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Introduction to simulation - what is it really?

Motivation

Many (most?) relevant statistics (“computed features”) have
complicated sampling distributions. One might want to do statistical
inference for, e.g.:

The median

Quantiles in general, or perhaps IQR = Q3 −Q1

The coefficient of variation

Any non-linear function of one or more input variables

(The standard deviation)

The distribution of the data itself may be non-normal, complicating
the statistical theory for even the simple mean.

We may hope for the magic of the CLT (Central Limit Theorem).

But: We never really know whether the CLT is good enough in a given
situation - simulation can tell us!

Requires: Use of a computer with software that can do simulations. R
is a super tool for this!
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Introduction to simulation - what is it really?

What is simulation really?

(Pseudo) random numbers are generated using a computer.

A random number generator is an algorithm that can generate xi+1
from xi.

The resulting sequence of numbers appears random.

Requires a “starting point” called a seed.

Basically, the uniform distribution is simulated in this manner, and
then:

Theorem 2.51: All distributions can be extracted from the uniform

If U ∼ Uniform(0,1) and F is a distribution function for any probability
distribution, then F−1(U) follows the distribution given by F.
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Introduction to simulation - what is it really?

Example: The exponential distribution with λ = 0.5:

F(x) =
∫ x

0
f (t)dt = 1− e−0.5x
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Introduction to simulation - what is it really?

In practice, in R

Many distributions are ready for simulation, for instance:

rbinom The binomial distribution
rpois The Poisson distribution
rhyper The hypergeometric distribution
rnorm The normal distribution
rlnorm The log-normal distributions
rexp The exponential distribution
runif The uniform distribution
rt The t-distribution

rchisq The χ2-distribution
rf The F-distribution
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Introduction to simulation - what is it really? Example: Area of plates

Example: Area of plates

A company produces rectangular plates. The length of a plate (in meters),
X, is assumed to follow a normal distribution N(2,0.012). The width of a
plate (in meters), Y, is assumed to follow a normal distribution N(3,0.022).
We are interested in the area of the plates, which is given by A = XY.

What is the mean area?

What is the standard deviation of the area?

How often do such plates have an area that differs by more than 0.1
m2 from the targeted 6 m2?

(The probability of other events?)

Generally: What is the probability distribution of the random variable
A?
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Introduction to simulation - what is it really? Example: Area of plates

Example: Area of plates, solution by simulation

k = 10000 # Number of simulations

X = rnorm(k, 2, 0.01)

Y = rnorm(k, 3, 0.02)

A = X*Y

mean(A)

[1] 6

var(A)

[1] 0.0025

mean(abs(A - 6) > 0.1)

[1] 0.044
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Propagation of error

Propagation of error

Must be able to find:

σ2
f (X1,...,Xn)

= Var(f (X1, . . . ,Xn))

We already know:

σ
2
f (X1,...,Xn)

=
n

∑
i=1

a2
i σ

2
i if f (X1, . . . ,Xn) =

n

∑
i=1

aiXi (and independence)

Method ??: For non-linear functions, if X1, . . . ,Xn are independent,

σ
2
f (X1,...,Xn)

≈
n

∑
i=1

(
∂ f
∂xi

)2

σ
2
i
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Propagation of error

Example: Area of plates (continued)

We used a simulation method in the first part of the example.

Now, given two specific measurements of X and Y, x = 2.00 m and
y = 3.00 m: What is the variance of A = XY, using the error propagation
law?
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Propagation of error

Example: Area of plates (continued)

The variances are:

σ
2
1 = Var(X) = 0.012 and σ

2
2 = Var(Y) = 0.022

The function and its derivatives are:

f (x,y) = xy,
∂ f
∂x

= y,
∂ f
∂y

= x

So the result becomes:

Var(A) ≈
(

∂ f
∂x

)2

σ
2
1 +

(
∂ f
∂y

)2

σ
2
2

= y2
σ

2
1 + x2

σ
2
2

= 3.002 ·0.012 +2.002 ·0.022

= 0.0025
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Propagation of error

Propagation of error - by simulation

Method ??: Error propagation by simulation

Assume that we have actual measurements x1, . . . ,xn with known/assumed
error variances σ2

1 , . . . ,σ
2
n .

1 Simulate k outcomes of all n measurements from assumed error
distributions, e.g. N(xi,σ

2
i ): X(j)

i , j = 1 . . . ,k.

2 Calculate the standard deviation directly as the observed standard
deviation of the k simulated values of f :

ssimf (X1,...,Xn)
=

√√√√ 1
k−1

k

∑
i=1

(fj − f̄ )2

where
fj = f (X(j)

1 , . . . ,X(j)
n )
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Propagation of error

Example: Area of plates (continued)

Actually, in this example, one could deduce the variance of A theoretically:

Var(XY) = E
[
(XY)2

]
− [E(XY)]2

= E(X2)E(Y2)−E(X)2E(Y)2

=
[
Var(X)+E(X)2

][
Var(Y)+E(Y)2

]
−E(X)2E(Y)2

= Var(X)Var(Y)+Var(X)E(Y)2 +Var(Y)E(X)2

= 0.012 ×0.022 +0.012 ×32 +0.022 ×22

= 0.00000004+0.0009+0.0016
= 0.00250004
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Propagation of error

Example: Area of plates (continued)

Three different approaches:

1 The simulation based approach.

2 A theoretical derivation.

3 The analytical, but approximate, error propagation method.

The simulation approach has a number of crucial advantages:

1 It offers a simple tool to compute many other quantities than just the
standard deviation. (The theoretical derivations of these could be
much more complicated than what was shown for the variance).

2 It offers a simple tool to use any other distributions than the normal, if
we believe that they reflect reality better.

3 It does not rely on linear approximations of the true non-linear
relations.
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Parametric bootstrap Introduction to bootstrap

Bootstrapping

Bootstrapping exists in two versions:

1 Parametric bootstrap: Simulate multiple samples from the assumed
(and estimated) distribution.

2 Non-parametric bootstrap: Simulate multiple samples directly from the
data.
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Parametric bootstrap One-sample confidence interval for any feature

Example: Confidence interval for an exponential mean

Assume that we observed the following 10 call waiting times (in seconds) in
a call center:

32.6, 1.6, 42.1, 29.2, 53.4, 79.3, 2.3, 4.7, 13.6, 2.0

From the data, we estimate

µ̂ = x̄ = 26.08 and hence: λ̂ = 1/26.08 = 0.03834356

Our distributional assumption:

The waiting times come from an exponential distribution.

What is the confidence interval for µ?

Based on previous knowledge in this course: We don’t know!
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Parametric bootstrap One-sample confidence interval for any feature

Example: Confidence interval for an exponential mean

# Number of simulations

k <- 100000

# Simulate 10 exponentials with the 'right' mean k times

sim_samples <- replicate(k, rexp(10, 1/26.08))

# Compute the mean of the 10 simulated observations k times

sim_means <- apply(sim_samples, 2, mean)

# Find relevant quantiles of the k simulated means

quantile(sim_means, c(0.025, 0.975))

## 2.5% 97.5%

## 13 45
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Parametric bootstrap One-sample confidence interval for any feature

Example: Confidence interval for an exponential mean

# Make histogram of simulated means

hist(sim_means, col = "blue", nclass = 30, main = "", prob = TRUE, xlab = "Simulated means")
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Parametric bootstrap One-sample confidence interval for any feature

Example: Confidence interval for an exponential median

Assume that we observed the following 10 call waiting times (in seconds) in
a call center:

32.6, 1.6, 42.1, 29.2, 53.4, 79.3, 2.3, 4.7, 13.6, 2.0

From the data we estimate

Median = 21.4 and µ̂ = x̄ = 26.08

Our distributional assumption:

The waiting times come from an exponential distribution.

What is the confidence interval for the median?

Based on previous knowledge in this course: We don’t know!
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Parametric bootstrap One-sample confidence interval for any feature

Example: Confidence interval for an exponential median

# Number of simulations

k <- 100000

# Simulate 10 exponentials with the 'right' mean k times

sim_samples <- replicate(k, rexp(10, 1/26.08))

# Compute the median of the 10 simulated observations k times

sim_medians <- apply(sim_samples, 2, median)

# Find relevant quantiles of the k simulated medians

quantile(sim_medians, c(0.025, 0.975))

## 2.5% 97.5%

## 7 38
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Parametric bootstrap One-sample confidence interval for any feature

Example: Confidence interval for an exponential median

# Make histogram of simulated medians

hist(sim_medians, col = "blue", nclass = 30, main = "", prob = TRUE, xlab = "Simulated medians")
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Parametric bootstrap One-sample confidence interval for any feature

Confidence interval for any feature (including µ)

Method 4.7: Confidence interval for any feature θ by parametric bootstrap

Assume we have actual observations x1, . . . ,xn, and that they come from
some probability distribution with density f .

1 Simulate k samples of n observations from the assumed distribution f
where the meana is set to x̄.

2 Calculate the statistic θ̂ in each of the k samples to obtain θ̂ ∗
1 , . . . , θ̂

∗
k .

3 Find the 100(α/2)% and 100(1−α/2)% quantiles of θ̂ ∗
1 , . . . , θ̂

∗
k ,

q∗
α/2 and q∗1−α/2, to obtain the 100(1−α)% confidence interval:[
q∗

α/2, q∗1−α/2

]
aAnd otherwise chosen to match the data as well as possible: Some distributions have more

than one mean related parameter, e.g. the normal or the log-normal. For these one should use a
distribution with a variance that matches the sample variance of the data. Even more generally,
the approach would be to match the chosen distribution to the data using the so-called
maximum likelihood approach.
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Parametric bootstrap One-sample confidence interval for any feature

Example: 99% CI for Q3 assuming a normal distribution
# Heights data
x <- c(168, 161, 167, 179, 184, 166, 198, 187, 191, 179)
n <- length(x)

# Define a Q3-function
Q3 <- function(x){ quantile(x, 0.75)}

# Set number of simulations
k <- 100000

# Simulate k samples of n = 10 normals with the 'right' mean and variance
sim_samples <- replicate(k, rnorm(n, mean(x), sd(x)))

# Compute the Q3 of the n = 10 simulated observations k times
simQ3s <- apply(sim_samples, 2, Q3)

# Find the two relevant quantiles of the k simulated Q3s
quantile(simQ3s, c(0.005, 0.995))

## 0.5% 99.5%
## 173 198
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Parametric bootstrap Two-sample confidence interval assuming any distributions

Two-sample confidence interval for any feature comparison
θ1 −θ2 (including µ1 −µ2)

Method 4.10: Two-sample confidence interval for any feature comparison
θ1 −θ2 by parametric bootstrap

Assume we have actual observations x1, . . . ,xn and y1, . . . ,yn, and that they
stem from probability distributions with densities f1 and f2.

1 Simulate k sets of 2 samples of n1 and n2 observations from the
assumed distributions, setting the meansa to µ̂1 = x̄ and µ̂2 = ȳ,
respectively.

2 Calculate the difference between the features in each of the k samples:
θ̂ ∗

x1 − θ̂ ∗
y1, . . . , θ̂

∗
xk − θ̂ ∗

yk.

3 Find the 100(α/2)% and 100(1−α/2)% quantiles for these, q∗
α/2

and q∗1−α/2, to obtain the 100(1−α)% confidence interval:[
q∗

α/2, q∗1−α/2

]
aAs before
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Parametric bootstrap Two-sample confidence interval assuming any distributions

Example: Confidence interval for the difference of
exponential means

# Day 1 data
x <- c(32.6, 1.6, 42.1, 29.2, 53.4, 79.3, 2.3 , 4.7, 13.6, 2.0)
n1 <- length(x)

# Day 2 data
y <- c(9.6, 22.2, 52.5, 12.6, 33.0, 15.2, 76.6, 36.3, 110.2,

18.0, 62.4, 10.3)
n2 <- length(y)
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Parametric bootstrap Two-sample confidence interval assuming any distributions

Example: Confidence interval for the difference of
exponential means

# Set number of simulations:
k <- 100000

# Simulate k samples of each n1 = 10 and n2 = 12 exponentials
# with the 'right' means

simX_samples <- replicate(k, rexp(n1, 1/mean(x)))
simY_samples <- replicate(k, rexp(n2, 1/mean(y)))

# Compute the difference between the simulated means k times
sim_dif_means <- apply(simX_samples, 2, mean) -
apply(simY_samples, 2, mean)

# Find the relevant quantiles of the k simulated differences of means:
quantile(sim_dif_means, c(0.025, 0.975))

## 2.5% 97.5%
## -41 14
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Parametric bootstrap Two-sample confidence interval assuming any distributions

Parametric bootstrap - an overview

We assume some distribution!

Two confidence interval method boxes were given:

One-sample Two-sample
For any feature Method 4.7 Method 4.10
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Non-parametric bootstrap
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Non-parametric bootstrap

Non-parametric bootstrap - an overview

We do not assume any distribution!

Two confidence interval method boxes will be given:

One-sample Two-sample
For any feature Method 4.15 Method 4.17
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Non-parametric bootstrap One-sample confidence interval for any feature

Example: Womens’ cigarette consumption

In a study, womens’ cigarette consumption before and after giving birth is
explored. The following observations of the number of smoked cigarettes
per day were obtained:

before after before after

8 5 13 15
24 11 15 19
7 0 11 12
20 15 22 0
6 0 15 6
20 20

Compare the before and after means! (Are they different?)
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Non-parametric bootstrap One-sample confidence interval for any feature

Example: Womens’ cigarette consumption

A paired t-test setting, but with clearly non-normal data!

# Data

x1 <- c(8, 24, 7, 20, 6, 20, 13, 15, 11, 22, 15)

x2 <- c(5, 11, 0, 15, 0, 20, 15, 19, 12, 0, 6)

# Compute differences

dif <- x1-x2

dif

## [1] 3 13 7 5 6 0 -2 -4 -1 22 9

# Compute average difference

mean(dif)

## [1] 5.3
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Non-parametric bootstrap One-sample confidence interval for any feature

Example: Women’s cigarette consumption - bootstrapping

t(replicate(5, sample(dif, replace = TRUE)))

## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11]
## [1,] -2 0 9 22 0 -1 0 -2 0 3 0
## [2,] 13 3 -2 -1 -2 7 13 -4 -2 -1 5
## [3,] 9 -4 5 -4 5 3 -4 13 3 0 22
## [4,] -1 22 -2 -1 13 6 -4 0 0 -1 22
## [5,] 9 -2 13 6 9 22 0 -1 7 7 -1
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Non-parametric bootstrap One-sample confidence interval for any feature

Example: Womens’ cigarette consumption - the
non-parametric results

Let us find the 95% confidence interval for the mean change in cigarette
consumption.

k = 100000
sim_samples = replicate(k, sample(dif, replace = TRUE))
sim_means = apply(sim_samples, 2, mean)
quantile(sim_means, c(0.025,0.975))

## 2.5% 97.5%
## 1.4 9.8
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Non-parametric bootstrap One-sample confidence interval for any feature

One-sample confidence interval for any feature θ

(including µ)

Method 4.15: Confidence interval for any feature θ by non-parametric
bootstrap

Assume we have actual observations x1, . . . ,xn.

1 Simulate k samples of size n by randomly sampling from the available
data (with replacement).

2 Calculate the statistic θ̂ for each of the k samples: θ̂ ∗
1 , . . . , θ̂

∗
k .

3 Find the 100(α/2)% and 100(1−α/2)% quantiles for these, q∗
α/2

and q∗1−α/2, as the 100(1−α)% confidence interval:
[
q∗

α/2, q∗1−α/2

]
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Non-parametric bootstrap One-sample confidence interval for any feature

Example: Womens’ cigarette consumption

Let us find the 95% confidence interval for the median change in cigarette
consumption in the example from above.

k = 100000

sim_samples = replicate(k, sample(dif, replace = TRUE))

sim_medians = apply(sim_samples, 2, median)

quantile(sim_medians, c(0.025,0.975))

## 2.5% 97.5%

## -1 9
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Non-parametric bootstrap Two-sample confidence interval

Example: Tooth health and infant bottle use

In a study, it was explored whether children who had received milk from a
bottle had worse or better tooth health than those who had not received
milk from a bottle. For 19 randomly selected children, is was recorded when
they had had their first incident of caries:

bottle age bottle age bottle age

no 9 no 10 yes 16
yes 14 no 8 yes 14
yes 15 no 6 yes 9
no 10 yes 12 no 12
no 12 yes 13 yes 12
no 6 no 20
yes 19 yes 13
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Non-parametric bootstrap Two-sample confidence interval

Example: Tooth health and infant bottle use - a 95%
confidence interval for µ1 −µ2

# Reading in data

x <- c(9, 10, 12, 6, 10, 8, 6, 20, 12)

y <- c(14,15,19,12,13,13,16,14,9,12)

# 95% CI for mean difference by non-parametric bootstrap

k <- 100000

simx_samples <- replicate(k, sample(x, replace = TRUE))

simy_samples <- replicate(k, sample(y, replace = TRUE))

sim_mean_difs <- apply(simx_samples, 2, mean)-

apply(simy_samples, 2, mean)

quantile(sim_mean_difs, c(0.025,0.975))

## 2.5% 97.5%

## -6.21 -0.11
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Non-parametric bootstrap Two-sample confidence interval

Two-sample confidence interval for θ1 −θ2 (including
µ1 −µ2) by non-parametric bootstrap

Method 4.17: Two-sample confidence interval for θ1 −θ2 by
non-parametric bootstrap

Assume we have actual observations x1, . . . ,xn and y1, . . . ,yn.

1 Randomly draw k sets of 2 samples of n1 and n2 observations from the
respective groups of data (with replacement).

2 Calculate the difference between the features in each of the k samples:
θ̂ ∗

x1 − θ̂ ∗
y1, . . . , θ̂

∗
xk − θ̂ ∗

yk.

3 Find the 100(α/2)% and 100(1−α/2)% quantiles for these, q∗
α/2

and q∗1−α/2, to obtain the 100(1−α)% confidence interval:[
q∗

α/2, q∗1−α/2

]
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Non-parametric bootstrap Two-sample confidence interval

Example: Tooth health and infant bottle use - a 99%
confidence interval for the difference of medians

k <- 100000

simx_samples <- replicate(k, sample(x, replace = TRUE))

simy_samples <- replicate(k, sample(y, replace = TRUE))

sim_median_difs <- apply(simx_samples, 2, median)-

apply(simy_samples, 2, median)

quantile(sim_median_difs, c(0.005,0.995))

## 0.5% 99.5%

## -8 0

Khalid, Md Saifuddin (DTU Compute) Introduction to Statistics Fall 2023 42 / 44

Non-parametric bootstrap Two-sample confidence interval

Bootstrapping - an overview

We were given 4 similar method boxes

1 With distribution assumptions or not (parametric or non-parametric).

2 For one- or two-sample analysis.

Note:

Means also included in other features. Or: These methods may be used not
only for means!

Hypothesis testing also possible

We can do hypothesis testing by looking at the confidence intervals!
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Non-parametric bootstrap Two-sample confidence interval

Overview

1 Introduction to simulation - what is it really?
Example: Area of plates

2 Propagation of error

3 Parametric bootstrap
Introduction to bootstrap
One-sample confidence interval for any feature
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