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Example: Height-Weight

Example: Height-Weight

Heights (xi) 168 161 167 179 184 166 198 187 191 179

Weights (yi) 65.5 58.3 68.1 85.7 80.5 63.4 102.6 91.4 86.7 78.9
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Example: Height-Weight

Heights (xi) 168 161 167 179 184 166 198 187 191 179

Weights (yi) 65.5 58.3 68.1 85.7 80.5 63.4 102.6 91.4 86.7 78.9

summary(lm(y ~ x))

##
## Call:
## lm(formula = y ~ x)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.876 -1.451 -0.608 2.234 6.477
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -119.958 18.897 -6.35 0.00022 ***
## x 1.113 0.106 10.50 5.9e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.88 on 8 degrees of freedom
## Multiple R-squared: 0.932,Adjusted R-squared: 0.924
## F-statistic: 110 on 1 and 8 DF, p-value: 5.87e-06
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Example: Height-Weight
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Linear regression model

A scatter plot of some data

We have n pairs of data points (xi,yi).
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Linear regression model

Express a linear model

Express a linear model:

yi = β0 +β1xi +?
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Something is missing: Description of the random variation.
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Linear regression model

Express a linear regression model

Express the linear regression model:

Yi = β0 +β1xi + εi , i = 1, . . . ,n .

Yi is the dependent/outcome variable. A random variable.

xi is an independent/explanatory variable. Deterministic numbers.

εi is the deviation/error. A random variable.

We assume that the εi, i = 1, . . . ,n, are independent and identically
distributed (i.i.d.), with εi ∼ N(0,σ2).

Md Saifuddin Khalid (DTU Compute) Introduction to Statistics Spring 2023 11 / 44

Linear regression model

Illustration of statistical model

−1 0 1 2 3
−

20
0

0
20

0
40

0
60

0
80

0

x

y

σ

β0 + β1x

Md Saifuddin Khalid (DTU Compute) Introduction to Statistics Spring 2023 12 / 44



Least squares method
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Least squares method

Least squares method

How can we estimate the parameters β0 and β1?

Good idea: Minimize the variance σ2 of the residuals.

But how?

Minimize the Residual Sum of Squares (RSS),

RSS(β0,β1) =
n

∑
i=1

ε
2
i =

n

∑
i=1

(yi −β0 −β1xi)
2 .

β̂0 and β̂1 minimize the RSS.
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Least squares method

Illustration of model, data and fit
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Least squares method

Least squares estimator

Theorem 5.4 (here as estimators, as in the book)

The least squares estimators of β0 and β1 are given by

β̂1 =
∑

n
i=1(Yi − Ȳ)(xi − x̄)

Sxx

β̂0 =Ȳ − β̂1x̄

where Sxx = ∑
n
i=1(xi − x̄)2.
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Least squares method

Least squares estimates

Theorem 5.4 (here as estimates)

The least squares estimatates of β0 and β1 are given by

β̂1 =
∑

n
i=1(yi − ȳ)(xi − x̄)

Sxx

β̂0 =ȳ− β̂1x̄

where Sxx = ∑
n
i=1(xi − x̄)2.
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Least squares method

R example

set.seed(100)

# Generate x

x <- runif(n = 20, min = -2, max = 4)

# Simulate y

beta0 <- 50; beta1 <- 200; sigma <- 90

y <- beta0 + beta1 * x + rnorm(n = length(x), mean = 0, sd = sigma)

# From here: like for the analysis of 'real data', we have data in x and y:

# Scatter plot of y against x

plot(x, y)

# Find the least squares estimates, use Theorem 5.4

(beta1hat <- sum( (y - mean(y))*(x-mean(x)) ) / sum( (x-mean(x))^2 ))

(bet0hat <- mean(y) - beta1hat*mean(x))

# Use lm() to find the estimates

lm(y ~ x)

# Plot the fitted line

abline(lm(y ~ x), col="red")
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Statistics and linear regression?
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Statistics and linear regression?

The parameter estimates are random variables

What if we took a new sample?

Would the values of β̂0 and β̂1 be the same?

No, they are random variables!

If we took a new sample, we would get another realisation.

What are the (sampling) distributions of the parameter
estimates ...
... in a linear regression model w. normal distributed errors?

This may be investigated using simulation ...

Let’s go to R!
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Statistics and linear regression?

The distribution of β̂0 and β̂1

β̂0 and β̂1 are normal distributed and their variance can
be estimated:

Theorem 5.8 (first part)

V[β̂0] =
σ2

n
+

x̄2σ2

Sxx

V[β̂1] =
σ2

Sxx

Cov[β̂0, β̂1] =− x̄σ2

Sxx

We won’t use the covariance Cov[β̂0, β̂1] for now.
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Statistics and linear regression?

Estimates of standard deviations of β̂0 and β̂1

Theorem 5.8 (second part)

σ2 is usually replaced by its estimate, σ̂2, the central estimator of σ2:

σ̂
2 =

RSS(β̂0, β̂1)

n−2
=

∑
n
i=1 e2

i
n−2

.

When the estimate of σ2 is used, the variances also become estimates.
We’ll refer to them as σ̂2

β0
and σ̂2

β1
.

Estimates of standard deviations of β̂0 and β̂1 (equations 5-43 and 5-44):

σ̂β0
= σ̂

√
1
n
+

x̄2

Sxx
; σ̂β1

= σ̂

√
1

∑
n
i=1(xi − x̄)2
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Hypothesis tests and confidence intervals for β0 and β1
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Hypothesis tests and confidence intervals for β0 and β1

Hypothesis tests for β0 and β1

We can carry out hypothesis tests for the parameters in a linear regression
model:

H0,i : βi = β0,i

H1,i : βi ̸= β1,i

Theorem 5.12

Under the null-hypotheses (β0 = β0,0 and β1 = β0,1) the statistics

Tβ0 =
β̂0 −β0,0

σ̂β0

; Tβ1 =
β̂1 −β0,1

σ̂β1

,

are t-distributed with n−2 degrees of freedom, and inference should be based on this
distribution.
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Hypothesis tests and confidence intervals for β0 and β1

Hypothesis tests for β0 and β1

See Example 5.13 for an example of a hypothesis test.

Test if the parameters are significantly different from 0:

H0,i : βi = 0 , H1,i : βi ̸= 0

# Read data into R

x <- c(168, 161, 167, 179, 184, 166, 198, 187, 191, 179)
y <- c(65.5, 58.3, 68.1, 85.7, 80.5, 63.4, 102.6, 91.4, 86.7, 78.9)

# Fit model to data
fit <- lm(y ~ x)

# Look at model summary to find Tobs-values and p-values
summary(fit)
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Hypothesis tests and confidence intervals for β0 and β1

Confidence intervals for β0 and β1

Method 5.15

(1−α) confidence intervals for β0 and β1 are given by

β̂0 ± t1−α/2 σ̂β0

β̂1 ± t1−α/2 σ̂β1

where t1−α/2 is the (1−α/2)-quantile of a t-distribution with n−2
degrees of freedom.

Remember that σ̂β0
and σ̂β1

may be found using equations 5-43 and
5-44.

In R, we can find σ̂β0
and σ̂β1

under ”Std. Error”from summary(fit).
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Hypothesis tests and confidence intervals for β0 and β1

Illustration of CIs by simulation

# Number of repetitions (here: CIs)

nRepeat <- 1000

# Empty logical vector of length nRepeat

TrueValInCI <- logical(nRepeat)

# Repeat the simulation and estimation nRepeat times:

for(i in 1:nRepeat){
# Generate x

x <- runif(n = 20, min = -2, max = 4)

# Simulate y

beta0 = 50; beta1 = 200; sigma = 90

y <- beta0 + beta1 * x + rnorm(n = length(x), mean = 0, sd = sigma)

# Use lm() to fit model

fit <- lm(y ~ x)

# Use confint() to compute 95% CI for intercept

ci <- confint(fit, "(Intercept)", level=0.95)

# Was the 'true' intercept included in the interval? (covered)

(TrueValInCI[i] <- ci[1] < beta0 & beta0 < ci[2])

}

# How often was the true intercept included in the CI?

sum(TrueValInCI) / nRepeat
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Confidence and prediction intervals for the line Confidence interval

Method 5.18 Confidence interval for β0 +β1x0

The confidence interval for β0 +β1x0 corresponds to a confidence
interval for the line at the point x0.

The 100(1−α)% CI is computed by

(β̂0 + β̂1x0)± tα/2 · σ̂

√
1
n
+

(x0 − x̄)2

Sxx
.
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Confidence and prediction intervals for the line Prediction interval

Method 5.18 Prediction interval for β0 +β1x0 + ε0

The prediction interval for Y0 is found using a value x0.

This is done before Y0 is observed, using

(β̂0 + β̂1x0)± tα/2 · σ̂

√
1+

1
n
+

(x0 − x̄)2

Sxx
.

In 100(1−α)% of cases, the prediction interval will contain the
observed y0.

For a given α , a prediction interval is wider than a confidence interval.
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Confidence and prediction intervals for the line Prediction interval

Example of confidence intervals for the line

# Generate x
x <- runif(n = 20, min = -2, max = 4)

# Simulate y
beta0 = 50; beta1 = 200; sigma = 90
y <- beta0 + beta1 * x + rnorm(n = length(x), sd = sigma)

# Use lm() to fit model
fit <- lm(y ~ x)

# Make a sequence of 100 x-values
xval <- seq(from = -2, to = 6, length.out = 100)

# Use the predict function
CI <- predict(fit, newdata = data.frame(x = xval),

interval = "confidence",
level = 0.95)

# Check what we got
head(CI)

# Plot the data, model fit and intervals
plot(x, y, pch = 20)
abline(fit)
lines(xval, CI[, "lwr"], lty=2, col = "red", lwd = 2)
lines(xval, CI[, "upr"], lty=2, col = "red", lwd = 2)
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Confidence and prediction intervals for the line Prediction interval

Example of prediction intervals for the line

# Generate x
x <- runif(n = 20, min = -2, max = 4)

# Simulate y
beta0 = 50; beta1 = 200; sigma = 90
y <- beta0 + beta1 * x + rnorm(n = length(x), sd = sigma)

# Use lm() to fit model
fit <- lm(y ~ x)

# Make a sequence of 100 x-values
xval <- seq(from = -2, to = 6, length.out = 100)

# Use the predict function
PI <- predict(fit, newdata = data.frame(x = xval),

interval = "prediction",
level = 0.95)

# Check what we got
head(CI)

# Plot the data, model fit and intervals
plot(x, y, pch = 20)
abline(fit)
lines(xval, PI[, "lwr"], lty = 2, col = "blue", lwd = 2)
lines(xval, PI[, "upr"], lty = 2, col = "blue", lwd = 2)
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Summary of ’summary(lm(y∼x))’

What more do we get from summary()?

summary(fit)

##
## Call:
## lm(formula = y ~ x)
##
## Residuals:
## Min 1Q Median 3Q Max
## -216.86 -66.09 -7.16 58.48 293.37
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 41.8 30.9 1.35 0.19
## x 197.6 16.4 12.05 4.7e-10 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 122 on 18 degrees of freedom
## Multiple R-squared: 0.89,Adjusted R-squared: 0.884
## F-statistic: 145 on 1 and 18 DF, p-value: 4.73e-10
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Summary of ’summary(lm(y∼x))’

summary(lm(y∼x))

Residuals: Min 1Q Median 3Q Max

The residuals’: minimum, 1st quartile, median, 3rd quartile, maximum

Coefficients:

Estimate Std. Error t value Pr(>|t|) "stars"

The coefficients’:
β̂i σ̂βi tobs p-value

The test is H0,i : βi = 0 vs. H1,i : βi ̸= 0
The stars indicate which size category the p-value belongs to.

Residual standard error: XXX on XXX degrees of freedom

εi ∼ N(0,σ2), the output shows σ̂ and ν degrees of freedom (used for
hypothesis tests, CIs, PIs etc.)

Multiple R-squared: XXX

Explained variation r2.

The rest we don’t use in this course.
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Correlation

Explained variation and correlation

Explained variation in a model is r2, in summary ”Multiple R-squared”.

Found as

r2 = 1− ∑i(yi − ŷi)
2

∑i(yi − ȳ)2 ,

where ŷi = β̂0 + β̂1xi.

The proportion of the total variability explained by the model.
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Correlation

Explained variation and correlation

The correlationen ρ is a measure of linear relation between two
random variables.

Estimated (i.e. empirical) correlation satisfies that

ρ̂ = r =
√

r2 sgn(β̂1)

where sgn(β̂1) is: −1 for β̂1 ≤ 0 and 1 for β̂1 > 0

Hence:

Positive correlation when positive slope.

Negative correlation when negative slope.
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Correlation

Test for significance of correlation

Test for significance of correlation (linear relation) between two
variables

H0 : ρ = 0
H1 : ρ ̸= 0

is equivalent to

H0 : β1 = 0
H1 : β1 ̸= 0

where β̂1 is the estimated slope in a simple linear regression model

Md Saifuddin Khalid (DTU Compute) Introduction to Statistics Spring 2023 39 / 44

Correlation

Example: Correlation and R2 for height-weight data

# Read data into R

x <- c(168, 161, 167, 179, 184, 166, 198, 187, 191, 179)
y <- c(65.5, 58.3, 68.1, 85.7, 80.5, 63.4, 102.6, 91.4, 86.7, 78.9)

# Fit model to data
fit <- lm(y ~ x)

# Scatter plot of data with fitted line
plot(x,y, xlab = "Height", ylab = "Weight")
abline(fit, col="red")

# See summary
summary(fit)

# Correlation between x and y
cor(x,y)

# Squared correlation is the "Multiple R-squared" from summary(fit)
cor(x,y)^2
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Residual Analysis: Model validation
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Residual Analysis: Model validation

Residual Analysis

Method 5.28

Check normality assumptions with a qq-plot.

Check (non-)systematic behavior by plotting the residuals, ei, as a
function of the fitted values ŷi.

(Method 5.29)

Is the independence assumption reasonable?
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Residual Analysis: Model validation

Residual analysis in R

x <- c(168, 161, 167, 179, 184, 166, 198, 187, 191, 179)
y <- c(65.5, 58.3, 68.1, 85.7, 80.5, 63.4, 102.6, 91.4, 86.7, 78.9)
fit <- lm(y ~ x)

par(mfrow = c(1, 2))
qqnorm(fit$residuals, main = "", cex.lab = 1.5)
plot(fit$fitted, fit$residuals, cex.lab = 1.5)
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Residual Analysis: Model validation
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