deduction

The nesting of a Boolean function employed in projectionisisful not only for syllogistic reasoning, but also for
the form of deductive reasoning described in the Stoic moHlis is a form of inference resulting from external
influences such as the consequence of some propositionableabeing asserted (or valuated as) true or false.

Knowing the current value of one or several propositionailaldes appearing in a formuld, makes us able
to pick a subspace in the image of a Boolean funcfignmepresented byl. The picking of a subspace involves
no calculations and is therefore much more efficient thagrérfce by projection. We have

Definition 2.8.1(deduce)LetI = {1,...,n} be anindex set, and let & € N be natural numbers witk < n.
Then the operatodeduce : {0,1}* x I"~* x B,, — B, is defined fo@ € {0,1}*,7¢€ "%, andf, € B,

1 ltalicizations are original.

15

by
deducey, n(d@,7, fn) = split,, (%] fn)(@) ,

where the indices im must be mutually distinct. Note thapoints out the arguments ¢f, that have not been
asserted (unknowns).

Theorem 2.8.2LetI = {1,...,n} be anindex set with € N. LetA = A(py,...,p,) be a formula describing
a propositional rule set, and lef4 € B, be the Boolean function represented By For any? € I™ let

v :{piy,---,pi,, } — {0,1} be a partial valuation forA such thatu;, = v(p;,) for & = 1,...,m according to
an assertion of the propositional variablgs, . . ., p;, . It then holds that

f):n,n—wz ((17 A 7’n’)7j>deducen,n—m(&‘7j; f))
wherey € I~ is given by the indices ih which are not i’ ordered such thaj, < jx4q1 fork=1,...,n —
m — 1.

Proof. Pick an arbitrary propositional rule set andflgte B,, be the Boolean function represented by the
formulaA = A(py, ..., p,) describing the rule set. Suppose an external influencetasssr partial valuation
for A such thaty, = v(p;,), wherek = 1,...,mand7 e I"™ for I = {1,...,n}. Let furthermorey € I"~™ be
the indices inl which are not irv’ordered such thal, < jryifork=1,...,n—m — 1. Then
entail, n—m ((1,...,n),7 fa,deduce, n—m(a,7, fa))

= A imp(fare.) splt(T fa)(@) by b5,,)) -
bi,...,b, €{0,1}

This holds true only as long &s, = a,. = v(p;,) fork = 1,...,m which is the case as long as the propositional
variablesp;, , ..., p;, are asserted. O

Example 2.8.3 Consider the simple propositional rule set, or formula,

p=q.

This rule set, of course, represents the Boolean fungtioa imp.
Suppose we have an external influence assertingtisd¢tue. Then we have deductively that

f1 = deducez1((1), (2), f2) = splity 1 ((2), f2)(1)

and
J1(0) = splity 1 ((2), f2)(1)(0) = f2(1,0) = imp(1,0) =0
fl(l) Split271((2),fg)(1)(1) = f2(17 1) = imp(l, 1) =1,

why we can conclude that for the rule set to be fulfilled, thessmuence gf beingtrue s thatq is true (cf. Ta-
ble 1). This proves modus ponens.

To conclude on the theory that has been presented, we emphhat all kinds of deductive inference on
arbitrary rule sets can be performed by a disjunctive ptimjadn a logical coordinate system (and disjunction of
any Boolean function as described in Corollary 2.7.7, if wedha less restrictive form of a conclusion). Moreover
we can perform the simpler picking of a subspace describddssection, to draw inference on simple assertions
of propositions. We find it advantageous to think of assestias influences external to the rule set rather than
additional rules which should be added to the set. The reigsthiat many systems can be described by a static
rule set and for that we can compute the image of the Booleactifin represented by the rule set, in advance.
Then the efficient picking of a subspace can quickly narrowrdthe part of the image which we need to consider
to find the logical consequences of dynamically changingtinpthe system.

It should be observed that both ways to draw inference carohe thechanically by an implementation of
EACH andsplit (andfuse if functions are not colligated in advance). We can even firelimage of Boolean
function representing arbitrary propositional rule sesingOUTER andfuse which is more efficient than testing
every possible valuation for the rule set. In the followiegtion we investigate how the operators can be applied
to different representations of Boolean functions.

16 J. R. Frisvad and P. Falster: Geometric Operators on Boolean Functions

3 Representations of Boolean Functions

We will, shortly, give examples of how the operators presénnh the previous section can be applied to both
polynomial, table, and graph representations of Booleantfans.

3.1 Polynomial Representations

Boolean functions were originally presented by Boole tigtoa polynomial development formula where a logical
variablez can attain only the truth-valu@sandl, (1 — z) denotes the negation ef logical multiplication cor-
responds to conjunction, and logical addition correspaadssjunction. A description of Boole's development
process has been given by Franksen [9]. Boole’s polynoreesentation has lead to the notion of Boolean
algebra (see eg. [29]) and the polynomial representati@oofean functions is still used extensively.

In a Boolean algebra differenbrmal formscan provide a basis for the space of Boolean functions espdes
as polynomials. The disjunctive normal form is the one mostmonly chosen and it expresses the polynomials
in the form of anv-sum of A-product terms. Another interesting approach is to useusk@-or (») instead of
disjunction for logical addition. The exclusive-or nornfiam allows for a true vector space of Boolean functions,
since the operations and® are, in fact, the modulo-two product and sum which comprield, see [6]. This
is not the case if the disjunctive normal form is employed.

Regardless of the choice of basis, the presented operaoesasily be applied to any polynomial representa-
tion of Boolean functions.

Example 3.1.1 Again consider the rule setin Example 2.4.4. Giving the Baalfunctions corresponding to the
rules a polynomial representation results in

ri(ar,a2) = v(pr = p2) =arae+ (1 —ai)az + (1 —a1)(l—ag)
r2(az,a3) = v(p2 = p3) =agaz+ (1 —az)az+ (1 —a2)(l—a3),

wherewv(A) is the value of the formulal by the valuationv : {pi,p2,ps} — {0,1} such thata; = v(p;),
i = 1,2, 3. Multiplication corresponds to conjunction and additi@responds to disjunction. The polynomial
representation written after the second equality is thigidisive normal form of the rule. Now everything works
as in the previous examples. First we can construct a Bodlgention f3 € B3 corresponding to the rule set

f4 = 7“10UTER272(')7“2
fs fuses 3((1,2,2,3), fa)

Again reasoning is easily captured. The relation betwgeandps is given as the Boolean functigfy obtained
by

f2 = PROJECT32(+)((2), f3) -

Observe that nothing done after statement of the rules gundisve normal form, has demanded calculation.
All we have done is simple substitution using the operatagsraovement of parentheses. In this representation
of Boolean functions, the advantage of the operators lilsadelay of calculationsUsing the operators we can
keep track of the functions that are currently requestech(asf-), but only when some specific result is needed
a calculation is done. For example if we decide that the sgmtation off; on disjunctive normal form is the
requested output, we could arrive at the result in the fahgwvay for a valuatiorv : {p1,p3} — {0, 1} such

17

thata; = v(p1) andas = v(p3):

fg(al,ag) = PROJECT372(+)((2),fg)(al,ag)
= EACH; 2(+)(splits »((2), f3))(a1, az)
= REDUCEl(-F)(Split&Q((Q), fg)(al, ag))
= Z f3(a1ab7a2)

be{0,1}

= Z fuse4,3((1,2,2,3),f4)(a1,b,a2)

be{0,1}

= Z OUTER272(~>(T1,T2)(G1,b, b, ag)
be{0,1}

= Z r1(a1,b)ra(b, az)
be{0,1}

= (1—-a)(a2+ (1 —az))+ (a1 + (1 —a1))as
aras+ (1 —aj)as + (1 —a1)(1 —as) .

Delay of operations is important if we want to do proposiibreasoning in a dynamic environment such as a
multi-agent system where the desired conclusion of eachtagay change continuously according to real-time
sensory input.

3.2 Table Representations

Truth tables are the most well-known table representatfoBamlean functions. There are, however, many
alternatives. Karnaugh maps [16] comprise an attempt te hasompact table representation. In the following
we will, again, go over the Aristotelian syllogism and shdw process of applying the operators in their original
settings, namely in Franksen'’s array-based logic.

The arrays are ordered, orthogonal, and many-dimensidigly must also allow for one level of nesting to
enable the concept of nested Boolean functions. When drathimmgmage of a real-valued function, the axes
are distinguished as an arrow marked with the variable thapresents. In array-based logic no axes are drawn
explicitly. Rather the structure of an array indicates Whiariable each axis corresponds to. The last axis of an
array, corresponding to the valuation given as the lastraegu to the Boolean function, is always innermost and
horizontal. Moving backwards through the list of argumettie corresponding axes alternate between vertical
and horizontal directions. This way of constructing arrisydue to Trenchard More [19, 20].

Example 3.2.1 For one last time consider the rule set in Example 2.4.4. fil@rg aff by an array we have:
aff =01 .

An array representing the Boolean functifine B, corresponding to the rule set is then found in the following
way:

ro=ry = aff OUTER171(:>)aff =01 OUTER171(:>)01: (1)1
11 11
11 11 01 01
f4 = TloUTERQQ(/\)’/‘QZ OUTERQQ(/\) =
’ 01 ’ 01
00 11
00 01
fo = fuse(L,2,2,3),f)= o1 o

01 01

18 J. R. Frisvad and P. Falster: Geometric Operators on Boolean Functions

If the relationf, between the variablas andps is desired, the projection is accomplished as follows:

Jo = PROJECT3a(v)().f2) = EACH:a(v) (spitys (. 3} 07))

_ EACHLQ(V)(10 | 11) 11

00|01 01

The arrays presented here could, of course, be given a manpamt form, and it is worth noticing that
reasoning on arbitrary rule sets is easily automated thramglementation of the operators. At least this is the
case using table representations, and it has traditioha#y done in array-based logic, see eg. [18].

An interpreted development language called Q’Ni@uéen’s UniversityNestedinteractive language) was
originally proposed in [14] for the purpose of testing arthgoretic concepts. If the reader feels a need to
test the operators in an array theoretic setting, we recardn@Nial®> where an implementation dEACH,
OUTER, split, andfuse is available for operation on multi-dimensional neste@ysr The index argument of
fuse is different in Q’Nial as compared to our definition, but tleare functionality can be obtained with either
definition. Another option for testing the presented opeeiis APL® which also has a nested array data structure
readily available.

3.3 Graph Representations

There are many ways to represent Boolean functions as a.gkégst of them are based on a normal form just
as the polynomial representations are. The most commomiykigraph representation of a Boolean function is
a Binary Decision Diagram (BDDs) which is based on the ifateése normal form (see eg. [1]).

Constructing the graph representing a Boolean functiowisacessarily straight forward. Suppose we need
to merge two Boolean functions and draw inference on thentime@constrained environment where we cannot
afford to construct a new merged graph. In that c@$€I'ER andfuse can be used to merge the two graphs
artificially, see Figure 1. There is also the possibilitytttiee operators can be given an efficient implementation
for BDDs and teach us new things about efficient construaifa@raph structures representing Boolean functions.

Fig. 1 The operator©® UTER andfuse can be used to merge two graphs artificially. Connection of the two BinarisDe
Diagrams representing Rule 1 and Rule 2 (from Example 2.4.4), is iltadtrere.

Assertion of propositions is easily captured in a BDD thitougstriction of the graph. Syllogistic reasoning
is, however, not obvious. THRROJECT operator may be able to help in this context, see Figure 2.

4 Discussion and Conclusion

Operators working on the images of Boolean functions, sonestwith a direct analogy to geometrical operators
in cartesian spaces (comp&BOJECT(V) and orthogonal projection), have been presented in areaibfbrm.
Their purpose is to clarify each step of propositional reaspregardless of the underlying representation of the
Boolean functions.

In particular we have shown that the image of a Boolean fon¢tay/f, represented by an arbitrary propo-
sitional rule set, can be found using outer products and pieeation of setting indices equdliée), the latter

2 Q'Nial is available at http://www.nial.com/.
3 For example dyalog APL http://www.dyalog.com/.

19

Fig. 2 HerePROJECT(V) is invoked on thezs argument of the graph shown in Figure 1 (the projection returns the
disjunction between the graph wherg.) = a2 = 0 and the graph where(pz) = a2 = 1). Of coursePROJECT can
also be used with a Binary Decision Diagram that has not been connesitepfDIU TER.

of which geometrically corresponds to the picking of diaglomyperplanes in a logical coordinate system. If
employed in the right way, these two operators can signitigdimit the number of calculations needed for de-
termining the image of . At least this is the case if we compare to finding the valudefBoolean function by
testing every possible valuation for the rule set. This mégle is not new, but we have redefined the necessary
operators in a form which is independent of the represamtati the Boolean function describing the rule set.

In addition and, perhaps, more importantly, we have prayaérmula from which any rule of inference can
be derived. The formula shows that any rule of inference [gwad by disjunctive projection in and union of
Boolean function images in a logical coordinate systems B0 means that disjunctive projection (and union
to find less interesting consequences) is all we need to fipgh@ssible logical consequence which results if we
want to fulfill any given propositional rule set.

A few examples of application of the operators to differeagiresentations of a propositional rule set have
been described. This is an area in which much work can stilldvee. The impact of the operators have hitherto
only been thoroughly investigated in the context of an atraged representation.

As mentioned previously, it may be an advantage to redefmepilrators using tHgoolean tensordescribed
by Mautner [17]. But then it is necessary to introduce a abersible amount of algebra.

Finally there are many generalizations of this theory whiome easily. For example there is no difficulty
in rewriting the operators to be defined on the more gerigwalean-valuedunctions represented by polyvalent
logic. This merely has the result that the axes in the logicardinate systems grow longer. The described
operators (in their array theoretic form) have previousdgm employed in many different contexts, sometimes
for propositional logic, but also in slightly more generettings. Examples of application areas are logic control
of electronic apparatus [18], railway interlocking sysgef@7], automated approximate reasoning and fuzzy
logic control [13], power system control [22], automatedlséme decision systems for e-commerce [3, 5, 4],
and agents in real-time environments [11]. This is, howeter first paper proving formally that the operators
perform correct inference on any propositional rule settaatithey can capture any possible kind of inference
in propositional logic. This makes us confident that the afmes are useful in many contexts.

Acknowledgement

Thanks to Vagn Lundsgaard Hansen for a few insightful disioms concerning the presented theory and to
Jorgen Fischer Nilsson for a helpful comments. Last, buatgy not least, thanks to our anonymous reviewer
for correction of untraditional formulations and for ditiens improving Definitions 2.3.1 and 2.6.3.

References

[1] H. R. Andersen. An introduction to Binary Decision Diagrams. Leetootes for 49285 Advanced Algorithms E97.
Department of Information Technology, Technical University of Bxank, October 1997.

[2] G. Boole. An Investigation of the Laws of Thought on Which are Founded the MatiwahTheories of Logic and
Probabilities Dover Publications, Inc., New York, 1958. The first American prigtir the work originally published
by Macmillan in 1854.

[3] R. Davidrajuh.Automating Supplier Selection Procedur&hD thesis, Narvik Institute of Technology, 2000.

[4] R. Davidrajuh. Modeling and implementation of supplier selection pfones for e-commerce initiativesndustrial
Management and Data Systeri©3(1):28-39, 2003.

20

J. R. Frisvad and P. Falster: Geometric Operators on Boolean Functions

[5]
[6]
[7]

(8]

9]
(10]

(11]

(12]

(13]
(14]

[15]
(16]

(17]
(18]
(19]
(20]

[21]

(22]

(23]

(24]

(25]

(26]

(27]

(28]
[29]

R. Davidrajuh and B. Hussein. Modeling logic systems with structures/ebased logicModeling, Identification and
Control, 24(1):27-36, 2003.

H. Fleisher, M. Travel, and J. Yeager. Exclusive-OR repreg@n of Boolean functiondBM Journal of Research and
Development27(4):412-416, 1983.

O. I. Franksen. Group representation of finite polyvalent logicadecstudy using APL notation. In A. Niemi, editér,
Link between Science and Applications of Automatic Control, IFAC VIl|d¥@ongress 1978ages 875-887, Oxford,
1979. Pergamon Press.

O. I. Franksen. Invariance under nesting - an aspect of draagd logic with relation to Grassmann and Peirce. In
G. Schubring, editoiermann Ginther Gralimann (1809-1877): Visionary Mathematician, ScientistNewhumanist
Scholar pages 303—-335, Dordrecht, 1996. Kluwer Academic Publishers.

O. . Franksen. Boole’s development process revisited: Fromareay-theoretic viewpointActa historica Leopoldina
27:175-188, 1997.

O. I. Franksen and P. Falster. Colligation or, the logical infereidaterconnection.Mathematics and Computers in
Simulation 52(1):1-9, March 2000.

J. R. Frisvad, P. Falster, G. L. Mgller, and N. J. Christensenovlfgdge exchange between agents in real-time envi-
ronments. InProc. of the International Conference on Computer Animation and Sédajehts (CASA 2005pages
127-132. The Hong Kong Polytechnic University, October 2005.

J. N. Hooker. Logical inference and polyhedral projectidrecture Notes in Computer Sciené26:184—-200, 1991.
Proceedings of the 5th Workshop on Computer Science Logic.

J. Jantzen. Array approach to fuzzy logituzzy Sets and Systeri®(2—-3), 1995.

M. A. Jenkins. A development system for testing array theorgepts ACM SIGAPL APL Quote Quad2(1):152-159,
September 1981.

E. E. C. Jones. The paradox of logical inferenigénd, 7(26):205-218, April 1898.

M. Karnaugh. The map method for synthesis of combinational loigiuits. Transactions of the AIEEZ2(9):593-599,
1953.

F. . Mautner. An extension of klein’s erlanger program: Logidravariant-theoryAmerican Journal of Mathematics
68(3):345-384, July 1946.

G. L. Mgller. On the Technology of Array-Based LogithD thesis, Electrical Power Engineering Department, Technical
University of Denmark, 1995. Available attp://www.arraytechnology.com/

T. More, Jr. Axioms and theorems for a theory of arrajf@M Journal of Research and Developmetit(2):135-175,
1973.

T. More, Jr. The nested rectangular array as a model of datAroceedings of the International Conference on APL:
Part 1, pages 55-73, 1979.

A. D. Morgan. On the syllogism: IITransactions of the Cambridge Philosophical SogieXy79-127, 1850. Reprinted
in, Peter Heath editofn the Syllogism and Other Logical Writingg Augustus De Morgan, Routledge & Kegan Paul
Limited, 1966.

C. Nesgaard. An array-based study of increased system lifgtiotgability. In Proceedings of IEEE Workshop on
Computers in Power Electronics (COMPEL 200@ages 82—86, June 2002.

A. PedersenDigraph Representation in Array-Based Logic: With Special Emphasisehathematical Foundation of
Production ModelsPhD thesis, Electrical Power Engineering Department, Technicaklsity of Denmark, September
1992.

C. S. Peirce. Grand logic (1893). In C. Hartshorne and P. Weditors,Collected Papers of Charles Sanders Pejrce
volume II, Book Ill. Harvard University Press, second printingeQ9

C. S. Peirce. On the algebra of logkmerican Journal of Mathematicgol. 3, pp. 15-57 (1880). In C. Hartshorne and
P. Weiss, editorsCollected Papers of Charles Sanders Pejreelume IIl, Paper IV. Harvard University Press, second
printing, 1960.

E. L. Post. Introduction to a general theory of elementary pritipas. Americal Journal of Mathematicg3:163-185,
1921. Reprinted in, Jean van Heijenoort ediksom Frege to G@del: A Source Book in Mathematical Logic 1879-1931
pp. 264—-283. Harvard University Press, Cambridge, 1967.

C. Strunge. Applying array-based logic to substation control ¥atch interlocking. IEEE Transactions on Power
Delivery, 14(3):879-883, July 1999.

I. Wegener.The Complexity of Boolean Function®ohn Wiley & Sons Ltd, and B. G. Teubner, Stuttgart, 1987.

J. E. Whitesitt.Boolean Algebra and Its ApplicationBover Publications, Inc., New York, 1995. First published by the
Addison-Wesley Publishing Company, Reading, Massachusetts, in 1961

