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Warm up with some simple linear regression

Example: Ozon concentration

We have a set of observations of: logarithm to ozone concentration
(log(ppm)), temperature, radiation and wind speed:

ozone radiation wind temperature month day

41 190 7.4 67 5 1
36 118 8.0 72 5 2
...

...
...

...
...

...
18 131 8.0 76 9 29
20 223 11.5 68 9 30
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Warm up with some simple linear regression

Example: Ozone concentration

## Se info about data
?airquality
## Copy the data
Air <- airquality
## Remove rows with at least one NA value
Air <- na.omit(Air)

## Remove one outlier
Air <- Air[-which(Air$Ozone == 1), ]

## Check the empirical density
hist(Air$Ozone, probability=TRUE, xlab="Ozon", main="")

## Concentrations are positive and very skewed, let's
## log-transform right away:
## (although really one could wait and check residuals from models)
Air$logOzone <- log(Air$Ozone)
## Bedre epdf?
hist(Air$logOzone, probability=TRUE, xlab="log Ozone", main="")

## Make a time variable (R timeclass, se ?POSIXct)
Air$t <- ISOdate(1973, Air$Month, Air$Day)
## Keep only some of the columns
Air <- Air[ ,c(7,4,3,2,8)]
## New names of the columns
names(Air) <- c("logOzone","temperature","wind","radiation","t")

## What's in Air?
str(Air)
Air
head(Air)
tail(Air)

## Typically one would begin with a pairs plot
pairs(Air, panel = panel.smooth, main = "airquality data")
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Warm up with some simple linear regression

Example: Ozone concentration

Let us first analyse the relation between ozone and
temperature

Apply a simple linear regressions model

Yi = β0 +β1xi + εi , εi ∼ N(0,σ2) og i.i.d.

where
Yi is the (logarithm of) ozone concentration of observation i

xi is the temperature at observation i
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Warm up with some simple linear regression

Fit the model in R

################################

## See the relation between ozone and temperature

plot(Air$temperature, Air$logOzone, xlab="Temperature", ylab="Ozon")

## Correlation

cor(Air$logOzone, Air$temperature)

## Fit a simple linear regression model

summary(lm(logOzone ~ temperature, data=Air))

## Add a vector with random values, is there a significant linear relation?

## ONLY for ILLUSTRATION purposes

Air$noise <- rnorm(nrow(Air))

plot(Air$logOzone, Air$noise, xlab="Noise", ylab="Ozon")

cor(Air$logOzone, Air$noise)

summary(lm(logOzone ~ noise, data=Air))
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Warm up with some simple linear regression

Simple linear regression model for the other two

We can also make a simple linear regression model with each of the other
two independent variables

################################
## With each of the other two independent variables

## Simple linear regression model with the wind speed
plot(Air$logOzone, Air$wind, xlab="logOzone", ylab="Wind speed")
cor(Air$logOzone, Air$wind)
summary(lm(logOzone ~ wind, data=Air))

## Simple linear regression model with the radiation
plot(Air$logOzone, Air$radiation, xlab="logOzone", ylab="Radiation")
cor(Air$logOzone, Air$radiation)
summary(lm(logOzone ~ radiation, data=Air))
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Multiple linear regression

Multiple linear regression

Y is the dependent variable

We are interested in modelling the Y’s dependency of
the independent or explanatory variables x1,x2, ...,xp

We are modelling a linear relation between Y and
x1,x2, ...,xp, described with the regression model

Yi = β0 +β1x1,i + · · ·+βpxp,i + εi , εi ∼ N(0,σ2) and i.i.d.

Yi og εi are random variables and xj,i are variables
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Multiple linear regression

Least squares estimates

The coefficient estimates are found by minimizing:

RSS(β0,β1, . . . ,βp) =
n

∑
i=1

[yi − (β0 +β1xi,1 + · · ·+βpxi,p)]
2

The ”predicted”(= ”fitted”) are found as

ŷi = β̂0 + β̂1xi,1 + · · ·+ β̂pxi,p

And then the residuals are found as

ei = yi − ŷi

residual= observation−prediction
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Multiple linear regression

Least squares estimates - The concept!
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Multiple linear regression

Computations for MLR - no explicit formulas given!

Remark 6.6: Extract β̂i and σ̂βi from R-output
(summary(myfit))

Theorem 6.2: The t-distribution can be used for
inference for parameters

Methods 6.4 and 6.5: Hypothesis tests and Confidence
intervals for parameters based on R-output.

Everything: THE SAME as for SIMPLE linear
regression!

(In Section 6.6: Mathematical matrix based expressions
including explicit formulas. Not syllabus in course
02402)
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Multiple linear regression

Parameter interpretation in MLR (Remark 6.14)

What dose β̂i express?

The expected y-change with 1 unit xi-change

The effect of xi given the other variables

The effect of xi corrected for the other variables

The effect of xi ”other variables being equal”

The unique effect of xi

Depends on what else is in the model!!

Generally: NOT a causal/intervention effect!!
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Model selection
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Model selection

Extend the model (forward selection)

Not included in the eNote

Start with the linear regression model with the most significant
independent variable

Extend the model with the remaining independent variables (inputs)
one at a time

Stop when there is not any significant extensions possible

################################

## Extend the model

## Forward selection:

## Add wind to the model

summary(lm(logOzone ~ temperature + wind, data=Air))

## Add radiation to the model

summary(lm(logOzone ~ temperature + wind + radiation, data=Air))
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Model selection

Reduce the model (model reduction or backward selection)

Described in the eNote, section 6.5

Start with the full model

Remove the most insignificant independent variable

Stop when all prm. estimates are significant

################################
## Backward selection

## Fit the full model
summary(lm(logOzone ~ temperature + wind + radiation + noise, data=Air))
## Remove the most non-significant input, are all now significant?
summary(lm(logOzone ~ temperature + wind + radiation, data=Air))
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Model selection

Model selection

There is no fully certain method for finding the best
model!

It will require subjective decisions to select a model

Different procedures: either forward or backward
selection (or both), depends on the circumstances

Statistical measures and tests to compare model fits

In this course only backward selection is described
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Residual analysis (model validation)
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Residual analysis (model validation)

Residual analysis (model validation)

Model validation: Analyze the residuals to check that
the assumptions is met

ei ∼ N(0,σ2) is independent and identically distributed
(i.i.d.)

Same as for the simple linear regression model
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Residual analysis (model validation)

Assumption of normal distributed residuals

Make a qq-normalplot (normal score plot) to see if
they seem normal distributed

################################
## Assumption of normal distributed residuals

## Save the selected fit
fitSel <- lm(logOzone ~ temperature + wind + radiation, data=Air)

## qq-normalplot
qqnorm(fitSel$residuals)
qqline(fitSel$residuals)
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Residual analysis (model validation)

Assumption of identical distribution of residuals

Plot the residuals (ei) versus the predicted (fitted) values (ŷi)

################################
## Plot the residuals vs. predicted values

plot(fitSel$fitted.values, fitSel$residuals, xlab="Predicted values",
ylab="Residuals")

Seems like the model kan be improved!

Plot the residuals vs. the independent variables

################################
## Plot the residuals vs. the independent variables

par(mfrow=c(1,3))
plot(Air$temperature, fitSel$residuals, xlab="Temperature")
plot(Air$wind, fitSel$residuals, xlab="Wind speed")
plot(Air$radiation, fitSel$residuals, xlab="Radiation")
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Curvilinearity
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Curvilinearity

Curvilinear model

If we want to estimate a model of the type

Yi = β0 +β1xi +β2x2
i + εi

we can use a multiple linear regression model

Yi = β0 +β1xi,1 +β2xi,2 + εi

where

xi,1 = xi

xi,2 = x2
i

and apply the same methods as for multiple linear
regression.
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Curvilinearity

Extend the ozone model with appropriate curvilinear
regression

################################
## Extend the ozone model with appropriate curvilinear regression

## Make the squared wind speed
Air$windSq <- Air$wind^2
## Add it to the model
fitWindSq <- lm(logOzone ~ temperature + wind + windSq + radiation, data=Air)
summary(fitWindSq)

## Equivalently for the temperature
Air$temperature2 <- Air$temperature^2
## Add it
fitTemperatureSq <- lm(logOzone ~ temperature + temperature2 + wind + radiation, data=Air)
summary(fitTemperatureSq)

## Equivalently for the radiation
Air$radiation2 <- Air$radiation^2
## Add it
fitRadiationSq <- lm(logOzone ~ temperature + wind + radiation + radiation2, data=Air)
summary(fitRadiationSq)

## Which one was best?
## One could try to extend the model further
fitWindSqTemperaturSq <- lm(logOzone ~ temperature + temperature2 + wind + windSq + radiation, data=Air)
summary(fitWindSqTemperaturSq)

## Model validation
qqnorm(fitWindSq$residuals)
qqline(fitWindSq$residuals)
plot(fitWindSq$residuals, fitWindSq$fitted.values, pch=19)
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Confidence and prediction intervals

Overview

1 Warm up with some simple linear regression

2 Multiple linear regression

3 Model selection

4 Residual analysis (model validation)

5 Curvilinearity

6 Confidence and prediction intervals

7 Colinearity

8 The overall regression method

Khalid, Md Saifuddin (DTU Compute) Introduction to Statistics Fall 2023 27 / 35



Confidence and prediction intervals

Confidence and prediction intervals for the plane,
Method 6.9:

Extract Confidence and prediction intervals for the plane by R-function
predict. Options for confidence og prediction exist.

################################

## Confidence and prediction intervals for the curvilinear model

## Generate a new data.frame with constant temperature and radiation, but with varying wind speed

wind<-seq(1,20.3,by=0.1)

AirForPred <- data.frame(temperature=mean(Air$temperature), wind=wind,

windSq=wind^2, radiation=mean(Air$radiation))

## Calculate confidence and prediction intervals (actually bands)

CI <- predict(fitWindSq, newdata=AirForPred, interval="confidence", level=0.95)

PI <- predict(fitWindSq, newdata=AirForPred, interval="prediction", level=0.95)

## Plot them

plot(wind, CI[,"fit"], ylim=range(CI,PI), type="l",

main=paste("At temperature =",format(mean(Air$temperature),digits=3),

"and radiation =", format(mean(Air$radiation),digits=3)))

lines(wind, CI[,"lwr"], lty=2, col=2)

lines(wind, CI[,"upr"], lty=2, col=2)

lines(wind, PI[,"lwr"], lty=2, col=3)

lines(wind, PI[,"upr"], lty=2, col=3)

## legend

legend("topright", c("Prediction","95% confidence band","95% prediction band"), lty=c(1,2,2), col=1:3)
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Colinearity
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Colinearity

Colinearity

MLR breaks down if X-data has ”exact linear redundancy”

Example: Both height in cm and height in m is in the data.

Interpretation and model stability is challenged if X-data has ”near
redundancy”patterns

Example: Both weight and BMI are in the X-data (highly correlated)

With e.g. two highly correlated x-variables:

Together in the model for y none of them may have a unique effect

Separately they may have a strong effect each of them
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Colinearity

Colinearity - an illustration in R

################################
## See problems with highly correlated inputs

## Generate values for MLR
n <- 100
## First variable
x1 <- sin(0:(n-1)/(n-1)*2*2*pi) + rnorm(n, 0, 0.1)
plot(x1, type="b")
## The second variable is the first plus a little noise
x2 <- x1 + rnorm(n, 0, 0.1)
## x1 and x2 are highly correlated
plot(x1,x2)
cor(x1,x2)
## Simulate an MLR
beta0=20; beta1=1; beta2=1; sigma=1
y <- beta0 + beta1 * x1 + beta2 * x2 + rnorm(n,0,sigma)
## See scatter plots for y vs. x1, and y vs. x2
par(mfrow=c(1,2))
plot(x1,y)
plot(x2,y)
## Fit an MLR
summary(lm(y ~ x1 + x2))

## If it was an experiment and the effects could be separated in the design
x1[1:(n/2)] <- 0
x2[(n/2):n] <- 0
## Plot them
plot(x1, type="b")
lines(x2, type="b", col="red")
## Now very low correlation
cor(x1,x2)
## Simulate MLR again
y <- beta0 + beta1 * x1 + beta2 * x2 + rnorm(n,0,sigma)
## and fit MLR
summary(lm(y ~ x1 + x2))
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Colinearity

It is important how experiments
are designed!
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The overall regression method
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The overall regression method

The overall regression method box 6.16
Data

Physical/mechanistic
understanding

1: (Re)formulate linear or curve-linear model:
Yk = β0 + β1x1,k + ...+ βpxp,k + εk; εk ∼ N(0, σ2)

2: Estimate parameters with:
> fit <- lm(y ~ x1 + ... + xp)

3: Residual analysis using e.g.:
> qqnorm(residuals(fit)) # Normal assumption
> plot(fited.values(fit), residuals(fit)) # Checking for structures
> plot(x1,residuals(fit)) # Identify structures

4: Analyse model using:
> summary(model) # (p-values)
> confint(model) # (confidence interval for parameters)
Collinearity present? Simplify (using e.g. backward selection)

5: Calculate confidence and prediction interval using:
> predict(model, newdata=data.frame(x1=x1new,...,xp=xpnew),

interval="confidence")

> predict(model, newdata=data.frame(x1=x1new,...,xp=xpnew),

interval="prediction")
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The overall regression method

Agenda

1 Warm up with some simple linear regression

2 Multiple linear regression

3 Model selection

4 Residual analysis (model validation)

5 Curvilinearity

6 Confidence and prediction intervals

7 Colinearity

8 The overall regression method

Khalid, Md Saifuddin (DTU Compute) Introduction to Statistics Fall 2023 35 / 35


	Agenda
	Warm up with some simple linear regression
	Multiple linear regression
	Model selection
	Residual analysis (model validation)
	Curvilinearity
	Confidence and prediction intervals
	Colinearity
	The overall regression method

