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Overview

@ Introduction to simulation - what is it really?
o Example: Area of plates
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Overview

@ Introduction to simulation - what is it really?

o Example: Area of plates

@ Propagation of error

@ Parametric bootstrap

o Introduction to bootstrap

o One-sample confidence interval for any feature

o Two-sample confidence interval assuming any
distributions

@ Non-parametric bootstrap

o One-sample confidence interval for any feature
o Two-sample confidence interval
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Motivation

Many (most?) relevant statistics (“computed features”) have
complicated sampling distributions. One might want to do statistical
inference for, e.g.:

o The median

o Quantiles in general, or perhaps IQR = 03 — Q)

o The coefficient of variation

o Any non-linear function of one or more input variables
o (The standard deviation)

The distribution of the data itself may be non-normal, complicating
the statistical theory for even the simple mean.

We may hope for the magic of the CLT (Central Limit Theorem).

But: We never really know whether the CLT is good enough in a given
situation - simulation can tell us!

Requires: Use of a computer with software that can do simulations. R
is a super tool for this!
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What is simulation really?

from x;.

then:

Theorem 2.51: All distributions can be extracted from the uniform
If U ~ Uniform(0,1) and F is a distribution function for any probability

The resulting sequence of numbers appears random.

Requires a “starting point” called a seed.

(Pseudo) random numbers are generated using a computer.

A random number generator is an algorithm that can generate x;4

Basically, the uniform distribution is simulated in this manner, and

distribution, then F~!(U) follows the distribution given by F.
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Introduction to simulation - what is it really?

In practice, in R

Many distributions are ready for simulation, for instance:

rbinom
rpois
rhyper
rnorm
rlnorm
rexp
runif
rt
rchisq
rf

The binomial distribution

The Poisson distribution

The hypergeometric distribution
The normal distribution

The log-normal distributions
The exponential distribution
The uniform distribution

The t-distribution

The x2-distribution

The F-distribution

Khalid, Md Saifuddin (DTU Compute)

Introduction to Statistics

Fall 2023

Fall 2023

5/44

7/44

Introduction to simulation - what is it really?

Example: The exponential distribution with A = 0.5:

F(x) = /Oxf(t)d; | _ 05
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Exponential outcomes
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A company produces rectangular plates. The length of a plate (in meters),

X, is assumed to follow a normal distribution N(2,0.01%). The width of a

plate (in meters), Y, is assumed to follow a normal distribution N(3,0.022).

We are interested in the area of the plates, which is given by A = XY.

o What is the mean area?

o What is the standard deviation of the area?

e How often do such plates have an area that differs by more than 0.1

m? from the targeted 6 m??

o (The probability of other events?)

o Generally: What is the probability distribution of the random variable

A7
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Example: Area of plates
Example: Area of plates, solution by simulation

10000

rnorm(k, 2, 0.01)
rnorm(k, 3, 0.02)
X*Y

LS
Il

mean (A)
[1] 6

var (A)
[1] 0.0025

mean(abs(A - 6) > 0.1)

[1] 0.044
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Propagation of error
Must be able to find:
2 —
OF (X, X)) = Var(f(X1,...,Xn))
We already know:
2 < 2.2 <
O (X)) = Zai o if f(Xi,....X,)= Za,-Xl- (and independence)
i=1 i=1 )
Method ??: For non-linear functions, if X;,...,X, are independent,
2
of
2 ~ HJ 2
Gf(Xl?"'7Xn) ~ E (axi Gl
=
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Overview

@ Propagation of error

Introduction to Statistics Fall 2023
Example: Area of plates (continued)

We used a simulation method in the first part of the example.

Now, given two specific measurements of X and ¥, x =2.00 m and
y=3.00 m: What is the variance of A = XY, using the error propagation
law?

Introduction to Statistics Fall 2023
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Example: Area of plates (continued)

The variances are:

6% = Var(X) = 0.01% and 65 = Var(Y) = 0.02?

The function and its derivatives are:

_ 9o
f(x7y)_xy7£_yaaiy_x

So the result becomes:

Var(A)

%

r\? If\?
(5) et+(5)
y2612+x2622

= 3.00%-0.01% +2.00%-0.02°

= 0.0025
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Example: Area of plates (continued)

Actually, in this example, one could deduce the variance of A theoretically:

Var(XY) = E [(XY)Q} —[E(XY))?
= E(X?E(Y?) —E(X)%*E(Y)?
- [Var(x) + E(X)z} [Var(Y) + E(Y)z] —E(X)2E(Y)?
= Var(X)Var(Y) + Var(X)E(Y)? 4 Var(Y)E(X)?

= 0.01% x0.022 +0.01% x 3% +0.02% x 2?

= 0.00000004 +0.0009 + 0.0016
= 0.00250004
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Propagation of error - by simulation

Method ?7?: Error propagation by simulation

Assume that we have actual measurements xi,...,x, with known/assumed

error variances 612, ey 63.

@ Simulate k outcomes of all n measurements from assumed error
distributions, e.g. N(x;,02): XV j=1... k.

1

@ Calculate the standard deviation directly as the observed standard
deviation of the k simulated values of f:

sim 1 a 7
SF(X1Xn) = k—1 Z(}s —f)?
i=1

where

f=rx? o x9)
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Example: Area of plates (continued)

Three different approaches:
@ The simulation based approach.
@ A theoretical derivation.

© The analytical, but approximate, error propagation method.

The simulation approach has a number of crucial advantages:

@ It offers a simple tool to compute many other quantities than just the
standard deviation. (The theoretical derivations of these could be
much more complicated than what was shown for the variance).

Q@ It offers a simple tool to use any other distributions than the normal, if
we believe that they reflect reality better.

@ It does not rely on linear approximations of the true non-linear
relations.
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Overview

© Parametric bootstrap
o Introduction to bootstrap
o One-sample confidence interval for any feature
o Two-sample confidence interval assuming any
distributions
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P R
Example: Confidence interval for an exponential mean

Assume that we observed the following 10 call waiting times (in seconds) in
a call center:

32.6, 1.6, 42.1, 29.2, 53.4, 79.3, 2.3, 4.7, 13.6, 2.0

From the data, we estimate

fl =X =26.08 and hence: A = 1/26.08 = 0.03834356

Our distributional assumption:

The waiting times come from an exponential distribution.

What is the confidence interval for pt7?

Based on previous knowledge in this course: We don’t know!

Khalid, Md Saifuddin (DTU Compute) Introduction to Statistics Fall 2023 19/44

Bootstrapping

Bootstrapping exists in two versions:

@ Parametric bootstrap: Simulate multiple samples from the assumed
(and estimated) distribution.

@ Non-parametric bootstrap: Simulate multiple samples directly from the
data.

o
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P R
Example: Confidence interval for an exponential mean

k <- 100000

sim_samples <- replicate(k, rexp(10, 1/26.08))

sim_means <- apply(sim_samples, 2, mean)

quantile(sim_means, c(0.025, 0.975))

## 2.5% 97.5%
## 13 45
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REICTNSGTRNISEE I One-sample confidence interval for any feature REICTNEGIRNIIEE I One-sample confidence interval for any feature

Example: Confidence interval for an exponential mean Example: Confidence interval for an exponential median
hist(sim_means, col = "blue", nclass = 30, main = "", prob = TRUE, xlab = "Simulated means") . .. . . .
Assume that we observed the following 10 call waiting times (in seconds) in
2 a call center:
32.6, 1.6,42.1,29.2, 53.4, 79.3, 2.3, 4.7, 13.6, 2.0
From the data we estimate
> 5 Median =21.4 and I =X =26.08
S Our distributional assumption:
The waiting times come from an exponential distribution.
What is the confidence interval for the median?
g - Based on previous knowledge in this course: We don't know!
T T T 1 y
20 40 60 80
Simulated means
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I T el One-sample confidence interval for any feature I T iell One-sample confidence interval for any feature

Example: Confidence interval for an exponential median Example: Confidence interval for an exponential median
hist(sim_medians, col = "blue", nclass = 30, main = "", prob = TRUE, xlab = "Simulated medians")

k <- 100000

sim_samples <- replicate(k, rexp(10, 1/26.08)) g1

sim_medians <- apply(sim_samples, 2, median) §

quantile(sim_medians, c(0.025, 0.975)) =

## 2.5% 97.5% g

## 7 38 T T T T 1

0 20 40 60 80

Simulated medians
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One-sample confidence interval for any feature One-sample confidence interval for any feature
Confidence interval for any feature (including u) Example: 99% Cl for Q3 assuming a normal distribution

Method 4.7: Confidence interval for any feature 6 by parametric bootstrap % < o(168, 161, 167, 179, 184, 166, 198, 187, 191, 179)

Assume we have actual observations xi,...,x,, and that they come from n <- length(x)
some probability distribution with density f.

@ Simulate k samples of n observations from the assumed distribution f Q3 <- function(x){ quantile(x, 0.75)}

where the mean? is set to X.

N N A k <- 100000

@ Calculate the statistic 6 in each of the k samples to obtain 6;,..., 6.

© Find the 100(06/2)% and 100(1 — OC/Z)% quantiles of él*, ey A]:, sim_samples <- replicate(k, rnorm(n, mean(x), sd(x)))
q:‘x/z and qia/z’ to obtain the 100(1 — )% confidence interval:
|:qfx/2’ qT—(x/2:| simQ3s <- apply(sim_samples, 2, Q3)

?And otherwise chosen to match the data as well as possible: Some distributions have more
than one mean related parameter, e.g. the normal or the log-normal. For these one should use a
distribution with a variance that matches the sample variance of the data. Even more generally,
the approach would be to match the chosen distribution to the data using the so-called

quantile(simQ3s, c(0.005, 0.995))

## 0.5% 99.5%

maximum likelihood approach. ## 173 198
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Two-sample confidence interval for any feature comparison Example: Confidence interval for the difference of
0, — 6, (including u; — ) exponential means

Method 4.10: Two-sample confidence interval for any feature comparison
61 — 6, by parametric bootstrap

Assume we have actual observations x1,...,x, and yi,...,y,, and that they

stem from probability distributions with densities f; and f>.
_ _ x <- c(32.6, 1.6, 42.1, 29.2, 53.4, 79.3, 2.3 , 4.7, 13.6, 2.0)
@ Simulate k sets of 2 samples of n; and n, observations from the nl <- length(x)

assumed distributions, setting the means? to fl; =X and [I, =,
respectively. y <- c(9.6, 22.2, 52.5, 12.6, 33.0, 15.2, 76.6, 36.3, 110.2,

18.0, 62.4, 10.3)

@ Calculate the difference between the features in each of the k samples: n2 <= length(y)

i — 65, 05— 05
@ Find the 100(/2)% and 100(1 — @ /2)% quantiles for these, qa/z

and ¢j_, ,, to obtain the 100(1 — a)% confidence interval:

* *
Do)20 Di-a)2
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Parametric bootstrap [EEE pl fid interval ing any distributions

Example: Confidence interval for the difference of
exponential means

k <- 100000

simX_samples <- replicate(k, rexp(nl, 1/mean(x)))
simY_samples <- replicate(k, rexp(n2, 1/mean(y)))

sim_dif_means <- apply(simX_samples, 2, mean) -
apply(simY_samples, 2, mean)
quantile(sim_dif_means, c(0.025, 0.975))

## 2.5}, 97.5%
#it -41 14
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Overview

© Non-parametric bootstrap
o One-sample confidence interval for any feature
o Two-sample confidence interval
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Parametric bootstrap [EEE pl fid interval ing any distributions

Parametric bootstrap - an overview

We assume some distribution!

Two confidence interval method boxes were given:

One-sample Two-sample
For any feature | Method 4.7 Method 4.10

Introduction to Statistics Fall 2023
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Non-parametric bootstrap - an overview

We do not assume any distribution!

Two confidence interval method boxes will be given:

One-sample  Two-sample
For any feature | Method 4.15 Method 4.17

30/ 44
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\HELETET STl JIIS{E Il One-sample confidence interval for any feature

Example: Womens' cigarette consumption

In a study, womens' cigarette consumption before and after giving birth is
explored. The following observations of the number of smoked cigarettes

per day were obtained:

before | after || before | after
8 5 13 15
24 11 15 19
7 0 11 12
20 15 22 0
6 0 15 6
20 20

Compare the before and after means! (Are they different?)
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Example: Women's cigarette consumption - bootstrapping

t(replicate(5, sample(dif, replace = TRUE)))

##
##
##
#i#
#i#
##

[1,]
[2,]
[3,]
[4,]
[5,]

(,11 [,21 [,3] [,4] [,8] [,e] [,71 [,8] [,9] [,10] [,11]

=2
13
9
-1
9

0
3
-4
22
=2

9
=2
5
-2
13

22
=il
-4
-1

6
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6
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0
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(\HELETET Rl JIIS{E Il One-sample confidence interval for any feature

Example: Womens' cigarette consumption

A paired t-test setting, but with clearly non-normal data!

xl <- c(8, 24, 7, 20, 6, 20, 13, 15, 11, 22, 15)

x2 <- c(5, 11, 0, 15, 0, 20, 15, 19, 12,

dif <- x1-x2
dif

## [1]

mean (dif)

## [1] 5.3
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Example: Womens' cigarette consumption - the

non-parametric results

Let us find the 95% confidence interval for the mean change in cigarette

consumption.

k = 100000

sim_samples = replicate(k, sample(dif, replace = TRUE))
sim_means = apply(sim_samples, 2, mean)
quantile(sim_means, c(0.025,0.975))

## 2.5% 97.5%
# 1.4 9.8
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One-sample confidence interval for any feature One-sample confidence interval for any feature
One-sample confidence interval for any feature 0 Example: Womens' cigarette consumption
(including 1)

Let us find the 95% confidence interval for the median change in cigarette

Method 4.15: Confidence interval for any feature 6 by non-parametric .
consumption in the example from above.

bootstrap

Assume we have actual observations xi,...,x;,. k = 100000

@ Simulate k samples of size n by randomly sampling from the available SER LA S RO, S IR R R Sl

data(mﬁﬂ1repbcement) sim_medians = apply(sim_samples, 2, median)

quantile(sim_medians, c¢(0.025,0.975))

@ Calculate the statistic @ for each of the k samples: él*, ceey é,:
## 2.5}, 97.5)

@ Find the 100(/2)% and 100(1 — a/2)% quantiles for these, e ## -1 9

and q’l‘_a/2, as the 100(1 — @)% confidence interval: [qz/z, qT_a/z]
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Example: Tooth health and infant bottle use Example: Tooth health and infant bottle use - a 95%

confidence interval for u; —

In a study, it was explored whether children who had received milk from a

bottle had worse or better tooth health than those who had not received x <= c(9, 10, 12, 6, 10, 8, 6, 20, 12)
milk from a bottle. For 19 randomly selected children, is was recorded when y <- c(14,15,19,12,13,13,16,14,9,12)
they had had their first incident of caries:

bottle | age || bottle | age || bottle | age

k <- 100000
no 9 no 10 yes 16 ) )
ves 14 no 8 yes 14 simx_samples <- replicate(k, sample(x, replace = TRUE))
yes 15 no 6 yes 9 simy_samples <- replicate(k, sample(y, replace = TRUE))

sim_mean_difs <- apply(simx_samples, 2, mean)-
apply(simy_samples, 2, mean)
quantile(sim_mean_difs, c(0.025,0.975))

no 10 yes 12 no 12
no 12 yes 13 yes 12
no 6 no 20
yes 19 yes 13 ## 2.5% 97.5%

## -6.21 -0.11
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NEDELETET SN IE I  Two-sample confidence interval NEHELETETISHTEIIIS eI Two-sample confidence interval

Two-sample confidence interval for 6; — 6, (including Example: Tooth health and infant bottle use - a 99%
U1 — lp) by non-parametric bootstrap confidence interval for the difference of medians

Method 4.17: Two-sample confidence interval for 68, — 6, by
non-parametric bootstrap

Assume we have actual observations xi,...,x, and yi,..., V. k <= 100000
simx_samples <- replicate(k, sample(x, replace = TRUE))
o Randorply draw k sets of 2 s‘jamples of n1 and ny observations from the simy_samples <- replicate(k, sample(y, replace = TRUE))
respective groups of data (with replacement). sim_median_difs <- apply(simx_samples, 2, median)-

@ Calculate the difference between the features in each of the k samples: gLy iy sauplon, 2. uedilsn)

Ax _ A* Ax _ A* quantile(sim_median_difs, c(0.005,0.995))

x1 ylot Yxk yk*
@ Find the 100(a/2)% and 100(1 — & /2)% quantiles for these, 9o ## 0.5k 99.5%

and ¢j_, ,, to obtain the 100(1 — a)% confidence interval: i -8 0

* *

[%/27 qlfa/Z}
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Bootstrapping - an overview Overview

© Introduction to simulation - what is it really?

We were given 4 similar method boxes o Example: Area of plates
@ With distribution assumptions or not (parametric or non-parametric). (%] Propagation of error
@ For one- or two-sample analysis. © Parametric bootstrap

o Introduction to bootstrap
o One-sample confidence interval for any feature
o Two-sample confidence interval assuming any

Note:

Means also included in other features. Or: These methods may be used not
only for means!

/ distributions
Hypothesis testing also possible (% ] Non-parametric bootstrap
We can do hypothesis testing by looking at the confidence intervals! o One-sample confidence interval for any feature

o Two-sample confidence interval
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