pygel3d.jupyter_display
This is a module with a function, display, that provides functionality for displaying a Manifold or a Graph as an interactive 3D model in a Jupyter Notebook. It is based on plotly.
1""" This is a module with a function, display, that provides functionality for displaying a 2 Manifold or a Graph as an interactive 3D model in a Jupyter Notebook. It is based on 3 plotly. """ 4from pygel3d.hmesh import Manifold, triangulate 5from pygel3d.graph import Graph 6from numpy import array 7import plotly.graph_objs as go 8import plotly.offline as py 9 10EXPORT_MODE = False 11 12def set_export_mode(_exp_mode=True): 13 """ Calling this function will set export mode to true. It is necessary 14 to do so if we wish to export a notebook containing interactive 15 plotly graphics (made with display below) to HTML. In other words, this function 16 should not necessarily be called in normal usage but only when we export to HTML. It is 17 then called once in the beginning of the notebook. However, as a bit of a twist on 18 this story, it appears that if we don't call this function, any call to display must 19 be the last thing that happens in a cell. So, maybe it is best to always call 20 set_export_mode in the beginning of a notebook. 21 """ 22 global EXPORT_MODE 23 EXPORT_MODE=_exp_mode 24 if EXPORT_MODE: 25 py.init_notebook_mode(connected=False) 26 27def display(m,wireframe=True,smooth=True,data=None): 28 """ The display function shows an interactive presentation of the Manifold, m, inside 29 a Jupyter Notebook. wireframe=True means that a wireframe view of the mesh is 30 superimposed on the 3D model. If smooth=True, the mesh is rendered with vertex 31 normals. Otherwise, the mesh is rendered with face normals. If data=None, the 32 mesh is shown in a light grey color. If data contains an array of scalar values 33 per vertex, these are mapped to colors used to color the mesh. Finally, note that 34 m can also be a Graph. In that case the display function just draws the edges as 35 black lines. """ 36 mesh_data = [] 37 if isinstance(m, Manifold): 38 xyz = array([ p for p in m.positions()]) 39 m_tri = Manifold(m) 40 triangulate(m_tri, clip_ear=False) 41 ijk = array([[ idx for idx in m_tri.circulate_face(f,'v')] for f in m_tri.faces()]) 42 mesh = go.Mesh3d(x=xyz[:,0],y=xyz[:,1],z=xyz[:,2], 43 i=ijk[:,0],j=ijk[:,1],k=ijk[:,2],color='#dddddd',flatshading=not smooth) 44 if data is not None: 45 mesh['intensity'] = data 46 mesh['contour'] = {'show': True, 'color': '#ff0000'} 47 mesh_data += [mesh] 48 if wireframe: 49 pos = m.positions() 50 xyze = [] 51 for h in m.halfedges(): 52 if h < m.opposite_halfedge(h): 53 p0 = pos[m.incident_vertex(m.opposite_halfedge(h))] 54 p1 = pos[m.incident_vertex(h)] 55 xyze.append(array(p0)) 56 xyze.append(array(p1)) 57 xyze.append(array([None, None, None])) 58 xyze = array(xyze) 59 trace1=go.Scatter3d(x=xyze[:,0],y=xyze[:,1],z=xyze[:,2], 60 mode='lines', 61 line=dict(color='rgb(125,0,0)', width=1), 62 hoverinfo='none') 63 mesh_data += [trace1] 64 elif isinstance(m, Graph): 65 pos = m.positions() 66 xyze = [] 67 for v in m.nodes(): 68 for w in m.neighbors(v): 69 if v < w: 70 p0 = pos[v] 71 p1 = pos[w] 72 xyze.append(array(p0)) 73 xyze.append(array(p1)) 74 xyze.append(array([None, None, None])) 75 xyze = array(xyze) 76 trace1=go.Scatter3d(x=xyze[:,0],y=xyze[:,1],z=xyze[:,2], 77 mode='lines', 78 line=dict(color='rgb(0,0,0)', width=1), 79 hoverinfo='none') 80 mesh_data += [trace1] 81 82 83 lyt = go.Layout(width=850,height=800) 84 lyt.scene.aspectmode="data" 85 if EXPORT_MODE: 86 py.iplot(dict(data=mesh_data,layout=lyt)) 87 else: 88 return go.FigureWidget(mesh_data,lyt)
13def set_export_mode(_exp_mode=True): 14 """ Calling this function will set export mode to true. It is necessary 15 to do so if we wish to export a notebook containing interactive 16 plotly graphics (made with display below) to HTML. In other words, this function 17 should not necessarily be called in normal usage but only when we export to HTML. It is 18 then called once in the beginning of the notebook. However, as a bit of a twist on 19 this story, it appears that if we don't call this function, any call to display must 20 be the last thing that happens in a cell. So, maybe it is best to always call 21 set_export_mode in the beginning of a notebook. 22 """ 23 global EXPORT_MODE 24 EXPORT_MODE=_exp_mode 25 if EXPORT_MODE: 26 py.init_notebook_mode(connected=False)
Calling this function will set export mode to true. It is necessary to do so if we wish to export a notebook containing interactive plotly graphics (made with display below) to HTML. In other words, this function should not necessarily be called in normal usage but only when we export to HTML. It is then called once in the beginning of the notebook. However, as a bit of a twist on this story, it appears that if we don't call this function, any call to display must be the last thing that happens in a cell. So, maybe it is best to always call set_export_mode in the beginning of a notebook.
28def display(m,wireframe=True,smooth=True,data=None): 29 """ The display function shows an interactive presentation of the Manifold, m, inside 30 a Jupyter Notebook. wireframe=True means that a wireframe view of the mesh is 31 superimposed on the 3D model. If smooth=True, the mesh is rendered with vertex 32 normals. Otherwise, the mesh is rendered with face normals. If data=None, the 33 mesh is shown in a light grey color. If data contains an array of scalar values 34 per vertex, these are mapped to colors used to color the mesh. Finally, note that 35 m can also be a Graph. In that case the display function just draws the edges as 36 black lines. """ 37 mesh_data = [] 38 if isinstance(m, Manifold): 39 xyz = array([ p for p in m.positions()]) 40 m_tri = Manifold(m) 41 triangulate(m_tri, clip_ear=False) 42 ijk = array([[ idx for idx in m_tri.circulate_face(f,'v')] for f in m_tri.faces()]) 43 mesh = go.Mesh3d(x=xyz[:,0],y=xyz[:,1],z=xyz[:,2], 44 i=ijk[:,0],j=ijk[:,1],k=ijk[:,2],color='#dddddd',flatshading=not smooth) 45 if data is not None: 46 mesh['intensity'] = data 47 mesh['contour'] = {'show': True, 'color': '#ff0000'} 48 mesh_data += [mesh] 49 if wireframe: 50 pos = m.positions() 51 xyze = [] 52 for h in m.halfedges(): 53 if h < m.opposite_halfedge(h): 54 p0 = pos[m.incident_vertex(m.opposite_halfedge(h))] 55 p1 = pos[m.incident_vertex(h)] 56 xyze.append(array(p0)) 57 xyze.append(array(p1)) 58 xyze.append(array([None, None, None])) 59 xyze = array(xyze) 60 trace1=go.Scatter3d(x=xyze[:,0],y=xyze[:,1],z=xyze[:,2], 61 mode='lines', 62 line=dict(color='rgb(125,0,0)', width=1), 63 hoverinfo='none') 64 mesh_data += [trace1] 65 elif isinstance(m, Graph): 66 pos = m.positions() 67 xyze = [] 68 for v in m.nodes(): 69 for w in m.neighbors(v): 70 if v < w: 71 p0 = pos[v] 72 p1 = pos[w] 73 xyze.append(array(p0)) 74 xyze.append(array(p1)) 75 xyze.append(array([None, None, None])) 76 xyze = array(xyze) 77 trace1=go.Scatter3d(x=xyze[:,0],y=xyze[:,1],z=xyze[:,2], 78 mode='lines', 79 line=dict(color='rgb(0,0,0)', width=1), 80 hoverinfo='none') 81 mesh_data += [trace1] 82 83 84 lyt = go.Layout(width=850,height=800) 85 lyt.scene.aspectmode="data" 86 if EXPORT_MODE: 87 py.iplot(dict(data=mesh_data,layout=lyt)) 88 else: 89 return go.FigureWidget(mesh_data,lyt)
The display function shows an interactive presentation of the Manifold, m, inside a Jupyter Notebook. wireframe=True means that a wireframe view of the mesh is superimposed on the 3D model. If smooth=True, the mesh is rendered with vertex normals. Otherwise, the mesh is rendered with face normals. If data=None, the mesh is shown in a light grey color. If data contains an array of scalar values per vertex, these are mapped to colors used to color the mesh. Finally, note that m can also be a Graph. In that case the display function just draws the edges as black lines.