pygel3d.jupyter_display

This is a module with a function, display, that provides functionality for displaying a Manifold or a Graph as an interactive 3D model in a Jupyter Notebook. It is based on plotly.

 1""" This is a module with a function, display, that provides functionality for displaying a
 2    Manifold or a Graph as an interactive 3D model in a Jupyter Notebook. It is based on 
 3    plotly. """
 4from pygel3d.hmesh import Manifold, triangulate
 5from pygel3d.graph import Graph
 6from numpy import array
 7import plotly.graph_objs as go
 8import plotly.offline as py
 9
10EXPORT_MODE = False
11
12def set_export_mode(_exp_mode=True):
13    """ Calling this function will set export mode to true. It is necessary
14    to do so if we wish to export a notebook containing interactive
15    plotly graphics (made with display below) to HTML. In other words, this function
16    should not necessarily be called in normal usage but only when we export to HTML. It is
17    then called once in the beginning of the notebook. However, as a bit of a twist on
18    this story, it appears that if we don't call this function, any call to display must
19    be the last thing that happens in a cell. So, maybe it is best to always call
20    set_export_mode in the beginning of a notebook.
21    """
22    global EXPORT_MODE
23    EXPORT_MODE=_exp_mode
24    if EXPORT_MODE:
25        py.init_notebook_mode(connected=False)
26
27def display(m,wireframe=True,smooth=True,data=None):
28    """ The display function shows an interactive presentation of the Manifold, m, inside
29        a Jupyter Notebook. wireframe=True means that a wireframe view of the mesh is
30        superimposed on the 3D model. If smooth=True, the mesh is rendered with vertex
31        normals. Otherwise, the mesh is rendered with face normals. If data=None, the
32        mesh is shown in a light grey color. If data contains an array of scalar values
33        per vertex, these are mapped to colors used to color the mesh. Finally, note that
34        m can also be a Graph. In that case the display function just draws the edges as
35        black lines. """
36    mesh_data = []
37    if isinstance(m, Manifold):
38        xyz = array([ p for p in m.positions()])
39        m_tri = Manifold(m)
40        triangulate(m_tri, clip_ear=False)
41        ijk = array([[ idx for idx in m_tri.circulate_face(f,'v')] for f in m_tri.faces()])
42        mesh = go.Mesh3d(x=xyz[:,0],y=xyz[:,1],z=xyz[:,2],
43                i=ijk[:,0],j=ijk[:,1],k=ijk[:,2],color='#dddddd',flatshading=not smooth)
44        if data is not None:
45            mesh['intensity'] = data
46            mesh['contour'] = {'show': True, 'color': '#ff0000'}
47        mesh_data += [mesh]
48        if wireframe:
49            pos = m.positions()
50            xyze = []
51            for h in m.halfedges():
52                if h < m.opposite_halfedge(h):
53                    p0 = pos[m.incident_vertex(m.opposite_halfedge(h))]
54                    p1 = pos[m.incident_vertex(h)]
55                    xyze.append(array(p0))
56                    xyze.append(array(p1))
57                    xyze.append(array([None, None, None]))
58            xyze = array(xyze)
59            trace1=go.Scatter3d(x=xyze[:,0],y=xyze[:,1],z=xyze[:,2],
60                       mode='lines',
61                       line=dict(color='rgb(125,0,0)', width=1),
62                       hoverinfo='none')
63            mesh_data += [trace1]
64    elif isinstance(m, Graph):
65        pos = m.positions()
66        xyze = []
67        for v in m.nodes():
68            for w in m.neighbors(v):
69                if v < w:
70                    p0 = pos[v]
71                    p1 = pos[w]
72                    xyze.append(array(p0))
73                    xyze.append(array(p1))
74                    xyze.append(array([None, None, None]))
75        xyze = array(xyze)
76        trace1=go.Scatter3d(x=xyze[:,0],y=xyze[:,1],z=xyze[:,2],
77                   mode='lines',
78                   line=dict(color='rgb(0,0,0)', width=1),
79                   hoverinfo='none')
80        mesh_data += [trace1]
81
82        
83    lyt = go.Layout(width=850,height=800)
84    lyt.scene.aspectmode="data"
85    if EXPORT_MODE:
86        py.iplot(dict(data=mesh_data,layout=lyt))
87    else:
88        return go.FigureWidget(mesh_data,lyt)
EXPORT_MODE = False
def set_export_mode(_exp_mode=True):
13def set_export_mode(_exp_mode=True):
14    """ Calling this function will set export mode to true. It is necessary
15    to do so if we wish to export a notebook containing interactive
16    plotly graphics (made with display below) to HTML. In other words, this function
17    should not necessarily be called in normal usage but only when we export to HTML. It is
18    then called once in the beginning of the notebook. However, as a bit of a twist on
19    this story, it appears that if we don't call this function, any call to display must
20    be the last thing that happens in a cell. So, maybe it is best to always call
21    set_export_mode in the beginning of a notebook.
22    """
23    global EXPORT_MODE
24    EXPORT_MODE=_exp_mode
25    if EXPORT_MODE:
26        py.init_notebook_mode(connected=False)

Calling this function will set export mode to true. It is necessary to do so if we wish to export a notebook containing interactive plotly graphics (made with display below) to HTML. In other words, this function should not necessarily be called in normal usage but only when we export to HTML. It is then called once in the beginning of the notebook. However, as a bit of a twist on this story, it appears that if we don't call this function, any call to display must be the last thing that happens in a cell. So, maybe it is best to always call set_export_mode in the beginning of a notebook.

def display(m, wireframe=True, smooth=True, data=None):
28def display(m,wireframe=True,smooth=True,data=None):
29    """ The display function shows an interactive presentation of the Manifold, m, inside
30        a Jupyter Notebook. wireframe=True means that a wireframe view of the mesh is
31        superimposed on the 3D model. If smooth=True, the mesh is rendered with vertex
32        normals. Otherwise, the mesh is rendered with face normals. If data=None, the
33        mesh is shown in a light grey color. If data contains an array of scalar values
34        per vertex, these are mapped to colors used to color the mesh. Finally, note that
35        m can also be a Graph. In that case the display function just draws the edges as
36        black lines. """
37    mesh_data = []
38    if isinstance(m, Manifold):
39        xyz = array([ p for p in m.positions()])
40        m_tri = Manifold(m)
41        triangulate(m_tri, clip_ear=False)
42        ijk = array([[ idx for idx in m_tri.circulate_face(f,'v')] for f in m_tri.faces()])
43        mesh = go.Mesh3d(x=xyz[:,0],y=xyz[:,1],z=xyz[:,2],
44                i=ijk[:,0],j=ijk[:,1],k=ijk[:,2],color='#dddddd',flatshading=not smooth)
45        if data is not None:
46            mesh['intensity'] = data
47            mesh['contour'] = {'show': True, 'color': '#ff0000'}
48        mesh_data += [mesh]
49        if wireframe:
50            pos = m.positions()
51            xyze = []
52            for h in m.halfedges():
53                if h < m.opposite_halfedge(h):
54                    p0 = pos[m.incident_vertex(m.opposite_halfedge(h))]
55                    p1 = pos[m.incident_vertex(h)]
56                    xyze.append(array(p0))
57                    xyze.append(array(p1))
58                    xyze.append(array([None, None, None]))
59            xyze = array(xyze)
60            trace1=go.Scatter3d(x=xyze[:,0],y=xyze[:,1],z=xyze[:,2],
61                       mode='lines',
62                       line=dict(color='rgb(125,0,0)', width=1),
63                       hoverinfo='none')
64            mesh_data += [trace1]
65    elif isinstance(m, Graph):
66        pos = m.positions()
67        xyze = []
68        for v in m.nodes():
69            for w in m.neighbors(v):
70                if v < w:
71                    p0 = pos[v]
72                    p1 = pos[w]
73                    xyze.append(array(p0))
74                    xyze.append(array(p1))
75                    xyze.append(array([None, None, None]))
76        xyze = array(xyze)
77        trace1=go.Scatter3d(x=xyze[:,0],y=xyze[:,1],z=xyze[:,2],
78                   mode='lines',
79                   line=dict(color='rgb(0,0,0)', width=1),
80                   hoverinfo='none')
81        mesh_data += [trace1]
82
83        
84    lyt = go.Layout(width=850,height=800)
85    lyt.scene.aspectmode="data"
86    if EXPORT_MODE:
87        py.iplot(dict(data=mesh_data,layout=lyt))
88    else:
89        return go.FigureWidget(mesh_data,lyt)

The display function shows an interactive presentation of the Manifold, m, inside a Jupyter Notebook. wireframe=True means that a wireframe view of the mesh is superimposed on the 3D model. If smooth=True, the mesh is rendered with vertex normals. Otherwise, the mesh is rendered with face normals. If data=None, the mesh is shown in a light grey color. If data contains an array of scalar values per vertex, these are mapped to colors used to color the mesh. Finally, note that m can also be a Graph. In that case the display function just draws the edges as black lines.