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Motivating example - sleeping medicine
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Motivating example - sleeping medicine

Motivating example - sleeping medicine

Difference of sleeping medicines?

In a study the aim is to compare two kinds of sleeping medicine A and B.
10 test persons tried both kinds of medicine and the following 10
DIFFERENCES between the two medicine types were measured:
(For person 1, sleep medicine B was 1.2 sleep hour better than medicine A,
etc.):

Sample, n = 10:
person x = Beffect - Aeffect

1 1.2
2 2.4
3 1.3
4 1.3
5 0.9
6 1.0
7 1.8
8 0.8
9 4.6
10 1.4
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Motivating example - sleeping medicine

Example - sleeping medicine

The hypothesis of no difference:

H0 : µ = 0

Sample mean and standard
deviation:

x̄ = 1.670 = µ̂

s = 1.13 = σ̂

Is data in acoordance with the
null hypothesis H0?

Data: x̄ = 1.67, H0 : µ = 0

NEW:p-value:

p− value= 0.00117

(Computed under the scenario,
that H0 is true)

NEW:Conclusion:

As the data is unlike far away
from H0, we reject H0 - we have
found a significant effect of
sleep medicine B as compared to
A.
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One-sample t-test and p-value
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One-sample t-test and p-value

Method 3.22: One-sample t-test and p-value

How to compute the p-value?

For a (quantitative) one sample situation, the (non-directional) p-value is
given by:

p− value= 2 ·P(T > |tobs|)
where T follows a t-distribution with (n−1) degrees of freedom.
The observed value of the test statistics to be computed is

tobs =
x̄−µ0

s/
√

n

where µ0 is the value of µ under the null hypothesis:

H0 : µ = µ0
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One-sample t-test and p-value

The definition and interpretation of the p-value
(COMPLETELY general)

The p-value expresses the evidence against the null hypothesis – Table ??:

p < 0.001 Very strong evidence against H0
0.001≤ p < 0.01 Strong evidence against H0
0.01≤ p < 0.05 Some evidence against H0
0.05≤ p < 0.1 Weak evidence against H0

p≥ 0.1 Little or no evidence against H0

Definition 3.21 of the p-value:
The p-value is the probability of obtaining a test statistic that is at least
as extreme as the test statistic that was actually observed. This probability
is calculated under the assumption that the null hypothesis is true.
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One-sample t-test and p-value

Example - sleeping medicine

The hypothesis of no difference:

H0 : µ = 0

Compute the test-statistic:

tobs =
1.67−0

1.13/
√

10
= 4.67

Compute the p-value:

2P(T > 4.67) = 0.00117

2 * (1-pt(4.67, 9))

Interpretation of the p-value in light of Table ??:

There is strong evidence agains the null hypothesis.
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One-sample t-test and p-value

Example - sleeping medicine - in R - manually

## Enter data:

x <- c(1.2, 2.4, 1.3, 1.3, 0.9, 1.0, 1.8, 0.8, 4.6, 1.4)

n <- length(x)

## Compute the tobs - the observed test statistic:

tobs <- (mean(x) - 0) / (sd(x) / sqrt(n))

## Compute the p-value as a tail-probability

## in the t-distribution:

pvalue <- 2 * (1-pt(abs(tobs), df=n-1))

pvalue

## [1] 0.0012
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One-sample t-test and p-value

Example - sleeping medicine - in R - with inbuilt function

t.test(x)

##

## One Sample t-test

##

## data: x

## t = 5, df = 9, p-value = 0.001

## alternative hypothesis: true mean is not equal to 0

## 95 percent confidence interval:

## 0.86 2.48

## sample estimates:

## mean of x

## 1.7
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One-sample t-test and p-value

The definition of hypothesis test and significance
(generally)

Definition 3.23. Hypothesis test:

We say that we carry out a hypothesis test when we decide against a null
hypothesis or not using the data.

A null hypothesis is rejected if the p-value, calculated after the data has
been observed, is less than some α , that is if the p-value< α , where α is
some pre-specifed (so-called) significance level. And if not, then the null
hypothesis is said to be accepted.

Definition 3.28. Statistical significance:

An effect is said to be (statistically) significant if the p-value is less than
the significance level α .
(OFTEN we use α = 0.05)
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One-sample t-test and p-value

Example - sleeping medicine

With α = 0.05 we can conclude:
Since the p-value is less than α so we reject the null
hypothesis.

And hence:
We have found a significant effect af medicine B as
compared to A. (And hence that B works better than A)
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Critical value and relation to confidence interval

Oversigt

1 Motivating example - sleeping medicine

2 One-sample t-test and p-value

3 Critical value and relation to confidence interval

4 Hypothesis test in general
The alternative hypothesis
The general method
Errors in hypothesis testing

5 Checking the normality assumption
The Normal QQ plot
Transformation towards normality

Per Bruun Brockhoff (perbb@dtu.dk) Introduction to Statistics Spring 2017 14 / 37

Critical value and relation to confidence interval

Critical value

Definition 3.30 - the critical values of the t-test:
The (1−α)100% critical values for the (non-directional) one-sample t-test
are the (α/2)100% and (1−α/2)100% quantiles of the t-distribution with
n−1 degrees of freedom:

tα/2 and t1−α/2

Metode 3.31: One-sample t-test by critical value:

A null hypothesis is rejected if the observed test-statistic is more extreme
than the critical values:

If |tobs|> t1−α/2 then reject

otherwise accept.
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Critical value and relation to confidence interval

Critical value and hypothesis test

The acceptance region are the values for µ not too far away from the data
- here on the standardized scale:

Acceptance

Rejection Rejection

t0.025 t0.970
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Critical value and relation to confidence interval

Critical value and hypothesis test

The acceptance region are the values for µ not too far away from the data
- now on the original scale:

Acceptance

Rejection Rejection

x − t0.025s n x + t0.97s nx
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Critical value and relation to confidence interval

Critical value, confidence interval and hypothesis test

Theorem ??: Critical value method = Confidence interval method

We consider a (1−α) ·100% confidence interval for µ :

x̄± t1−α/2 ·
s√
n

The confidence interval corresponds to the acceptance region for H0 when
testing the (non-directional) hypothesis

H0 : µ = µ0

(New) interpretation of the confidence interval:

The confidence interval covers those values of the parameter that we
believe in given the data.
Those values that we accept by the corresponding hypothesis test.
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Critical value and relation to confidence interval

Proof:

Remark 3.33

A µ0 inside the confidence interval will fullfill that

|x̄−µ0|< t1−α/2 ·
s√
n

which is equivalent to
|x̄−µ0|

s√
n

< t1−α/2

and again to
|tobs|< t1−α/2

which then exactly states that µ0 is accepted, since the tobs is within the
critical values.
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Hypothesis test in general
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Hypothesis test in general The alternative hypothesis

The alternative hypothesis

So far - implied: (= non-directional)

The alternative to H0 : µ = µ0 is : H1 : µ 6= µ0

BUT there are other possible settings, e.g. one-sided (=directional), ”less”:

The alternative to H0 : µ = µ0 is : H1 : µ < µ0

But we stick to the ”non-directional”in this course
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Hypothesis test in general The general method

Steps by hypothesis tests - an overview

Generelly a hypothesis test consists of the foloowing steps:

1 Formulate the hypotheses and choose the level of significance α

(choose the ”risk-level”)

2 Calculate, using the data, the value of the test statistic

3 Calculate the p-value using the test statistic and the relevant sampling
distribution, and compare the p-value and the significance level α and
make a conclusion

OR:

Alternatively, make a conclusion based on the relevant critical value(s)
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Hypothesis test in general The general method

The one-sample t-test again

Method 3.35 The level α test is:

1 Compute tobs as before

2 Compute the evidence against the null hypothesis H0 : µ = µ0 vs. the
alternative hypothesis H1 : µ 6= µ0 by the

p–value= 2 ·P(T > |tobs|)

where the t-distribution with n−1 degrees of freedom is used.

3 If p–value< α : We reject H0, otherwise we accept H0.

OR:

The rejection/acceptance conclusion could alternatively, but
equivalently, be made based on the critical value(s) ±t1−α/2:

If |tobs|> t1−α/2 we reject H0, otherwise we accept H0.
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Hypothesis test in general Errors in hypothesis testing

Errors in hypothesis testing

Two kind of errors can occur (but only one at a time!)

Type I: Rejection of H0 when H0 is true
Type II: Non-rejection (acceptance) of H0 when H1 is true

The risks of the two types or errors:

P(Type I error) = α

P(Type II error) = β
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Hypothesis test in general Errors in hypothesis testing

Court of law analogy

A man is standing in a court of law:

A man is standing in a court of law accused of criminal activity.
The null- and the the alternative hypotheses are:

H0 : The man is not guilty

H1 : The man is guilty

That you cannot be proved guilty is not the same as being proved innocent

Or differently put:
Accepting a null hypothesis is NOT a statistical proof of the null
hypothesis being true!
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Hypothesis test in general Errors in hypothesis testing

Errors in hypothesis testing

Theorem 3.38: Significance level = The risk of a Type I error

The significance level α in hypothesis testing is the overall Type I risk:

P(Type I error) = P(Rejection of H0 when H0 is true) = α

Two possible truths vs. two possible conclusions:

Reject H0 Fail to reject H0
H0 is true Type I error (α) Correct acceptance of H0
H0 is false Correct rejection of H0 (Power) Type II error (β )
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Checking the normality assumption The Normal QQ plot

Example - student heights - are they normally distributed?

x <- c(168,161,167,179,184,166,198,187,191,179)
hist(x, xlab="Height", main="", freq = FALSE)
lines(seq(160, 200, 1), dnorm(seq(160, 200, 1), mean(x), sd(x)))
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Checking the normality assumption The Normal QQ plot

Example - 100 observations from a normal distribution:

xr <- rnorm(100, mean(x), sd(x))

hist(xr, xlab="Height", main="", freq = FALSE)

lines(seq(130, 230, 1), dnorm(seq(130, 230, 1), mean(x), sd(x)))
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Checking the normality assumption The Normal QQ plot

Example - student heights - ecdf

plot(ecdf(x), verticals = TRUE)

xp <- seq(0.9*min(x), 1.1*max(x), length.out = 100)

lines(xp, pnorm(xp, mean(x), sd(x)))
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Checking the normality assumption The Normal QQ plot

Example - 100 observations from a normal distribution,
ecdf:

xr <- rnorm(100, mean(x), sd(x))

plot(ecdf(xr), verticals = TRUE)

xp <- seq(0.9*min(xr), 1.1*max(xr), length.out = 100)

lines(xp, pnorm(xp, mean(xr), sd(xr)))
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Checking the normality assumption The Normal QQ plot

Example - student heights - Normal Q-Q plot

qqnorm(x)

qqline(x)
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Checking the normality assumption The Normal QQ plot

Example - student heights - Normal Q-Q plot - compare
with other simulated normally distributed data
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Checking the normality assumption The Normal QQ plot

Normal Q-Q plot

Metode 3.41- The formal definition

The ordered observations x(1), . . . ,x(n) are plotted versus a set of expected
normal quantiles zp1 , . . . ,zpn . Different definitions of p1, . . . ,pn exist:

In R, when n > 10:

pi =
i−0.5
n+1

, i = 1, . . . ,n

In R, when n≤ 10:

pi =
i−3/8
n+1/4

, i = 1, . . . ,n

Per Bruun Brockhoff (perbb@dtu.dk) Introduction to Statistics Spring 2017 34 / 37

Checking the normality assumption Transformation towards normality

Example - Radon data

## READING IN THE DATA

radon<-c(2.4, 4.2, 1.8, 2.5, 5.4, 2.2, 4.0, 1.1, 1.5, 5.4, 6.3,

1.9, 1.7, 1.1, 6.6, 3.1, 2.3, 1.4, 2.9, 2.9)

##A HISTOGRAM AND A QQ-PLOT

par(mfrow=c(1,2))

hist(radon)

qqnorm(radon,ylab = 'Sample quantiles',xlab = "Normal quantiles")

qqline(radon)
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Checking the normality assumption Transformation towards normality

Example - Radon data - log-transformed are closer to a
normal distribution

##TRANSFORM USING NATURAL LOGARITHM

logRadon<-log(radon)

hist(logRadon)

qqnorm(logRadon,ylab = 'Sample quantiles',xlab = "Normal quantiles")

qqline(logRadon)
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Checking the normality assumption Transformation towards normality
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