
Abductive Inference using Array-Based Logic

Jeppe Revall Frisvad1 Peter Falster1 Gert L. Møller2 Niels Jørgen Christensen1

1 Informatics and Mathematical Modelling 2 Array Technology A/S
Technical University of Denmark P.O. Box 104, DK-1051 Copenhagen, Denmark

{jrf, pfa, njc}@imm.dtu.dk glm@arraytechnology.com

Abstract
The notion of abduction has found its usage within
a wide variety of AI fields. Computing abduc-
tive solutions has, however, shown to be highly in-
tractable in logic programming. To avoid this in-
tractability we present a new approach to logic-
based abduction; through the geometrical view of
data employed in array-based logic we embrace ab-
duction in a simple structural operation. We argue
that a theory of abduction on this form allows for an
implementation which, at runtime, can perform ab-
ductive inference quite efficiently on arbitrary rules
of logic representing knowledge of finite domains.

1 Introduction
Abduction is used in logic only to translate the Greek word
ὰπαγωγή (apagögé), which appears as a third kind of rea-
soning in Aristotle’s Prior Analytics (Book II, Chap. XXV),
see eg. the annotated translation in [Peirce, 1958, §§249–252]
or the translation by A. J. Jenkinson which is available on-
line1. Note, however, that ὰπαγωγή is translated by “reduc-
tion” in the latter version.

The logician Charles Sanders Peirce (1839–1914) was pre-
sumably the first to describe abduction as “the operation of
adopting an explanatory hypothesis” [Peirce, 1960, §189]. He
recognized this as a third kind of inference and he often ar-
gued that his theory was in agreement with that of Aristotle.

Other logicians mainly concentrate their efforts on the two
other modes of inference: Deduction and induction. Little,
if anything at all, was done about abduction until Chapter IV
in [Hanson, 1958] revived Peirce’s writings to inspire people
such as Herbert Simon.

A mechanization of abductive logic (or hypothesis gen-
eration) to allow for computational approaches was first
presented theoretically in [Morgan, 1971] and to the area
of diagnosis in [Pople, 1973; Charniak and McDermott,
1985]. Charniak and McDermott also proposed natural
language understanding as an area of application and ar-
eas as diverse as planning [Eshghi, 1988], default reason-
ing [Poole, 1988], knowledge assimilation [Kakas and Man-
carella, 1990], scheduling [Kakas and Michael, 1999], and

1Eg. at http://etext.library.adelaide.edu.au/a/aristotle/a8pra/

multiagent systems [Kowalski and Sadri, 1999] have subse-
quently been proposed. Only some of the first contributions
to the different areas have been listed here. Several additional
references and more applications can be found in [Kakas et
al., 1998; Magnani, 2001; Denecker and Kakas, 2002].

As noted in [Denecker and Kakas, 2002] many abduction-
based systems have been developed, but few have been of “in-
dustrial scale”. An exception is the air-crew scheduling ap-
plication described in [Kakas and Michael, 1999]. There are
several reasons why this is so: (a) It has been shown in [Eiter
and Gottlob, 1995] that “even the simplest form of abduc-
tion is harder than deduction”, (b) the systems implementing
abductive reasoning most often achieve abduction through in-
teraction with an inference engine build and optimized solely
for deductive reasoning, and (c) they must always spend com-
putational power at runtime to ensure consistency.

We cannot work around the fact (a), but we argue in the
following sections that array-based logic combined with the
main contribution of this paper - a structural operation for
abduction - can improve on (b) and (c). The first since our
operation can be worked at the core of the inference engine,
the second since consistency is ensured as a part of the pre-
processing in array-based logic (meaning that it is not neces-
sary to ensure it at runtime).

2 Array-Based Logic
An analogy of Boolean logic “with coordinate-geometry and
its invariant-theoretic foundations” [Mautner, 1946, p. 345]
was first proposed by Mautner. He introduced the idea of
a many-dimensional logical coordinate system, ie. a discrete
cartesian coordinate system where each axis represents a
Boolean variable, and thereby he connected Boolean logic to
the mathematical group of geometrical transformations.

This point was further developed and given an operational
form in [Franksen, 1979] where it ia. is shown that (a) projec-
tion in a logical coordinate system can “prove the theorems
of divalent logic by computation” (projection is described in
sec. 2.1), (b) an outer product can construct the relation be-
tween two variables on matrix form, and (c) “the operation
of putting indices equal, is the operational implementation of
repeated propositions in a propositional function” (ie. colli-
gation, see sec. 2.2).

An illustration of the concept is given in figure 1 where a
relation between two Boolean variables, pointed out as truth



PSfrag replacements

x

y

P

QR

0 1

11

1

1

2

2

3

3

false

false

true

true

Figure 1: Comparison of the cartesian space spanned by two real
variables x, y ∈ R and two Boolean variables P, Q ∈ B. The rela-
tion between the variables is pictured as a curve chosen at random in
the case of x and y and as the truth table of implication in the case
of P and Q.

values in a two-dimensional logical coordinate system, can be
compared to a curve in the traditional two-dimensional carte-
sian coordinate system. This indicates that in order to store
a relation between n Boolean variables (P1, P2, . . . , Pn) we
must construct a data type of n dimensions. The array is a
convenient choice and logic, in this sense, is, therefore, re-
ferred to as array-based logic (ABL).

Such a relation, stored in a many-dimensional array, con-
sists of a Boolean value for each possible combination of val-
ues that the variables (P1, . . . , Pn ∈ B) can attain. A partic-
ular combination of values is, in fact, an index into the array
and it is called a configuration. The Boolean value found at a
certain index states whether a particular configuration is valid
or not. An array spanning all the variables present in a system
is referred to as the system array.

Through a generalization of the fundamental operations,
enabling them to operate on many-dimensional arrays, ABL
has been developed to its present state in [Franksen, 1996;
1997; Franksen and Falster, 2000; Møller, 1995; Pedersen,
1992]. In the sections 2.1, 2.2, and 2.3 we will give the defini-
tions necessary for an implementation of ABL in an arbitrary
programming language.

The gain from ABL as compared to the more traditional
approaches based on manipulation of symbols (or searches in
graphs) is that, when the system array has been constructed,
we can not arrive at invalid or contradicting conclusions since
all possible conclusions are accounted for. This makes infer-
ence at runtime very efficient. Deduction is merely a mat-
ter of splitting out subspaces or simply doing table look-ups.
This means that the computational complexity of deduction
on a system array is O(1). The trade-off is obviously the
considerable size of the array. Luckily there are options for
compression, see eg. [Møller, 1995].

Structural operations, such as the outer product, are often
done according to a Boolean function. The structural part of
the operation is often general and can be defined as an op-
erator taking a function2 as argument and returning a new
function. To account mathematically for such operators, or
transformers as we prefer to call them, we employ the func-
tional notation described in array theory. Array theory and
many of the functions described in the following were devel-
oped by Trenchard More [1973; 1979].

2Sometimes more than one.

Image State Term
0 1 True Affirmation
1 0 False Negation
1 1 Indefinite Tautology
0 0 Impossible Contradiction

Table 1: Different possible one-dimensional arrays representing all
possible values of a single Boolean variable.

The notation of array theory assumes left associativity,
it also employs currying (meaning that the expression Af ,
where A is an array of data and f is a binary first order func-
tion, results in an unary function where A is bound to the first
argument of f ) and composition (f g = f ◦ g).

2.1 Projection
An important property which our arrays must subsume is
nesting. Consider n arrays of data: A0, . . . , An. A succes-
sive juxtaposition of such arrays (C = A0 . . . An) results in
a single nested array (C) with its first element being A0, its
second element being A1, etc. up to An. This is the only ex-
ception to the rule of left associativity and, if all the arrays are
not just a single value, it is an example of nesting. Nesting is
especially important when we need to split out axes from an
array, see def. 1.
Definition 1 (split) Let A be a list of numbers corresponding
to axes in B, and let B be an array of data, then

A splitB

returns a new array which has a nesting of the axes given in
A. The nesting is placed next to the top level in B.

Suppose we want to split out P in the array illustrated in
fig. 1, this corresponds to a nesting of the columns in the ar-
ray:

split(0, Asys) = 0 splitAsys = 10 1 1

where Asys is the system array representing implication be-
tween P and Q. An ∨-reduction on each nested element re-
sults in a new array specifying the relation between the vari-
ables that were not split out. Geometrically the split followed
by an ∨-reduction corresponds to a disjunctive projection of
the axes given as the first argument on the remaining axes
of the array. Logically the disjunctive projection eliminates
variables by the principle of excluded middle and leaves the
relation between the remaining variables.

An ∨-reduction on the nested array given above results in
the following:

A′

sys = 11

which leads us to a discussion of the one-dimensional array
representing all possible values of a single Boolean variable,
that is, the image of a single variable. In this case the im-
age of Q (which is the remaining variable in A′

sys after the
disjunctive projection of P ) states that Q may be either true
or false. In other words it is indefinite. Table 1 lists the dif-
ferent possible images and their meaning with respect to the
variable that they represent.

Operating a particular function on each nested element of
an array can be defined as a transformer, see def. 2.



Definition 2 (EACH) Let A be an array of data and let f be
an unary first order function, then

EACH f A

is defined as the function f applied to each element of the
array A.

If we define that unary ∨ applied to an array of logic is
the reduction transform of the binary ∨ (such as

∨
, see the

appendix of [More, 1979]) and, therefore, works between all
elements in the array, an ∨-reduction corresponds to the func-
tion EACH∨.

Having the transformer EACH and the function split we
can construct a general geometrical operator (a transformer),
which corresponds to projection in a many-dimensional log-
ical coordinate system according to an arbitrary reduction
transform of a first order function f :

PROJECT f = EACH f split

Now the image (and state) of a particular variable can be
found by a disjunctive projection (PROJECT∨) of all the
other axes in the array.

2.2 Colligation
In order to construct a system array we must be able to con-
struct the cartesian space spanned by several variables. The
construction of such a space lies in the definition of a carte-
sian product, see def. 3.

Definition 3 (cart) Let A be an m-dimensional array of data
and let B be an n-dimensional array of data, then

C = A cartB

returns an (m + n)-dimensional array, C, which holds the
cartesian product of A and B. Meaning that C contains all
possible pairs a b, where a is an element of A and b is an
element of B. The first m axes of C corresponds to the axes
of A and the last n axes of C corresponds to the axes of B.

Invoking an arbitrary binary first order function on each
of the pairs resulting from a cartesian product corresponds to
the general notion of an outer product. Hence, we can define
the outer product according to an arbitrary binary first order
function as follows:

OUTER f = EACH f cart

Using the outer product we can, now, construct our system
arrays from rules written in classic propositional logic. The
simple relation P ⇒ Q pictured in fig. 1 is given as follows:

Asys = B (OUTER ⇒)B =
11
0 1

where the set of Boolean numbers, B, in this context is re-
garded to be the ordered one-dimensional array: 0 1. The
axes of the resulting array are enumerated such that axis 0
corresponds to P and axis 1 corresponds to Q. It is quite im-
portant to keep track of the axes and their affiliations. This is
not stated explicitly since the axes are an inherent part of the
array data structure.

PSfrag replacements

x
y

P

QQ

RR
0

0

0

0 11

11
2
3

false

true

Figure 2: The Boolean variables corresponding to the different axes
of Csys.

Suppose a rule base is composed of two rules:

P ⇒ Q

Q ⇒ R

We could construct this rule base from the bottom using B,
but we could also build on Asys found just before:

C ′

sys = Asys (OUTER∧)Asys =

11 1 1
0 1 0 1

0 0 1 1
0 0 0 1

The system array C ′

sys consists of four enumerated axes:
0 1 2 3 corresponding to the Boolean variables P QQR. This
construction is inexpedient; there is no reason to have two
equivalent axes.

In order to fuse the two equivalent axes we must pick out
the elements where the two variables are equal (by putting
indices equal). Geometrically this means that we must pick
out the diagonal hyperplane between them. This process is
referred to as colligation, see [Franksen and Falster, 2000].

Definition 4 (fuse) Let A be a possibly nested list holding
all the numbers corresponding to axes in B, and let B be an
array of data, then

C = A fuseB

arranges the axes of B according to the list provided in A
such that the diagonal between the axes contained in each
element of A becomes exactly one axis in the resulting array,
C. If only one axis is specified as an element of A, the entire
axis will be an axis in B. A must account for all axes in B
and C must have exactly one axis for each element of A.

Colligation of axes 1 and 2 both representing Q in C ′

sys is
done, according to def. 4, as follows:

Csys = 0 (1 2) 3 fuseC ′

sys =
11 0 0
0 1 0 1

where the enumerated axes of Csys are: 0 1 2 corresponding
to P QR. The resulting array is exactly the truth table of the
logical expression (P ⇒ Q) ∧ (Q ⇒ R) only presented on
array form. Figure 2 shows how the axes should be drawn in
Csys. Axis 0 is always the outermost axis.

In this way, using the outer product and colligation of axes,
it is possible to construct a system array from an arbitrary set
of rules. All logical operations describable as a binary first
order function can be applied in the rule set. To keep the



size of the resulting array from going out of bounds during
the construction, colligation should be done whenever two or
more equivalent axes appear.

As a short remark before we describe deductive inference
on an array, it should be noted that a disjunctive projection of
Q in Csys results in the following relation between P and R:

1 (PROJECT∨)Csys =
11
0 1

which states that P ⇒ R. This is, in fact, a geometrical proof
of the hypothetical syllogism.

2.3 Deduction
In order to obtain the result of deductive inference on a system
array (corresponding to a rule base) all we have to do is to
pick out a subspace or do a simple table look-up.

If we need to test whether a given state vector is a possi-
ble configuration according to the current rule base, the table
look-up is the relevant option. Testing whether (P,Q,R) =
(true, false, true) is possible according to the rule set of
Csys is simply done as follows:

1 0 1 pickCsys = 0

where pick is given as described in def. 5. The table look-up
can be checked in fig. 2.
Definition 5 (pick) Let A be a list of indices and let B be an
array of data, then

A pickB

picks the value in the array B at the position given by the
indices in A. The number of indices in A must correspond to
the number of axes in B.

Picking out a subspace can be done by the principle of nest-
ing. A nesting of all axes, which do not correspond to vari-
ables that are bound to a specific value, can make sure that
the relevant subspace is available by a simple pick.

In Csys we can nest the axes: 1 2 corresponding to QR.
The result has only one axis corresponding to P , but each
element is a nested two-dimensional array with the axes that
were split out:

D = 12 splitCsys =
11 0 0
0 1 0 1

Using pick we can choose the subspace which holds the re-
lation between Q and R as the result of P being either false
(0) or true (1):

0 pickD =
11
0 1

, 1 pickD =
00
0 1

which means that if P is false the deduction results in the
relation that Q ⇒ R, while if P is true the resulting relation
is Q ∧R.

In the case where P is set true it should be noted that modus
ponens is included indirectly in this simple geometrical oper-
ation which picks a subspace.

As long as the system array is colligated and specifies the
correct relation between the variables that its axes represent,
the picking of a subspace will include all kinds of deductive
inference. This is true since the array encompass all possible
configurations.

3 Abduction
As an extension of ABL we will in the following present a
new structural operation for abduction and describe the type
of abduction that it models with references to Peirce.

Reading Aristotle it seems reasonable to assume that ab-
duction is a way of establishing a credible hypothesis, which
leads to a desired conclusion. The following is our symbolic
interpretation of Aristotle’s ὰπαγωγή:

P ⇒ Q
Q′ ⇒ R

P ⇒ R

The desired conclusion is in this case that P ⇒ R. A
credible hypothesis might be (a) that Q = Q′ or (b) that Q ⇒
Q′ or even (c) that (Q ⇒ Q′′) ∧ (Q′′ ⇒ Q′) and so forth.
Aristotle argues that a hypothesis can be accepted abductively
if it is “more credible than is the conclusion and if moreover
the middles between the middle and the minor term be few”.
In (a) there are no middles between the middle and the minor
term, in (b) there is one, in (c) there are two, etc.

Recall from sec. 2.2 that the syllogism is a direct conse-
quence of colligation. The different cases could be handled
by colligation of two axes (case (a)) or by addition of new
rules to the system array (other cases). The credibility of a
particular hypothesis is, however, not obvious from an opera-
tional perspective.

It is interesting to note that Aristotle in the form of syl-
logisms always works with logical conclusions that are inter-
nally present in the rule set. For conclusions based on external
influences we must turn to the Stoic school of logic and their
modi. In sec. 2.3 it was shown how this kind of reasoning is
modeled by the picking of a subspace.

Peirce formulated the notion of abduction in terms of the
Stoic modi as follows, [Peirce, 1960, §189]:

The surprising fact, C, is observed;
But if A were true, C would be a matter of course,
Hence, there is reason to suspect that A is true

The general idea in Peirce’s theory of abduction is, as we
see it, in agreement with that of Aristotle. The difference is
that Peirce’s version seeks external influences leading to the
desired conclusion (or the observed fact in Peirce’s terminol-
ogy), while Aristotle’s version seeks changes in the rule set
leading to the desired conclusion.

Since Peirce’s abduction does not seek to change the rule
set, but rather to find hypotheses that according to the rule
set leads to an observed fact, Peirce’s abduction is readily
suitable for an operational approach.

In a discussion about the differences between induction
and abduction Peirce gives the following statements [Peirce,
1958, §218]:

Abduction makes its start from the facts [...] the consider-
ation of the facts suggests the hypothesis. [...] The mode
of suggestion by which, in abduction, the facts suggest
the hypothesis is by resemblance, – the resemblance of
the facts to the consequences of the hypothesis.



If we strain Peirce’s description of abduction a little and
substitute the word resemblance by the stronger word equal-
ity, we have a “strong case” of abduction for which we can
construct an operation, see def. 6. The operation consists in
a nesting of the axes corresponding to the observed variables
and afterwards a pattern match for equality on each nested
element.

Definition 6 (abduct) LetA be an array of data representing
an observed fact, let B be a list of numbers such that element
i of B tells which axis in C axis i in A corresponds to, and
let C be an array of data then the “strong case” of abduction
is given as:

D = abduct(A,B,C) = B (PROJECT (A =)) C

where the relation in D (between the variables corresponding
to axes remaining after the projection) constitutes the hypoth-
esis.

Abduction, as given by the abduct operation, is exactly
opposite to picking a subspace. After finding that P is true
we can deduce Q ∧R by a nesting of the axes corresponding
to R and Q in sec. 2.3. In abduction we could observe that
R is true, then the fact is A1 = 01 (cf. tab. 1) and B1 = 2
since the first axis in A1 corresponds to axis 2 in Csys. The
nesting of axis 2 in Csys has the following result:

D1 = B1 splitCsys =
11 0 1
0 0 0 1

and the subsequent match of equality between observed fact
and nested elements results in the following hypothesis:

abduct(A1, B1, Csys) = EACH (A1 =) D1 =
01
0 1

where the remaining axes correspond to P and Q. It is ev-
ident (by disjunctive projection of the opposite axis) that P
is indefinite and Q is bound to truth. Our abduction could
end at this point. On the other hand Q has, abductively, been
rendered true and we might as well iterate over the operation
and make an abduction on the result: Q ∧ R. Observe that
this second iteration is the exact opposite of the example in
sec. 2.3. The fact is now:

A2 = B (OUTER∧) B =
00
0 1

while B2 = 12 and the nested array D2 = D of sec. 2.3. The
result of the second iteration is:

abduct(A2, B2, Csys) = 0 1

where the remaining axis corresponds to P . Hence, the hy-
potheses resulting from the second iteration is simply that if
P was true, R (and Q) would be a matter of course.

If the resulting hypothesis is a contradiction, that is, an ar-
ray holding the value 0 at all positions, no configuration exists
in the closed system which can lead to the observed fact.

We suggest two ways to handle the possibility of iteration:
(a) It can continue till all variables represented in the hypoth-
esis are either bound or indefinite, or (b) a set of abducible
variables can be introduced as in abductive logic program-
ming, see [Eshghi and Kowalski, 1989]. If we choose a set of

abducibles, the iteration will continue as long as an abducible
is bound to truth or falsehood in the hypothesis resulting from
an iteration.

Since the truth values in a system array, say T , by defi-
nition points out consistent configurations only, the projec-
tive pattern match will find all the consistent configurations
that, in the closed system, deductively renders the observation
true. The array holding these configurations is the hypothe-
sis, ∆, which only concerns the variables that have not been
abduced. This means that the conjunction of the hypothesis
and the system array, T ∧ ∆, after colligation will point out
configurations, concerning all variables in the system, which
logically entails the conclusion. In other words:

T ∧∆ ⇒ Q

will always be a tautology. This ensures that our operation
for abduction fulfils the correctness criterion for abductive
reasoning, cf. [Denecker and Kakas, 2002].

The complexity of our operation for abduction is O(nm),
where n is the number of configurations in our array and m
is the number of iterations. Note, however, that each iteration
will abduce a larger amount of variables leaving fewer vari-
ables in the hypothesis, meaning that the process is, indeed,
deterministic. This fact and the point that our inference is rid
of searches in graphs and guarantied to uphold consistency
without checking it at runtime makes us confident that it has
a quite efficient implementation.

4 Discussion
An interpreted development language called Nial (Nested
interactive language) was originally proposed in [Jenkins,
1981] for the purpose of testing array theoretic concepts. The
theory presented in this paper can be tested immediately in
Nial3, since the nested array data structure as well as a com-
patible version of the functions and transformers given in def-
initions 1 through 5 are a part of the language.

An efficient tool making ABL available for large scale ap-
plications was based on [Møller, 1995]. It consists of an Array
Compiler and an Array Runtime library.4 The Array Compiler
calculates the system array using the more compact disjunc-
tive normal form. Meaning that only valid (or true) configu-
rations are stored. To obtain further compression the system
array is split into one or more nested arrays with each valid
cartesian subspace given a unique index. This makes Array
Runtime able to perform real-time deduction on a very com-
pact representation, since the task is still basically indexing
and table look-ups. To adapt our theory of abduction for Array
Runtime a few changes must be made to account for the com-
pact form. An adapted operation might, however, be more
efficient since n in O(nm) is potentially only the number of
valid configurations.

The limited presentation of array-based logic given in this
paper has set the stage for rules written in propositional logic.
The same general operations can, however, also be used to
construct system arrays based on rules written in predicate

3Available at http://www.nial.com/.
4See http://www.arraytechnology.com/



logic. This option is described in [Møller, 1995] and it is also
a part of the Array Compiler/Runtime tool.

5 Conclusion
After a short description of ABL we have shown how a
“strong case” of abduction can be defined as a relatively sim-
ple structural operation (see def. 6). This makes a new ap-
proach to logic-based abductive inference possible. Sufficient
details for its implementation has been provided in this paper.

Through the employment of ABL we achieve an infer-
ence engine which, at runtime, need not perform expensive
searches in graphs or spend computational power for con-
sistency checks. The operations employed are predictable in
storage requirements and processing time, which is important
if logic-based reasoning is to be adopted in real-time systems.

The operation we present for abduction is still more com-
plex than that of deduction, but it is deterministic, it consists
only of simple equality checks, and it can not arrive at in-
consistent hypotheses (see sec. 3). This makes it suitable for
integration at the core of an inference engine. An iteration of
the operation is possible to further limit the possible configu-
rations in the hypothesis.

The limitation of our approach is that rule sets must repre-
sent knowledge of finite domains only since all possible con-
figurations will be represented in the system array. The array
is consequently of considerable size and techniques for com-
pression must be employed to allow for “industrial scale” ap-
plication. An implementation of our operation in Array Tech-
nology’s Array Runtime library would overcome this issue.

References
[Charniak and McDermott, 1985] E. Charniak and D. McDermott.

Introduction to Artificial Intelligence. Addison-Wesley, 1985.
[Denecker and Kakas, 2002] M. Denecker and A. Kakas. Abduc-

tion in logic programming. In Antonis C. Kakas and Fariba Sadri,
editors, Computational Logic: Logic Programming and Beyond,
volume 1. Springer, 2002.

[Eiter and Gottlob, 1995] T. Eiter and G. Gottlob. The complexity
of logic-based abduction. Journal of the ACM, 42(1):3–42, 1995.

[Eshghi and Kowalski, 1989] K. Eshghi and R. A. Kowalski. Ab-
duction compared with negation by failure. In Proc. of the 6th In-
ternational Conference on Logic Programming, pages 234–255.
MIT press, 1989.

[Eshghi, 1988] K. Eshghi. Abductive planning with event calculus.
In R. A. Kowalski and K. A. Bowen, editors, Proc. of the 5th In-
ternational Conference on Logic Programming, pages 562–579.
MIT press, 1988.

[Franksen and Falster, 2000] O. I. Franksen and P. Falster. Colli-
gation or, the logical inference of interconnection. Mathematics
and Computers in Simulation, 52(1):1–9, March 2000.

[Franksen, 1979] O. I. Franksen. Group representation of finite
polyvalent logic: A case study using APL notation. In A. Niemi,
editor, A Link between Science and Applications of Automatic
Control, IFAC VII, World Congress 1978, pages 875–887, Ox-
ford, 1979. Pergamon Press.

[Franksen, 1996] O. I. Franksen. Invariance under nesting - an as-
pect of array-based logic with relation to grassmann and peirce.
In G. Schubring, editor, Hermann Günther Graßmann (1809-
1877): Visionary Mathematician, Scientist and Neohumanist

Scholar, pages 303–335, Dordrecht, 1996. Kluwer Academic
Publishers.

[Franksen, 1997] O. I. Franksen. Boole’s development process
revisited: From an array-theoretic viewpoint. Acta historica
Leopoldina, 27:175–188, 1997.

[Hanson, 1958] N. R. Hanson. Patterns of Discovery: An Inquiry
into the Conceptual Foundations of Science. Cambridge Univer-
sity Press, 1958.

[Jenkins, 1981] M. A. Jenkins. A development system for test-
ing array theory concepts. ACM SIGAPL APL Quote Quad,
12(1):152–159, September 1981.

[Kakas and Mancarella, 1990] A. C. Kakas and P. Mancarella.
Knowledge assimilation and abduction. International Workshop
on Truth Maintenance. In Proc. of the European Conference on
Artificial Intelligence, volume 515 of Lecture Notes in Computer
Science, pages 54–71. Springer, 1990.

[Kakas and Michael, 1999] A. C. Kakas and A. Michael. Air-crew
scheduling through abduction. In Proc. of IEA/AIE-99, pages
600–612, 1999.

[Kakas et al., 1998] A. C. Kakas, R. A. Kowalski, and F. Toni. The
role of abduction in logic programming. In D. M. Gabbay, C. J.
Hogger, and J. A. Robinson, editors, Handbook of Logic in Ar-
tificial Intelligence and Logic Programming 5, pages 235–324.
Oxford University Press, 1998.

[Kowalski and Sadri, 1999] R. Kowalski and F. Sadri. From logic
programming towards multi-agent systems. Annals of Mathemat-
ics and Artificial Intelligence, 25:391–419, 1999.

[Magnani, 2001] L. Magnani. Abduction, Reason, and Sci-
ence: Processes of Discovery and Explanation. Kluwer Aca-
demic/Plenum Publishers, New York, 2001.

[Mautner, 1946] F. I. Mautner. An extension of klein’s erlanger pro-
gram: Logic as invariant-theory. American Journal of Mathemat-
ics, 68(3):345–384, July 1946.

[Møller, 1995] G. L. Møller. On the Technology of Array-Based
Logic. PhD thesis, Electrical Power Engineering Depart-
ment, Technical University of Denmark, 1995. Available at
http://www.arraytechnology.com/.

[More, 1973] T. More, Jr. Axioms and theorems for a theory of
arrays. IBM Journal of Research and Development, 17(2):135–
175, 1973.

[More, 1979] T. More, Jr. The nested rectangular array as a model
of data. In Proceedings of the International Conference on APL:
Part 1, pages 55–73, 1979.

[Morgan, 1971] C. G. Morgan. Hypothesis generation by machine.
Artificial Intelligence, 2(2):179–187, 1971.

[Pedersen, 1992] A. Pedersen. Digraph Representation in Array-
Based Logic: With Special Emphasis on the Mathematical Foun-
dation of Production Models. PhD thesis, Electrical Power Engi-
neering Department, Technical University of Denmark, 1992.

[Peirce, 1958] C. S. Peirce. On the logic of drawing history from
ancient documents especially from testimonies (1901). In A. W.
Burks, editor, Collected Papers of Charles Sanders Peirce, vol-
ume VII, book II, chap. 3. Harvard University Press, 1958.

[Peirce, 1960] C. S. Peirce. Lectures on pragmatism: Lecture VII
(1903). In C. Hartshorne and P. Weiss, editors, Collected Papers
of Charles Sanders Peirce, volume V, book I. Harvard University
Press, second printing, 1960.

[Poole, 1988] D. Poole. A logical framework for default reasoning.
Artificial Intelligence, 36:27–47, 1988.

[Pople, 1973] H. E. Pople. On the mechanization of abductive
logic. In Proc. of the 3rd International Joint Conference on Arti-
ficial Intelligence, pages 147–152, 1973.


