02323 Introduction to Statistics

Lecture 8: Simple linear regression

DTU Compute Technical University of Denmark 2800 Lyngby – Denmark

Overview

- Example: Height-Weight
- 2 Linear regression model
- Least squares method
- Statistics and linear regression?
- **6** Hypothesis tests and confidence intervals for β_0 and β_1

Introduction to Statistic

- 6 Confidence and prediction intervals for the line
- Summary of 'summary($Im(y \sim x)$)'
- Correlation
- Residual Analysis: Model validation

Khalid, Md Saifuddin (DTU Compute)	Introduction to Statistics	Fall 2023	1/44
Ex	ample: Height-Weight		
Overview			

Example: Height-Weight

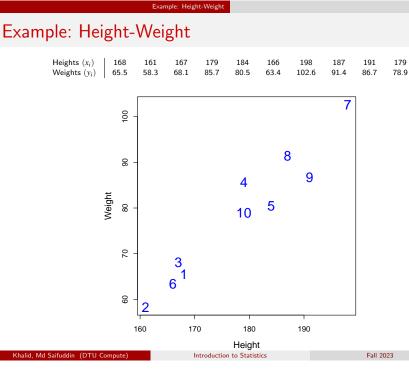
- 2 Linear regression model
- Least squares method
- O Statistics and linear regression?
- **6** Hypothesis tests and confidence intervals for β_0 and β_1
- 6 Confidence and prediction intervals for the line
- O Summary of 'summary($Im(y \sim x)$)'
- Correlation
- Residual Analysis: Model validation

Md Saifuddin (DTU Compute)

Fall 2023

Fall 2023

2/44



Example: Height-Weight

09

160

Heights (x_i) Weights (y_i)	168 65.5	161 58.3	167 68.1	179 85.7	184 80.5	166 63.4	198 102.6	187 91.4	191 86.7	179 78.9	
	100							7			
	06 -				4	8	9				
	Weight 80			,	4 10	5					
	- 20		2 /								

Example: Height-Weight

Heights (x_i)	168	161	167	179	184	166	198	187	191	179
Weights (y_i)	65.5	58.3	68.1	85.7	80.5	63.4	102.6	91.4	86.7	78.9

180 Height Introduction to Statistics

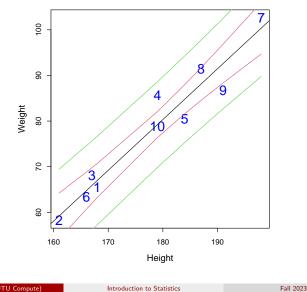
170

Example: Height-Weight

190

Fall 2023

5/44



			upic. ricigi							
	$\begin{array}{c c} Heights (x_i) \\ Weights (y_i) \end{array}$	168 161 65.5 58.3	167 68.1	179 85.7	184 80.5	166 63.4	198 102.6	187 91.4	191 86.7	179 78.9
summary(1	Lm (y ~ x))								
·	0									
##										
## Call:										
## lm(for	rmula = y	~ _X)								
##										
## Residu	lals:									
## Min										
## -5.876	3 -1.451	-0.608 2	.234	6.477	7					
##										
## Coeffi					_	_ /				
##		timate St								
## (Inter	ccept) -1									
## x		1.113	0.1	106	10.50	5.9	9e-06	***		
## ## Signif	6	O Laborado I	0 00	1 1		1 1 1 1	0.05		4 1	1 4
## 51gn11 ##	. codes:	0 ****	0.00.	1 **	0.0.	L · * ·	0.05	. 0	• 1	· 1
## ## Residu	ial stand	ard orror	. 3 0	on 8	dogra		ffroo	dom		
## Multip					0					
## F-stat	-			0		-				
mm i Stat	10010.	110 011 1	0	D1 ,	P val	Luc. (5.076	00		

Introduction to Statistics

6/44

Fall 2023

Linear regression model

Overview

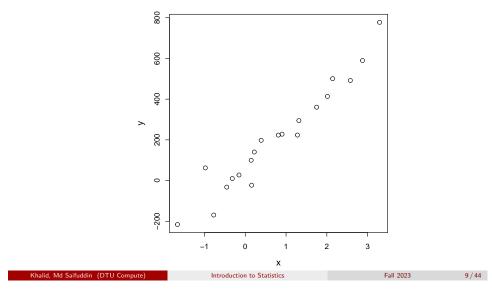
Example: Height-Weight

- 2 Linear regression model
- Least squares method
- Statistics and linear regression?
- **5** Hypothesis tests and confidence intervals for β_0 and β_1
- 6 Confidence and prediction intervals for the line
- Summary of 'summary($lm(y \sim x)$)'
- Correlation
- Residual Analysis: Model validation

Linear regression model

A scatter plot of some data

• We have *n* pairs of data points (x_i, y_i) .



Linear regression model

Express a linear regression model

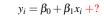
• Express the *linear regression model*:

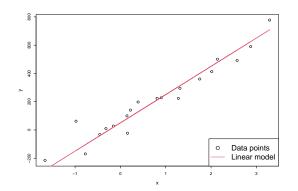
$$Y_i = \beta_0 + \beta_1 x_i + \varepsilon_i, \quad i = 1, \dots, n$$

- Y_i is the *dependent/outcome variable*. A random variable.
- *x_i* is an *independent/explanatory variable*. Deterministic numbers.
- ε_i is the deviation/error. A random variable.
- We assume that the ε_i, i = 1,...,n, are independent and identically distributed (i.i.d.), with ε_i ~ N(0, σ²).

Express a linear model

• Express a linear model:



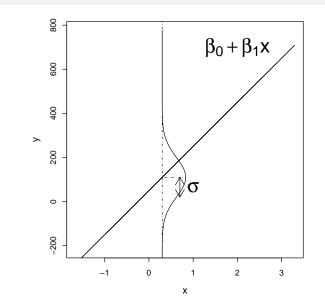


Introduction to Statistic

• Something is missing: Description of the *random variation*.

Linear regression model

Illustration of statistical model



Fall 2023

Fall 2023

10/44

Least squares method

Overview

- Example: Height-Weight
- Linear regression model
- Least squares method
- Statistics and linear regression?
- s Hypothesis tests and confidence intervals for β_0 and β_1

Introduction to Statistic

6 Confidence and prediction intervals for the line

Least squares method

- Summary of 'summary(lm(y~x))'
- Correlation
- Residual Analysis: Model validation

Illustration of model, data and fit

800

600

400

0

-200

 $\hat{\epsilon}_i = \mathbf{e}_i$

-1

0

у 200

Least squares method

- How can we estimate the parameters β_0 and β_1 ?
- \bullet Good idea: Minimize the variance σ^2 of the residuals.
- But how?
- Minimize the Residual Sum of Squares (RSS),

$$RSS(\beta_0, \beta_1) = \sum_{i=1}^n \varepsilon_i^2 = \sum_{i=1}^n (y_i - \beta_0 - \beta_1 x_i)^2.$$

Introduction to Statistics

 \hat{eta}_0 and \hat{eta}_1 minimize the RSS.

Fall 2023 14 / 44

Least squares estimator

Theorem 5.4 (here as estimators, as in the book)

Least squares method

The least squares estimators of β_0 and β_1 are given by

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n (Y_i - \bar{Y})(x_i - \bar{x})}{S_{xx}}$$
$$\hat{\beta}_0 = \bar{Y} - \hat{\beta}_1 \bar{x}$$
where $S_{xx} = \sum_{i=1}^n (x_i - \bar{x})^2$.

Introduction to Statistics

2

0

1

x

 $\beta_0 + \beta_1 x$

 $\hat{\beta}_0 + \hat{\beta}_1 x$

Data points

Linear fit

Linear model

3

Fall 2023

13/44

Least squares method

Least squares estimates

Theorem 5.4 (here as *estimates*)

The least squares estimatates of β_0 and β_1 are given by

 $\hat{\beta}_1 = \frac{\sum_{i=1}^n (y_i - \bar{y})(x_i - \bar{x})}{S_{xx}}$ $\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}$

where $S_{xx} = \sum_{i=1}^{n} (x_i - \bar{x})^2$.

	17 / 44	Fall 2023	Introduction to Statistics	Khalid, Md Saifuddin (DTU Compute)
Statistics and linear regression?			stics and linear regression?	Statis
Overview				Overview

- Example: Height-Weight
- Linear regression model
- Least squares method
- Statistics and linear regression?
- s Hypothesis tests and confidence intervals for β_0 and β_1
- 6 Confidence and prediction intervals for the line
- Summary of 'summary(lm(y~x))'
- Correlation
- Residual Analysis: Model validation

Fall 2023

R example

set.seed(100) # Generate x $x \leftarrow runif(n = 20, min = -2, max = 4)$ # Simulate u beta0 <- 50; beta1 <- 200; sigma <- 90 y <- beta0 + beta1 * x + rnorm(n = length(x), mean = 0, sd = sigma) # From here: like for the analysis of 'real data', we have data in x and y: # Scatter plot of y against x plot(x, y) # Find the least squares estimates, use Theorem 5.4 $(beta1hat <- sum((y - mean(y))*(x-mean(x))) / sum((x-mean(x))^2))$ (bet0hat <- mean(v) - beta1hat*mean(x))</pre> # Use lm() to find the estimates **lm**(y ~ x) # Plot the fitted line abline(lm(y ~ x), col="red")

Statistics and linear regression?

The parameter estimates are random variables

What if we took a new sample?

Would the values of \hat{eta}_0 and \hat{eta}_1 be the same?

No, they are random variables!

If we took a new sample, we would get another realisation.

What are the (sampling) distributions of the parameter estimates ...

... in a linear regression model w. normal distributed errors?

This may be investigated using simulation ... Let's go to R!

The distribution of \hat{eta}_0 and \hat{eta}_1

Statistics and linear regress

• $\hat{\beta}_0$ and $\hat{\beta}_1$ are normal distributed and their variance can be estimated:

Theorem 5.8 (first part)

$$V[\hat{\beta}_0] = \frac{\sigma^2}{n} + \frac{\bar{x}^2 \sigma^2}{S_{xx}}$$
$$V[\hat{\beta}_1] = \frac{\sigma^2}{S_{xx}}$$
$$Cov[\hat{\beta}_0, \hat{\beta}_1] = -\frac{\bar{x}\sigma^2}{S_{xx}}$$

• We won't use the covariance $Cov[\hat{eta}_0,\hat{eta}_1]$ for now.

or (
21 / 44

- Example: Height-Weight
- Linear regression model
- 3 Least squares method
- Statistics and linear regression?
- ${\small \small \bigcirc}$ Hypothesis tests and confidence intervals for ${\textstyle \beta_0}$ and ${\textstyle \beta_1}$
- 6 Confidence and prediction intervals for the line
- Summary of 'summary(lm(y~x))'
- Correlation
- Sesidual Analysis: Model validation

Estimates of standard deviations of \hat{eta}_0 and \hat{eta}_1

Theorem 5.8 (second part)

 σ^2 is usually replaced by its estimate, $\hat{\sigma}^2$, the *central estimator of* σ^2 :

$$\hat{\sigma}^2 = \frac{RSS(\hat{\beta}_0, \hat{\beta}_1)}{n-2} = \frac{\sum_{i=1}^n e_i^2}{n-2}$$

When the estimate of σ^2 is used, the variances also become estimates. We'll refer to them as $\hat{\sigma}^2_{\beta_0}$ and $\hat{\sigma}^2_{\beta_1}$.

Estimates of standard deviations of $\hat{\beta}_0$ and $\hat{\beta}_1$ (equations 5-43 and 5-44):

$$\hat{\sigma}_{eta_0} = \hat{\sigma} \sqrt{rac{1}{n} + rac{ar{x}^2}{S_{xx}}}; \quad \hat{\sigma}_{eta_1} = \hat{\sigma} \sqrt{rac{1}{\sum_{i=1}^n (x_i - ar{x})^2}}$$

Khalid, Md Saifuddin (DTU Compute)

Fall 2023 22

Hypothesis tests and confidence intervals for β_0 and β_1 Hypothesis tests for β_0 and β_1

We can carry out hypothesis tests for the parameters in a linear regression model:

$$\begin{array}{ll} H_{0,i}: & \beta_i = \beta_{0,i} \\ H_{1,i}: & \beta_i \neq \beta_{1,i} \end{array}$$

Theorem 5.12

Under the null-hypotheses ($eta_0=eta_{0,0}$ and $eta_1=eta_{0,1}$) the statistics

$$T_{eta_0} = rac{\hat{eta}_0 - eta_{0,0}}{\hat{\sigma}_{eta_0}}; \quad T_{eta_1} = rac{\hat{eta}_1 - eta_{0,1}}{\hat{\sigma}_{eta_1}},$$

are *t*-distributed with n-2 degrees of freedom, and inference should be based on this distribution.

Fall 2023

Hypothesis tests and confidence intervals for β_0 and β_1

Hypothesis tests for β_0 and β_1

- See Example 5.13 for an example of a hypothesis test.
- Test if the parameters are significantly different from 0:

$$H_{0,i}: \beta_i = 0, \quad H_{1,i}: \beta_i \neq 0$$

Read data into R

x <- c(168, 161, 167, 179, 184, 166, 198, 187, 191, 179) y <- c(65.5, 58.3, 68.1, 85.7, 80.5, 63.4, 102.6, 91.4, 86.7, 78.9)

Introduction to Statistics

Fit model to data
fit <- lm(y ~ x)</pre>

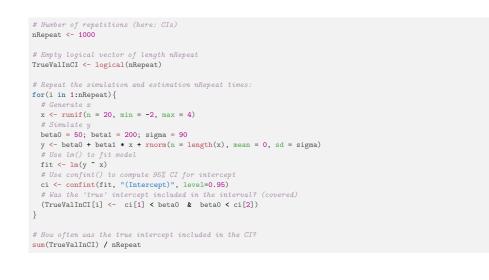
Look at model summary to find Tobs-values and p-values
summary(fit)

Khalid, Md Saifuddin (DTU Compute)

Fall 2023

Hypothesis tests and confidence intervals for β_0 and β_1

Illustration of CIs by simulation



Hypothesis tests and confidence intervals for β_0 and β_1

Confidence intervals for β_0 and β_1

Method 5.15

(1-lpha) confidence intervals for eta_0 and eta_1 are given by

$$\hat{\beta}_0 \pm t_{1-\alpha/2} \,\hat{\sigma}_{\beta_0}$$
$$\hat{\beta}_1 \pm t_{1-\alpha/2} \,\hat{\sigma}_{\beta_1}$$

where $t_{1-\alpha/2}$ is the $(1-\alpha/2)$ -quantile of a *t*-distribution with n-2 degrees of freedom.

- Remember that $\hat{\sigma}_{\beta_0}$ and $\hat{\sigma}_{\beta_1}$ may be found using equations 5-43 and 5-44.
- In R, we can find $\hat{\sigma}_{\beta_0}$ and $\hat{\sigma}_{\beta_1}$ under "Std. Error" from summary(fit).

Khalid, Md Saifuddin (DTU Compute)

Introduction to Statistics

26 / 44

Fall 2023

Overview

- Example: Height-Weight
- 2 Linear regression model
- Least squares method
- Statistics and linear regression?

Confidence and prediction intervals for the line

5 Hypothesis tests and confidence intervals for β_0 and β_1

6 Confidence and prediction intervals for the line

- Summary of 'summary($Im(y \sim x)$)'
- Correlation
- Residual Analysis: Model validation

Fall 2023

25/44

Confidence and prediction intervals for the line Confidence interval

Method 5.18 Confidence interval for $\beta_0 + \beta_1 x_0$

- The confidence interval for $\beta_0 + \beta_1 x_0$ corresponds to a confidence interval for the line at the point x_0 .
- The $100(1-\alpha)\%$ Cl is computed by

$$(\hat{\beta}_0 + \hat{\beta}_1 x_0) \pm t_{\alpha/2} \cdot \hat{\sigma} \sqrt{\frac{1}{n} + \frac{(x_0 - \bar{x})^2}{S_{xx}}}.$$

Introduction to Statistics

Confidence and prediction intervals for the line Prediction interval

Method 5.18 Prediction interval for $\beta_0 + \beta_1 x_0 + \varepsilon_0$

- The prediction interval for Y_0 is found using a value x_0 .
- This is done *before* Y_0 is observed, using

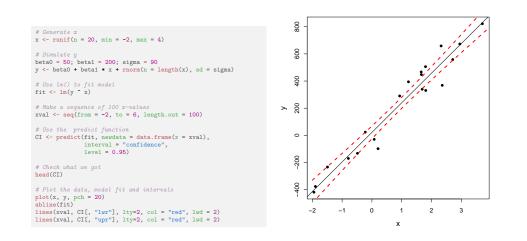
$$(\hat{\beta}_0 + \hat{\beta}_1 x_0) \pm t_{\alpha/2} \cdot \hat{\sigma} \sqrt{1 + \frac{1}{n} + \frac{(x_0 - \bar{x})^2}{S_{xx}}}$$

- In $100(1-\alpha)\%$ of cases, the prediction interval will contain the observed y_0 .
- For a given α , a prediction interval is wider than a confidence interval.

Introduction to Statistics

Confidence and prediction intervals for the line Prediction interval

Example of confidence intervals for the line



Example of prediction intervals for the line

Confidence and prediction intervals for the line Prediction interval

Generate x x <- runif(n = 20, min = -2, max = 4) # Simulate y beta0 = 50; beta1 = 200; sigma = 90</pre>

(halid, Md Saifuddin, (DTU Compute)

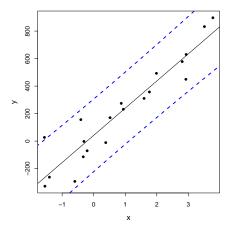
beta0 = 50; beta1 = 200; sigma = 90
y <- beta0 + beta1 * x + rnorm(n = length(x), sd = sigma)</pre>

Use lm() to fit model fit <- lm(y ~ x)

Make a sequence of 100 x-values xval <- seq(from = -2, to = 6, length.out = 100)

Check what we got head(CI)

Plot the data, model fit and intervals
plot(x, y, pch = 20)
abline(fit)
lines(xval, PI[, "lwr"], lty = 2, col = "blue", lwd = 2)
lines(xval, PI[, "upr"], lty = 2, col = "blue", lwd = 2)



Fall 2023

30/44

lid. Md Saifuddin (DTU Compute

Fall 2023

29/44

Overview

- Example: Height-Weight
- Linear regression model
- Least squares method
- Statistics and linear regression?
- \odot Hypothesis tests and confidence intervals for eta_0 and eta_1
- 6 Confidence and prediction intervals for the line

• Summary of 'summary($Im(y \sim x)$)'

- Correlation
- Residual Analysis: Model validation

Khalid, Mo	I Saifuddin	(DTU Compute)

Introduction to Statistics

Summary of 'summary(Im(y~x))'

summary($lm(y \sim x)$)

- Residuals: Min 1Q Median 3Q Max The residuals': minimum, 1st quartile, median, 3rd quartile, maximum
- Coefficients:

Estimate Std. Error t value Pr(>|t|) "stars"

The coefficients':

$\hat{\sigma}_{\beta_i}$ $t_{\rm obs}$

- $\hat{m{eta}}_i \qquad \hat{m{\sigma}}_{m{eta}_i}$ • The test is $H_{0,i}:m{eta}_i=0$ vs. $H_{1,i}:m{eta}_i
 eq 0$
- ${\ensuremath{\, \bullet \,}}$ The stars indicate which size category the $p\ensuremath{-}\ensuremath{value}$ belongs to.
- Residual standard error: XXX on XXX degrees of freedom $\varepsilon_i \sim N(0, \sigma^2)$, the output shows $\hat{\sigma}$ and ν degrees of freedom (used for hypothesis tests, Cls, Pls etc.)
- Multiple R-squared: XXX Explained variation r^2 .
- The rest we don't use in this course.

Introduction to Statistics

Fall 2023

Fall 2023

p-value

33 / 44

What more do we get from summary()?

summary(fit)

```
##
## Call:
## lm(formula = y ~ x)
##
## Residuals:
##
       Min
               1Q Median
                               30
                                      Max
## -216.86 -66.09 -7.16 58.48 293.37
##
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                  41.8
                             30.9
                                     1.35
                                              0.19
                  197.6
## x
                             16.4 12.05 4.7e-10 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 122 on 18 degrees of freedom
## Multiple R-squared: 0.89, Adjusted R-squared: 0.884
## F-statistic: 145 on 1 and 18 DF, p-value: 4.73e-10
```

Introduction to Statistics

Correlation

Overview

- Example: Height-Weight
- 2 Linear regression model
- 3 Least squares method
- Statistics and linear regression?
- ${\scriptstyle \bigcirc}$ Hypothesis tests and confidence intervals for β_0 and β_1
- 6 Confidence and prediction intervals for the line
- Summary of 'summary(lm(y~x))'
- Correlation
- Residual Analysis: Model validation

Fall 2023

Explained variation and correlation

- Explained variation in a model is r^2 , in summary "Multiple R-squared".
- Found as

$$r^2 = 1 - rac{\sum_i (y_i - \hat{y}_i)^2}{\sum_i (y_i - \bar{y})^2},$$

where $\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$.

• The proportion of the total variability explained by the model.

Explained variation and correlation

- The correlationen ρ is a measure of *linear relation* between two random variables.
- Estimated (i.e. empirical) correlation satisfies that

$$\hat{\rho} = r = \sqrt{r^2} sgn(\hat{\beta}_1)$$

where $sgn(\hat{\beta}_1)$ is: -1 for $\hat{\beta}_1 \leq 0$ and 1 for $\hat{\beta}_1 > 0$

- Hence:
 - Positive correlation when positive slope.
 - Negative correlation when negative slope.

Introduction to Statistics Fall 2023 37 / 44 Introduction to Statistics Correlation Test for significance of correlation # Read data into R • Test for significance of correlation (linear relation) between two variables # Fit model to data fit <- lm(y ~ x) $H_0: \rho = 0$ $H_1: \rho \neq 0$ # Scatter plot of data with fitted line abline(fit, col="red") is equivalent to # See summary $H_0: \beta_1 = 0$ summary(fit) $H_1: \beta_1 \neq 0$ # Correlation between x and ycor(x,y)where $\hat{\beta}_1$ is the estimated slope in a simple linear regression model $cor(x,y)^2$

Fall 2023

Example: Correlation and R^2 for height-weight data

```
x <- c(168, 161, 167, 179, 184, 166, 198, 187, 191, 179)
y <- c(65.5, 58.3, 68.1, 85.7, 80.5, 63.4, 102.6, 91.4, 86.7, 78.9)
```

```
plot(x,y, xlab = "Height", ylab = "Weight")
```

Squared correlation is the "Multiple R-squared" from summary(fit)

Introduction to Statistics

Fall 2023

38 / 44

Residual Analysis: Model validation

Overview

- Example: Height-Weight
- Linear regression model
- Least squares method
- Statistics and linear regression?
- Solution By the set of the set o

Introduction to Statistics

Fall 2023

Fall 2023

43 / 44

41 / 44

- Confidence and prediction intervals for the line
- Summary of 'summary(Im(y~x))'
- Correlation
- Residual Analysis: Model validation

Residual Analysis

Method 5.28

- Check normality assumptions with a qq-plot.
- Check (non-)systematic behavior by plotting the residuals, e_i, as a function of the fitted values ŷ_i.

Introduction to Statistics

(Method 5.29)

• Is the independence assumption reasonable?

Residual Analysis: Model validation

Khalid, Md Saifuddin (DTU Con

Fall 2023

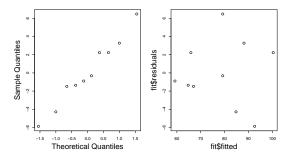
42/44

Residual Analysis: Model validation

Residual analysis in R

x <- c(168, 161, 167, 179, 184, 166, 198, 187, 191, 179)
y <- c(65.5, 58.3, 68.1, 85.7, 80.5, 63.4, 102.6, 91.4, 86.7, 78.9)
fit <- lm(y ~ x)</pre>

par(mfrow = c(1, 2))
qqnorm(fit\$residuals, main = "", cex.lab = 1.5)
plot(fit\$fitted, fit\$residuals, cex.lab = 1.5)



Introduction to Statistics

Overview

- Example: Height-Weight
- 2 Linear regression model
- Least squares method
- Statistics and linear regression?
- **6** Hypothesis tests and confidence intervals for β_0 and β_1
- 6 Confidence and prediction intervals for the line
- Summary of 'summary($Im(y \sim x)$)'
- Correlation
- Residual Analysis: Model validation