02323 Introduction to Statistics

Lecture 9: Multiple linear regression

DTU Compute Technical University of Denmark 2800 Lyngby – Denmark

Overview

- Warm up with some simple linear regression
- Multiple linear regression
- Model selection
- Residual analysis (model validation)
- Survilinearity
- 6 Confidence and prediction intervals
- Colinearity
- The overall regression method

Khalid, Md Saifuddin (DTU Compute)	Introduction to Statistics	Fall 2023	1/35
			/
	Agenda		
Agenda			

- Warm up with some simple linear regression
- Multiple linear regression
- Model selection
- Residual analysis (model validation)
- Curvilinearity
- 6 Confidence and prediction intervals
- Colinearity
- The overall regression method

Warm up with some simple linear regressio

• Warm up with some simple linear regression

Introduction to Statistics

- Multiple linear regression
- Model selection
- Residual analysis (model validation)
- Curvilinearity
- 6 Confidence and prediction intervals
- Colinearity
- The overall regression method

Fall 2023

4/35

Warm up with some simple linear regression

Example: Ozon concentration

We have a set of observations of: logarithm to ozone concentration (log(ppm)), temperature, radiation and wind speed:

ozone	radiation	wind	temperature	month	day
41	190	7.4	67	5	1
36	118	8.0	72	5	2
÷	÷	÷	÷	÷	:
18	131	8.0	76	9	29
20	223	11.5	68	9	30

Introduction to Statistics

Warm up with some simple linear regression

Example: Ozone concentration

Khalid, Md Saifuddin (DTU Compute

- Let us first analyse the relation between ozone and temperature
- Apply a simple linear regressions model

$$Y_i = eta_0 + eta_1 x_i + arepsilon_i$$
 , $arepsilon_i \sim N(0,\sigma^2)$ og i.i.d.

where

- Y_i is the (logarithm of) ozone concentration of observation i
- x_i is the temperature at observation i

Example: Ozone concentration

Se info about data ?airquality ## Copy the data Air <- airquality ## Remove rows with at least one NA value Air <- na.omit(Air) ## Remove one outlier Air <- Air[-which(Air\$Ozone == 1),]</pre> ## Check the empirical density hist(Air\$Ozone, probability=TRUE, xlab="Ozon", main="") ## Concentrations are positive and very skewed, let's
Concourt form right away:
(although really one could wait and check residuals from models) Air\$logOzone <- log(Air\$Ozone)
Bedre epdf?</pre> hist(Air\$logOzone, probability=TRUE, xlab="log Ozone", main="") ## Make a time variable (R timeclass, se ?POSIXct) Air\$t <- ISOdate(1973, Air\$Month, Air\$Day)</pre> ## Keep only some of the columns Air <- Air[,c(7,4,3,2,8)] ## New names of the columns names(Air) <- c("logOzone","temperature","wind","radiation","t")</pre> ## What's in Air? str(Air) Air head(Air) tail(Air) ## Typically one would begin with a pairs plot pairs(Air, panel = panel.smooth, main = "airquality data") Khalid, Md Saifuddin (DTU Compute) Introduction to Statistics Fall 2023

Warm up with some simple linear regression

Fit the model in R

See the relation between ozone and temperature
plot(Air\$temperature, Air\$log0zone, xlab="Temperature", ylab="0zon")

Correlation
cor(Air\$logOzone, Air\$temperature)

Fit a simple linear regression model
summary(lm(logOzone ~ temperature, data=Air))

Add a vector with random values, is there a significant linear relation?
ONLY for ILLUSTRATION purposes
Air\$noise <- rnorm(nrow(Air))
plot(Air\$logOzone, Air\$noise, xlab="Noise", ylab="Ozon")
cor(Air\$logOzone, Air\$noise)
summary(lm(logOzone ~ noise, data=Air))</pre>

Fall 2023

Fall 2023

8/35

Simple linear regression model for the other two

We can also make a simple linear regression model with each of the other two independent variables $% \left({{{\rm{s}}_{\rm{s}}}} \right)$

Simple linear regression model with the wind speed
plot(Air\$logOzone, Air\$wind, xlab="logOzone", ylab="Wind speed")
cor(Air\$logOzone, Air\$wind)
summary(lm(logOzone ~ wind, data=Air))

Simple linear regression model with the radiation
plot(Air\$logOzone, Air\$radiation, xlab="logOzone", ylab="Radiation")
cor(Air\$logOzone, Air\$radiation)
summary(lm(logOzone ~ radiation, data=Air))

			- /				
Khalid, Md Saifuddin (DTU Compute)	Introduction to Statistics	Fall 2023	9 / 35				
Multiple linear regression							
Multiple linear regr	ession						
multiple inical regi	6351011						

- *Y* is the *dependent variable*
- We are interested in modelling the *Y*'s dependency of the *independent* or *explanatory* variables $x_1, x_2, ..., x_p$
- We are modelling a *linear relation* between *Y* and $x_1, x_2, ..., x_p$, described with the regression model

$$Y_i = \beta_0 + \beta_1 x_{1,i} + \dots + \beta_p x_{p,i} + \varepsilon_i$$
, $\varepsilon_i \sim N(0, \sigma^2)$ and i.i.d.

• Y_i og ε_i are random variables and $x_{j,i}$ are variables

Overview

• Warm up with some simple linear regression

- Multiple linear regression
- Model selection
- Residual analysis (model validation)
- Curvilinearity
- 6 Confidence and prediction intervals
- Colinearity
- The overall regression method

Multiple linear regression

• The coefficient estimates are found by minimizing:

Introduction to Statistics

$$RSS(\beta_0, \beta_1, \dots, \beta_p) = \sum_{i=1}^n [y_i - (\beta_0 + \beta_1 x_{i,1} + \dots + \beta_p x_{i,p})]^2$$

 ${\scriptstyle \bullet}$ The "predicted" (= "fitted") are found as

$$\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_{i,1} + \dots + \hat{\beta}_p x_{i,p}$$

• And then the residuals are found as

$$e_i = y_i - \hat{y}_i$$

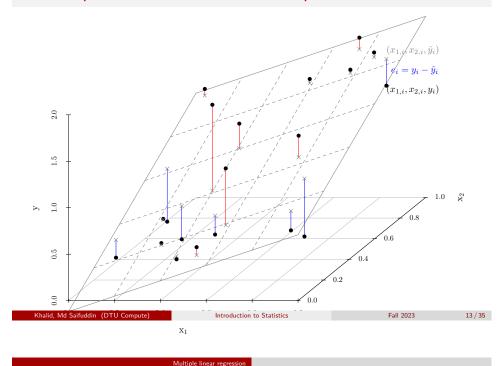
residual = observation – prediction

Fall 2023

12/35

tiple linear regression

Least squares estimates - The concept!



Parameter interpretation in MLR (Remark 6.14)

What dose $\hat{\beta}_i$ express?

- The expected *y*-change with 1 unit *x_i*-change
- The effect of x_i given the other variables
- The effect of x_i corrected for the other variables
- The effect of x_i "other variables being equal"
- The unique effect of x_i
- Depends on what else is in the model!!
- Generally: NOT a causal/intervention effect!!

Computations for MLR - no explicit formulas given!

- Remark 6.6: Extract $\hat{\beta}_i$ and $\hat{\sigma}_{\beta_i}$ from R-output (summary(myfit))
- Theorem 6.2: The t-distribution can be used for inference for parameters
- Methods 6.4 and 6.5: Hypothesis tests and Confidence intervals for parameters based on R-output.
- Everything: THE SAME as for SIMPLE linear regression!
- (In Section 6.6: Mathematical matrix based expressions including explicit formulas. Not syllabus in course 02402)

Overview

• Warm up with some simple linear regression

Model selection

- Multiple linear regression
- Model selection
- Residual analysis (model validation)
- Curvilinearity
- 6 Confidence and prediction intervals
- Colinearity
- The overall regression method

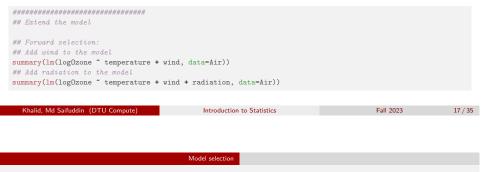
Fall 202

Extend the model (forward selection)

- Not included in the eNote
- Start with the *linear regression model* with the most significant independent variable

Model selec

- *Extend the model* with the remaining independent variables (inputs) one at a time
- Stop when there is not any significant extensions possible

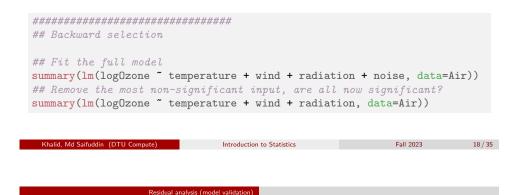


Model selection

- There is no fully certain method for finding the best model!
- It will require subjective decisions to select a model
- Different procedures: either forward or backward selection (or both), depends on the circumstances
- Statistical measures and tests to compare model fits
- In this course only backward selection is described

Reduce the model (model reduction or backward selection)

- Described in the eNote, section 6.5
- Start with the full model
- Remove the most insignificant independent variable
- Stop when all prm. estimates are significant



Overview

- Warm up with some simple linear regression
- Multiple linear regression
- Model selection
- Residual analysis (model validation)
- Curvilinearity
- 6 Confidence and prediction intervals
- Colinearity
- The overall regression method

Residual analysis (model validation)

Residual analysis (model validation)

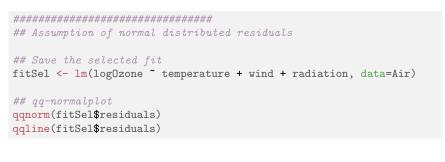
- Model validation: Analyze the residuals to check that the assumptions is met
- $e_i \sim N(0, \sigma^2)$ is independent and identically distributed (i.i.d.)

Introduction to Statistics

• Same as for the simple linear regression model

Assumption of normal distributed residuals

 Make a qq-normalplot (normal score plot) to see if they seem normal distributed



Introduction to Statistics

Residual analysis (model validation)

Assumption of identical distribution of residuals

• Plot the residuals (e_i) versus the predicted (fitted) values (\hat{y}_i)

plot(fitSel\$fitted.values, fitSel\$residuals, xlab="Predicted values",
 ylab="Residuals")

- Seems like the model kan be improved!
- Plot the residuals vs. the independent variables

par(mfrow=c(1,3))

lid. Md Saifuddin (DTU Compute)

plot(Air\$temperature, fitSel\$residuals, xlab="Temperature")
plot(Air\$wind, fitSel\$residuals, xlab="Wind speed")
plot(Air\$radiation, fitSel\$residuals, xlab="Radiation")

23 / 35

Fall 2023

Fall 2023

Overview

Warm up with some simple linear regression

Curvilinearity

- O Multiple linear regression
- Model selection
- Residual analysis (model validation)
- Survilinearity
- Confidence and prediction intervals
- Colinearity
- The overall regression method

Fall 2023

Fall 2023

22/35

Curvilinearity

Curvilinear model

If we want to estimate a model of the type

 $Y_i = \beta_0 + \beta_1 x_i + \beta_2 x_i^2 + \varepsilon_i$

we can use a multiple linear regression model

$$Y_i = \beta_0 + \beta_1 x_{i,1} + \beta_2 x_{i,2} + \varepsilon_i$$

where

•
$$x_{i,1} = x_i$$

•
$$x_{i,2} = x_i^2$$

and apply the same methods as for multiple linear regression.

Khalid,	Md	Saifuddin	(DTU	Compute)

Introduction to Statistics

Fall 2023

25 / 35

Confidence and prediction intervals

Overview

- Warm up with some simple linear regression
- O Multiple linear regression
- Model selection
- Residual analysis (model validation)
- Ourvilinearity

6 Confidence and prediction intervals

- Colinearity
- The overall regression method

Fall 2023

Extend the ozone model with appropriate curvilinear

regression

Confidence and prediction intervals

Confidence and prediction intervals for the plane, Method 6.9:

Extract Confidence and prediction intervals for the plane by R-function predict. Options for confidence og prediction exist.

```
*****
## Confidence and prediction intervals for the curvilinear model
## Generate a new data.frame with constant temperature and radiation, but with varying wind speed
wind<-seq(1,20.3,by=0.1)
AirForPred <- data.frame(temperature=mean(Air$temperature), wind=wind,
                        windSq=wind<sup>2</sup>, radiation=mean(Air$radiation))
## Calculate confidence and prediction intervals (actually bands)
CI <- predict(fitWindSq, newdata=AirForPred, interval="confidence", level=0.95)
PI <- predict(fitWindSq, newdata=AirForPred, interval="prediction", level=0.95)
## Plot them
plot(wind, CI[,"fit"], ylim=range(CI,PI), type="l",
    main=paste("At temperature =",format(mean(Air$temperature),digits=3),
               "and radiation =", format(mean(Air$radiation),digits=3)))
lines(wind, CI[,"lwr"], lty=2, col=2)
lines(wind, CI[,"upr"], lty=2, col=2)
lines(wind, PI[,"lwr"], lty=2, col=3)
lines(wind, PI[,"upr"], lty=2, col=3)
## legend
legend("topright", c("Prediction", "95% confidence band", "95% prediction band"), lty=c(1,2,2), col=1:3)
```

Introduction to Statistics

Khalid, Md Saifuddin (DTU Compute)

Fall 2023

28 / 35

Overview

• Warm up with some simple linear regression

Colinearit

- Multiple linear regression
- Model selection
- Residual analysis (model validation)
- Curvilinearity
- 6 Confidence and prediction intervals

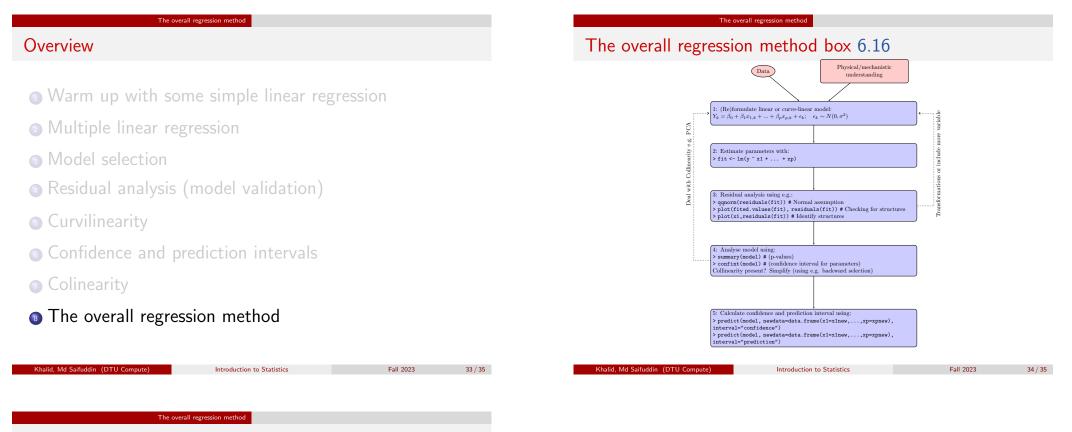
Colinearity

The overall regression method

Colinearity

- MLR breaks down if X-data has "exact linear redundancy"
 - Example: Both height in cm and height in m is in the data.
- Interpretation and model stability is challenged if X-data has "near redundancy" patterns
 - Example: Both weight and BMI are in the X-data (highly correlated)
- With e.g. two highly correlated *x*-variables:
 - Together in the model for y none of them may have a unique effect
 - Separately they may have a strong effect each of them

Khalid, Md Saifuddin (DTU Compute)	Introduction to Statistics	Fall 2023	29 / 35	Khalid, Md Saifuddin (DTU Compute)	Introduction to Statistics	Fall 2023	30 / 35
	Colinearity				Colinearity		
Colinearity - an illustrati	ion in R						
######################################							
<pre>## Generate values for MLR n <- 100 ## First variable x1 <- sin(0:(n-1)/(n-1)*2*2*pi) + rnorm(n, 0, 0.1) plot(x1, type="b") ## The second variable is the first plus a little nois x2 <- x1 + rnorm(n, 0, 0.1) ## a1 and #2 are highly correlated plot(x1, x2) cor(x1, x2) cor(x1, x2) deta====================================</pre>				It is importa are designed	-	eriments	
<pre>## If it was an experiment and the effects could be se x1[1:(n/2)] <- 0 x2[(n/2):n] <- 0 ## Plot them plot(x1, type="b") lines(x2, type="b") lines(x2, type="b") ## Now very low correlation cor(x1,x2) ## Simulate MLR again y <- beta0 + beta1 * x1 + beta2 * x2 + rnorm(n,0,sigm ## and ft MLR summary(lm(y * x1 + x2))</pre>							
Khalid, Md Saifuddin (DTU Compute)	Introduction to Statistics	Fall 2023	31 / 35	Khalid, Md Saifuddin (DTU Compute)	Introduction to Statistics	Fall 2023	32 / 35



Agenda

- Warm up with some simple linear regression
- Multiple linear regression
- Model selection
- Residual analysis (model validation)
- Survilinearity
- 6 Confidence and prediction intervals
- Colinearity
- The overall regression method