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Summary

Summary: Week 2, Discrete Distributions

Expectation value:

E[X] = ∑
x∈A

x P(X = x) = µ

Variance:

V[X] = ∑
x∈A

(x−µ)2 P(X = x) = σ
2

Alternatively:

V[X] = E[(X−µ)2]
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A stochastic variable: X

Probability density function

(pdf /pmf ):

f (x) = P(X = x)

Cumulative distribution function

(cdf ):

F(x) = P(X ≤ x)
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Continuous Distributions Density and Distribution Functions

Continuous Random Variables

Random variable X.

The sample space S is now continuous.

Examples:

Height of students

Measurement of wind speed

Time to cycle to DTU

Measurement of blood sugar in patients

...
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Continuous Distributions Density and Distribution Functions

Continous probability distribution
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Continuous Distributions Density and Distribution Functions

The density function, Definition 2.32

The probability density function (pdf) for a random variable is denoted by f (x).

The density function says something about the frequency of the outcome x for the

random variable X.

The probability that X takes a value in the interval [a;b] is given by the integral

(the area under the curve):

P(a < X ≤ b) =
∫ b

a
f (x)dx .

No direct probability for pdf. In fact, P(X = x) = 0 for all x.

The density function f (x) for the distribution of a continuous random variable

satisfies that

f (x)≥ 0 for all x and

∫
∞

−∞

f (x)dx = 1 .
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Continuous Distributions Density and Distribution Functions

The density function (Continuous)

x

f
(x

)

P (a < X  b)

a b
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Continuous Distributions Density and Distribution Functions

Kahoot
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Continuous Distributions Density and Distribution Functions

Distribution Function for Continuous Variables
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Continuous Distributions Density and Distribution Functions

The distribution function, Definition 2.33

The distribution function (cumulative density function, cdf) for a continuous

random variable is denoted by F(x).

The distribution function is defined by

F(x) = P(X ≤ x) =
∫ x

−∞

f (t)dt .

Note that as a consequence of this definition,

f (x) = F
′
(x) .

It’s particularly useful to note that

P(a < X ≤ b) =
∫ b

a
f (x)dx = F(b)−F(a).
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Continuous Distributions Density and Distribution Functions

Continuous distribution function

x

F
(x

)

P
(a

<
X


b)

=
F

(b
)
�

F
(a

)

a b
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Continuous Distributions Density and Distribution Functions

More Examples
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Continuous Distributions Density and Distribution Functions

Kahoot
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Continuous Distributions Mean, variance, and covariance

Mean, continuous random variable, Definition 2.34

The mean/expected value of a continuous random variable:

µ = E[X] =
∫

∞

−∞

x f (x)dx

Compare with the mean of a discrete random variable:

µ = E[X] = ∑
all x

x f (x)
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Continuous Distributions Mean, variance, and covariance

Variance, continuous random variable, Definition 2.34

The variance of a continuous random variable:

σ
2 = E[(X−µ)2] =

∫
∞

−∞

(x−µ)2 f (x)dx

Compare with the variance of a discrete random variable:

σ
2 = E[(X−µ)2] = ∑

all x
(x−µ)2 f (x)
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Continuous Distributions Mean, variance, and covariance

Variance, continuous random variable, Definition 2.34

The variance of a continuous random variable:

σ
2 = E[(X−µ)2] =

∫
∞

−∞

(x−µ)2 f (x)dx
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Continuous Distributions Mean, variance, and covariance

Covariance, Definition 2.58

The covariance between two random variables:

Let X and Y be two random variables. Then, the covariance between X and Y is

Cov(X,Y) = E[(X−E[X])(Y −E[Y])]

Relationship between covariance and independence:

If two random variables are independent their covariance is 0. The reverse is not

necessarily true!

(DTU Compute) Introduction to Statistics Fall 2024 20 / 57

https://02402.compute.dtu.dk/enotes/book-IntroStatistics.pdf#PS:def:covariance


Specific continuous distributions

Overview

1 Summary

2 Continuous Distributions
Density and Distribution Functions
Mean, variance, and covariance

3 Specific continuous distributions
The Uniform distribution
The Normal distribution
The log-normal distribution
The Exponential distribution

4 Rules for stochastic variables
5 Extra: Multidimensional Random Variables

(DTU Compute) Introduction to Statistics Fall 2024 21 / 57



Specific continuous distributions

Specific continuous distributions

A number of statistical distributions exist (both continuous and discrete) that can be

used to describe and analyze different types of problems.

Today, we’ll take a closer look at the following continuous distributions:

The uniform distribution

The normal distribution

The log-normal distribution

The exponential distribution
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Specific continuous distributions

As we did with the discrete distributions, will we use Scipy.stats for the continuous

distributions (see documentation online).

General ’methods’ for different distributions are:

scipy.stats .uniform/.norm/.lognorm/.expon

.rvs ’random variates’ (simulate random numbers)

.pdf ’probability density function’ (pdf/density function)

.cdf ’cumulative distribution function’ (distribution function)

.ppf ’percent point function’ (inverse cdf / quantile function)

.mean /.var /.std ’mean’/’variance’/’standard deviation’
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Specific continuous distributions The Uniform distribution

Density for a Uniform Distribution (Example)
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Specific continuous distributions The Uniform distribution

The uniform distribution, Def. 2.35 & Theo. 2.36

Syntax:

X ∼ U(α,β )

Density function:

f (x) = 1
β−α

for α ≤ x ≤ β

Mean:

µ = α+β

2

Variance:

σ2 = 1
12 (β −α)2
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Specific continuous distributions The Uniform distribution

Density for a Uniform Distribution (Example)
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Specific continuous distributions The Uniform distribution

Example 1

Students in a statistics course arrive at a lecture between 8:00 and 8:30. It is assumed

that the arrival time can be described by a uniform distribution.

Let X ∼ U(0,30) represent the ”arrival time” for a randomly selected student.

Question:

What is the probability that a randomly selected student arrives between 8:20 and 8:30?

Question:

What is the probability that a randomly selected student arrives after 8:30?
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Specific continuous distributions The Normal distribution

Density of a normal distribution (example)

(DTU Compute) Introduction to Statistics Fall 2024 28 / 57



Specific continuous distributions The Normal distribution

The normal distribution, Def. 2.37 & Theo. 2.38

Syntax:

X ∼ N(µ,σ2)

Density function:

f (x) = 1
σ
√

2π
e−

(x−µ)2

2σ2 for −∞ < x < ∞

Mean:
µ = µ

Variance:

σ2 = σ2
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Specific continuous distributions The Normal distribution
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Specific continuous distributions The Normal distribution

Density for a normal distribution (example)
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Specific continuous distributions The Normal distribution

More examples
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Specific continuous distributions The Normal distribution

The standard normal distribution

The standard normal distribution:

Z ∼ N(0,12)

The normal distribution with mean 0 and variance 1.

Standardization:

An arbitrary normal distributed variable X ∼ N(µ,σ2) can
be standardized by

Z =
X−µ

σ
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Specific continuous distributions The Normal distribution

The Standard Normal Distribution

Within µ ±σ , about 68.3% of the probability mass lies
Within µ ±2σ , about 95.4% of the probability mass lies
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Specific continuous distributions The Normal distribution

Example 2

Measurement Error:

A given scale has a measurement error (measured in grams), Z, which can be described

by a standard normal distribution, Z ∼ N(0,12).

This means that the average measurement error is µ = 0 grams and the standard

deviation is σ = 1 gram.

Question:

a) What is the probability that the scale gives a result that is at least 2 grams less than

the true weight of the product?

b) What is the probability that the scale gives a result that is at least 2 grams more than

the true weight of the product?

c) What is the probability that the scale has a deviation of at most ±1 gram?
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Specific continuous distributions The Normal distribution

Example 3

Income Distribution:

It is assumed that the salary of primary school teachers can be described by a normal

distribution with a mean value of µ = 290 (in 1000 DKK) and a standard deviation of

σ = 4 (1000 DKK).

Question:

a) What is the probability that a randomly selected teacher earns more than 300,000

DKK?

b) (Inverse question) Specify a salary range (which is symmetric around the mean) that

covers 95% of teachers’ salaries.
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Specific continuous distributions The Normal distribution

Connection between distribution and quantiles

What is the median height? (and how do you read it from the two plots?)

What are Q1 (the first quartile) and Q3 (the third quartile)?

How tall should a door be if 95% of students should pass through without bending?

(DTU Compute) Introduction to Statistics Fall 2024 36 / 57



Specific continuous distributions The Normal distribution

Connection between distribution and percentiles

Quantiles (percentiles)3 = ”Averaged inverted cdf”

In Python, you use ”.ppf” - e.g. stats.norm.ppf(q=0.95, loc=µ, scale=σ)
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Specific continuous distributions The log-normal distribution

The log-normal distribution
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Specific continuous distributions The log-normal distribution

The log-normal distribution, Def. 2.46 & Thm. 2.47

Notation:

X ∼ LN(α,β 2) (where β > 0)

Density function:

f (x) =

{
1

β
√

2π
x−1e−(ln(x)−α)2/2β 2

x > 0
0 otherwise

Mean:

µ = eα+β 2/2

Variance:

σ2 = e2α+β 2
(eβ 2 −1)
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Specific continuous distributions The log-normal distribution

The log-normal distribution

Log-normal and normal distribution:

A log-normally distributed variable Y ∼ LN(α,β 2) can be transformed into a normally

distributed variable X by:

X = ln(Y).

Here X is normally distributed with mean α and variance β 2, i.e. X ∼ N(α,β 2).

By standardizing X through

Z =
X−E[X]√

V[X]
=

ln(Y)−α

β

you get a standard normally distributed variable Z ∼ N(0,1).

Note: In Python, Y (the log-normally distributed variable) is parameterized with loc= 0,
s = β and scale= eα
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Specific continuous distributions The Exponential distribution

The exponential distribution
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Specific continuous distributions The Exponential distribution

The exponential distribution, Def. 2.48 & Thm. 2.49

Notation:

X ∼ Exp(λ ), where λ > 0.

Density function:

f (x) =
{

λe−λx x ≥ 0
0 otherwise

Mean:

µ = 1
λ

Variance:

σ2 = 1
λ 2
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Specific continuous distributions The Exponential distribution

The exponential distribution

The exponential distribution is often used to model lifetimes and
waiting times.

The exponential distribution can describe the (waiting) time between
events in a Poisson process.

The exponential distribution is a special case of the gamma
distribution.
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Specific continuous distributions The Exponential distribution

Connection between the exponential and Poisson
distribution

time t

∗ ∗ ∗ ∗ ∗ ∗ ∗

t1 t2

Poisson: Number of events per (time) unit

Exponential: Continuous distance between events
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Specific continuous distributions The Exponential distribution

Example 4

Queue model: Poisson process

The time between customer arrivals at a post office follows an exponential distribution

with a mean of µ = 2 minutes.

Question:

a) A customer has just arrived. What is the probability that no more customers will

arrive within a period of 2 minutes?

b) Now use the Poisson distribution to calculate the probability that no more customers

will arrive within the next two minutes.
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Rules for stochastic variables

Overview

1 Summary

2 Continuous Distributions
Density and Distribution Functions
Mean, variance, and covariance

3 Specific continuous distributions
The Uniform distribution
The Normal distribution
The log-normal distribution
The Exponential distribution

4 Rules for stochastic variables
5 Extra: Multidimensional Random Variables
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Rules for stochastic variables

Rules for stochastic variables

These rules apply to both continuous and discrete random variables!

Let X be a random variable, while a and b are constants.

Mean rule:

E[aX+b] = aE[X]+b

Variance rule:

V[aX+b] = a2V[X]
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Rules for stochastic variables

Example 5

Let X be a random variable with mean E[X] = 4 and variance V[X] = 6.

Question:

Calculate the mean and variance of Y =−3X+2.

Answer:

E[Y] =−3E[X]+2 =−3 ·4+2 =−10

V[Y] = (−3)2V[X] = 9 ·6 = 54
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Rules for stochastic variables

Rules for Random Variables

Let X1, . . . ,Xn be independent random variables.

Mean Rule:

E[a1X1 +a2X2 + · · ·+anXn]

= a1E[X1]+a2E[X2]+ · · ·+anE[Xn]

Variance Rule:

V[a1X1 +a2X2 + · · ·+anXn]

= a2
1V[X1]+ · · ·+a2

nV[Xn]
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Rules for stochastic variables

Example 6

Planning for Airline

The individual weight of passengers on a flight, X, is assumed to be normally distributed

as X ∼ N(70,102).

A plane that can take 55 passengers can be loaded with a maximum of 4000 kg (only the

passengers’ weight is considered here as the load).

Question:

Calculate the probability that the plane will be overloaded.

What is the total weight Y of 55 passengers on a flight?

How do we mathematically describe the random variable Y?

...

NOT: Y = 55 ·X
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Rules for stochastic variables

Example 8

What is the total weight Y of 55 passengers on a flight?

Y = ∑
55
i=1 Xi, where Xi ∼ N(70,102) (assumed to be independent)

Mean and Variance of Y:

E[Y] =
55

∑
i=1

E[Xi] =
55

∑
i=1

70 = 55 ·70 = 3850

V[Y] =
55

∑
i=1

V[Xi] =
55

∑
i=1

100 = 55 ·100 = 5500

Y is normally distributed, so we can find P(Y > 4000) by:

1−F(y = 4000; µ = 3850,σ2 = 5500) = 0.02156 (try it yourself in Python)

(DTU Compute) Introduction to Statistics Fall 2024 51 / 57



Rules for stochastic variables

Example 8

What is the total weight Y of 55 passengers on a flight?

Y = ∑
55
i=1 Xi, where Xi ∼ N(70,102) (assumed to be independent)

Mean and Variance of Y:

E[Y] =
55

∑
i=1

E[Xi] =
55

∑
i=1

70 = 55 ·70 = 3850

V[Y] =
55

∑
i=1

V[Xi] =
55

∑
i=1

100 = 55 ·100 = 5500

Y is normally distributed, so we can find P(Y > 4000) by:

1−F(y = 4000; µ = 3850,σ2 = 5500) = 0.02156 (try it yourself in Python)

(DTU Compute) Introduction to Statistics Fall 2024 51 / 57



Rules for stochastic variables

Example 8

What is the total weight Y of 55 passengers on a flight?

Y = ∑
55
i=1 Xi, where Xi ∼ N(70,102) (assumed to be independent)

Mean and Variance of Y:

E[Y] =
55

∑
i=1

E[Xi] =
55

∑
i=1

70 = 55 ·70 = 3850

V[Y] =
55

∑
i=1

V[Xi] =
55

∑
i=1

100 = 55 ·100 = 5500

Y is normally distributed, so we can find P(Y > 4000) by:

1−F(y = 4000; µ = 3850,σ2 = 5500) = 0.02156 (try it yourself in Python)

(DTU Compute) Introduction to Statistics Fall 2024 51 / 57



Rules for stochastic variables

Example 8

What is the total weight Y of 55 passengers on a flight?

Y = ∑
55
i=1 Xi, where Xi ∼ N(70,102) (assumed to be independent)

Mean and Variance of Y:

E[Y] =
55

∑
i=1

E[Xi] =
55

∑
i=1

70 = 55 ·70 = 3850

V[Y] =
55

∑
i=1

V[Xi] =
55

∑
i=1

100 = 55 ·100 = 5500

Y is normally distributed, so we can find P(Y > 4000) by:

1−F(y = 4000; µ = 3850,σ2 = 5500) = 0.02156 (try it yourself in Python)

(DTU Compute) Introduction to Statistics Fall 2024 51 / 57



Rules for stochastic variables

Example 8 - WRONG Analysis

What is Y?

NOT: Y = 55 ·X

Mean and Variance of WRONG Y:

E[Y] = 55 ·70 = 3850

V[Y] = 552V[X] = 552 ·100 = 302500

The WRONG Y is also normally distributed. Here we find P(Y > 4000) with WRONG Y:

1−F(y = 4000; µ = 3850,σ2 = 5502) = 0.3925 (try it yourself in Python)

Consequence of incorrect calculation:

MANY wasted money for the airline!!!
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Extra: Multidimensional Random Variables

Overview
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The Uniform distribution
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Extra: Multidimensional Random Variables

Extra: Multidimensional Random Variables
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Sample Covariance:

sxy =
1

n−1

n

∑
i=1

(xi − x̄)(yi − ȳ)

Covariance:

Cov[X,Y] =E[(X−E[X])(Y−E[Y])]



Extra: Multidimensional Random Variables

Agenda

1 Summary
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