02323 Introduction to Statistics

Lecture 7: Simulation-based statistics

DTU Compute Technical University of Denmark 2800 Lyngby – Denmark

Khalid, Md Saifuddin (DTU Compute) Introduction to Statistics Fall 2023 Introduction to simulation - what is it really?

Overview

Introduction to simulation - what is it really?

- Example: Area of plates
- Propagation of error
- Parametric bootstrap
 - Introduction to bootstrap
 - One-sample confidence interval for any feature
 - Two-sample confidence interval assuming any distributions
- Non-parametric bootstrap
 - One-sample confidence interval for any feature
 - Two-sample confidence interval

Khalid, Md Saifuddin (DTU Compute)

3 / 44

Fall 2023

Overview

- Introduction to simulation what is it really?
 - Example: Area of plates
- Propagation of error
- Parametric bootstrap
 - Introduction to bootstrap
 - One-sample confidence interval for any feature
 - Two-sample confidence interval assuming any distributions
- Non-parametric bootstrap
 - One-sample confidence interval for any feature
 - Two-sample confidence interval

Introduction to simulation - what is it really

Motivation

- Many (most?) relevant statistics ("computed features") have complicated sampling distributions. One might want to do statistical inference for, e.g.:
 - The median
 - Quantiles in general, or perhaps $IQR = Q_3 Q_1$
 - The coefficient of variation
 - Any non-linear function of one or more input variables
 - (The standard deviation)
- The distribution of the data itself may be non-normal, complicating the statistical theory for even the simple mean.
- We may hope for the magic of the CLT (Central Limit Theorem).
- But: We never *really* know whether the CLT is good enough in a given situation simulation can tell us!
- Requires: Use of a computer with software that can do simulations. R is a super tool for this!

Introduction to Statistics

Fall 2023

oduction to simulation - what is it really?

What is simulation really?

- (Pseudo) random numbers are generated using a computer.
- A random number generator is an algorithm that can generate x_{i+1} from x_i .
- The resulting sequence of numbers appears random.
- Requires a "starting point" called a seed.
- Basically, the uniform distribution is simulated in this manner, and then:

Theorem 2.51: All distributions can be extracted from the uniform

If $U \sim \text{Uniform}(0,1)$ and F is a distribution function for any probability distribution, then $F^{-1}(U)$ follows the distribution given by F.

Khalid, Md Saifuddin (DTU Compute)	Introduction to Statistics	Fall 2023	5 / 44
Introduction to simu	lation - what is it really?		
In practice in R			
in practice, in it			

Many distributions are ready for simulation, for instance:

rbinom	The binomial distribution
rpois	The Poisson distribution
rhyper	The hypergeometric distribution
rnorm	The normal distribution
rlnorm	The log-normal distributions
rexp	The exponential distribution
runif	The uniform distribution
rt	The t-distribution
rchisq	The χ^2 -distribution
rf	The F-distribution

Example: The exponential distribution with $\lambda = 0.5$:

Example: Area of plates

A company produces rectangular plates. The length of a plate (in meters), X, is assumed to follow a normal distribution $N(2,0.01^2)$. The width of a plate (in meters), Y, is assumed to follow a normal distribution $N(3,0.02^2)$. We are interested in the area of the plates, which is given by A = XY.

- What is the mean area?
- What is the standard deviation of the area?
- How often do such plates have an area that differs by more than 0.1 m^2 from the targeted 6 m²?
- (The probability of other events?)
- Generally: What is the probability distribution of the random variable *A*?

Introduction to Statistics

Fall 2023

Fall 2023

Introduction to simulation - what is it really? Example: Area of plates

Example: Area of plates, solution by simulation

k = 10000 # Number of si	mulations		
X = rnorm(k, 2, 0.01)			
Y = rnorm(k, 3, 0.02)			
A = X * Y			
mean(A)			
[1] 6			
var(A)			
[1] 0.0025			
mean(abs(A - 6) > 0.1)			
[1] 0.044			
Khalid, Md Saifuddin (DTU Compute)	Introduction to Statistics	Fall 2023	9 / 44

Propagation of error

Propagation of error

Must be able to find:

We already know:

$$\sigma_{f(X_1,\ldots,X_n)}^2 = \sum_{i=1}^n a_i^2 \sigma_i^2 \quad \text{if} \quad f(X_1,\ldots,X_n) = \sum_{i=1}^n a_i X_i \text{ (and independence)}$$

Method **??**: For non-linear functions, if X_1, \ldots, X_n are independent,

$$\sigma_{f(X_1,...,X_n)}^2 \approx \sum_{i=1}^n \left(\frac{\partial f}{\partial x_i}\right)^2 \sigma_i^2$$

Overview

- Introduction to simulation what is it really?
 - Example: Area of plates

Propagation of error

- Parametric bootstrap
 - Introduction to bootstrap
 - One-sample confidence interval for any feature
 - Two-sample confidence interval assuming any distributions
- Non-parametric bootstrap
 - One-sample confidence interval for any feature

Introduction to Statistic

• Two-sample confidence interval

Propagation of error

Example: Area of plates (continued)

We used a simulation method in the first part of the example.

Now, given two specific measurements of X and Y, x = 2.00 m and y = 3.00 m: What is the variance of A = XY, using the error propagation law?

Fall 2023

Fall 2023

Propagation of error

Example: Area of plates (continued)

The variances are:

$$\sigma_1^2 = \mathsf{Var}(X) = 0.01^2$$
 and $\sigma_2^2 = \mathsf{Var}(Y) = 0.02^2$

The function and its derivatives are:

$$f(x,y) = xy, \ \frac{\partial f}{\partial x} = y, \ \frac{\partial f}{\partial y} = x$$

So the result becomes:

$$Var(A) \approx \left(\frac{\partial f}{\partial x}\right)^2 \sigma_1^2 + \left(\frac{\partial f}{\partial y}\right)^2 \sigma_2^2$$

= $y^2 \sigma_1^2 + x^2 \sigma_2^2$
= $3.00^2 \cdot 0.01^2 + 2.00^2 \cdot 0.02^2$
= 0.0025

Propagation of error

Example: Area of plates (continued)

Actually, in this example, one *could* deduce the variance of A theoretically:

$$Var(XY) = E[(XY)^{2}] - [E(XY)]^{2}$$

= $E(X^{2})E(Y^{2}) - E(X)^{2}E(Y)^{2}$
= $[Var(X) + E(X)^{2}][Var(Y) + E(Y)^{2}] - E(X)^{2}E(Y)^{2}$
= $Var(X)Var(Y) + Var(X)E(Y)^{2} + Var(Y)E(X)^{2}$
= $0.01^{2} \times 0.02^{2} + 0.01^{2} \times 3^{2} + 0.02^{2} \times 2^{2}$
= $0.00000004 + 0.0009 + 0.0016$
= 0.00250004

Propagation of error - by simulation

Method ??: Error propagation by simulation

Assume that we have actual measurements x_1, \ldots, x_n with known/assumed error variances $\sigma_1^2, \ldots, \sigma_n^2$.

- Simulate k outcomes of all n measurements from assumed error distributions, e.g. N(x_i, σ_i²): X_i^(j), j = 1...,k.
- Calculate the standard deviation directly as the observed standard deviation of the k simulated values of f:

$$s_{f(X_1,...,X_n)}^{sim} = \sqrt{\frac{1}{k-1}\sum_{i=1}^k (f_j - \bar{f})^2}$$

 $f_i = f(X_1^{(j)}, \dots, X_n^{(j)})$

where

Introduction to Statistics

14 / 44

Fall 2023

Propagation of error

Example: Area of plates (continued)

Three different approaches:

- The simulation based approach.
- A theoretical derivation.
- The analytical, but approximate, error propagation method.

The simulation approach has a number of crucial advantages:

- It offers a simple tool to compute many other quantities than just the standard deviation. (The theoretical derivations of these could be much more complicated than what was shown for the variance).
- It offers a simple tool to use any other distributions than the normal, if we believe that they reflect reality better.

Introduction to Statistics

 It does not rely on linear approximations of the true non-linear relations.

16/44

Introduction to Statistics

15 / 44

Fall 2023

Parametric bootstrap

Overview

- Introduction to simulation what is it really?
 - Example: Area of plates

Propagation of error

Parametric bootstrap

- Introduction to bootstrap
- One-sample confidence interval for any feature
- Two-sample confidence interval assuming any distributions
- Non-parametric bootstrap
 - One-sample confidence interval for any feature

Introduction to Statistic

• Two-sample confidence interval

Parametric bootstrap One-sample confidence interval for any feature

Example: Confidence interval for an exponential mean

Assume that we observed the following 10 call waiting times (in seconds) in a call center:

32.6, 1.6, 42.1, 29.2, 53.4, 79.3, 2.3, 4.7, 13.6, 2.0

From the data, we estimate

 $\hat{\mu} = \bar{x} = 26.08$ and hence: $\hat{\lambda} = 1/26.08 = 0.03834356$

Our distributional assumption:

The waiting times come from an exponential distribution.

What is the confidence interval for μ ?

Based on previous knowledge in this course: We don't know!

Fall 2023

Fall 2023

Fall 2023

Bootstrapping

Bootstrapping exists in two versions:

- Parametric bootstrap: Simulate multiple samples from the assumed (and estimated) distribution.
- Non-parametric bootstrap: Simulate multiple samples directly from the data.

Introduction to Statistics

Parametric bootstrap One-sample confidence interval for any feature

Fall 2023

Example: Confidence interval for an exponential mean

Number of simulations
k <- 100000</pre>

Simulate 10 exponentials with the 'right' mean k times
sim_samples <- replicate(k, rexp(10, 1/26.08))</pre>

Compute the mean of the 10 simulated observations k times
sim_means <- apply(sim_samples, 2, mean)</pre>

Find relevant quantiles of the k simulated means
quantile(sim_means, c(0.025, 0.975))

2.5% 97.5% ## 13 45

Parametric bootstrap One-sample confidence interval for any feature

Example: Confidence interval for an exponential mean

Make histogram of simulated means hist(sim_means, col = "blue", nclass = 30, main = "", prob = TRUE, xlab = "Simulated means")

Parametric bootstrap One-sample confidence interval for any feature

Example: Confidence interval for an exponential median

Number of simulations k <- 100000

Simulate 10 exponentials with the 'right' mean k times sim_samples <- replicate(k, rexp(10, 1/26.08))</pre>

Compute the median of the 10 simulated observations k times sim_medians <- apply(sim_samples, 2, median)</pre>

Find relevant quantiles of the k simulated medians quantile(sim_medians, c(0.025, 0.975))

2.5% 97.5% ## 38

Fall 2023

Example: Confidence interval for an exponential median

Assume that we observed the following 10 call waiting times (in seconds) in a call center:

32.6, 1.6, 42.1, 29.2, 53.4, 79.3, 2.3, 4.7, 13.6, 2.0

From the data we estimate

Median = 21.4 and $\hat{\mu} = \bar{x} = 26.08$

Our distributional assumption:

The waiting times come from an exponential distribution.

What is the confidence interval for the median?

Based on previous knowledge in this course: We don't know!

Fall 2023

Parametric bootstrap One-sample confidence interval for any feature

Example: Confidence interval for an exponential median

Introduction to Statistic

Make histogram of simulated medians

hist(sim_medians, col = "blue", nclass = 30, main = "", prob = TRUE, xlab = "Simulated medians")

Parametric bootstrap One-sample confidence interval for any feature

Confidence interval for any feature (including μ)

Method 4.7: Confidence interval for any feature θ by parametric bootstrap Assume we have actual observations x_1, \ldots, x_n , and that they come from some probability distribution with density f.

- Simulate k samples of n observations from the assumed distribution f where the mean^a is set to x̄.
- Calculate the statistic $\hat{\theta}$ in each of the k samples to obtain $\hat{\theta}_1^*, \dots, \hat{\theta}_k^*$.
- Find the $100(\alpha/2)\%$ and $100(1-\alpha/2)\%$ quantiles of $\hat{\theta}_1^*, \ldots, \hat{\theta}_k^*$, $q_{\alpha/2}^*$ and $q_{1-\alpha/2}^*$, to obtain the $100(1-\alpha)\%$ confidence interval: $\left[q_{\alpha/2}^*, q_{1-\alpha/2}^*\right]$

^aAnd otherwise chosen to match the data as well as possible: Some distributions have more than one mean related parameter, e.g. the normal or the log-normal. For these one should use a distribution with a variance that matches the sample variance of the data. Even more generally, the approach would be to match the chosen distribution to the data using the so-called *maximum likelihood* approach.

```
Khalid, Md Saifuddin (DTU Compute)
```

Introduction to Statistics

Fall 2023

Parametric bootstrap Two-sample confidence interval assuming any distributions

Two-sample confidence interval for any feature comparison $\theta_1 - \theta_2$ (including $\mu_1 - \mu_2$)

Method 4.10: Two-sample confidence interval for any feature comparison $\theta_1 - \theta_2$ by parametric bootstrap

Assume we have actual observations x_1, \ldots, x_n and y_1, \ldots, y_n , and that they stem from probability distributions with densities f_1 and f_2 .

- Simulate k sets of 2 samples of n_1 and n_2 observations from the assumed distributions, setting the means^a to $\hat{\mu}_1 = \bar{x}$ and $\hat{\mu}_2 = \bar{y}$, respectively.
- Calculate the difference between the features in each of the k samples: $\hat{\theta}_{x1}^* \hat{\theta}_{y1}^*, \dots, \hat{\theta}_{xk}^* \hat{\theta}_{yk}^*$.
- Find the $100(\alpha/2)\%$ and $100(1-\alpha/2)\%$ quantiles for these, $q^*_{\alpha/2}$ and $q^*_{1-\alpha/2}$, to obtain the $100(1-\alpha)\%$ confidence interval:

```
\begin{bmatrix} q_{\alpha/2}^*, q_{1-\alpha/2}^* \end{bmatrix}
(halid, Md Saifuddin (DTU Compute)

<sup>a</sup>As before
```

Introduction to Statistics

Fall 2023

27 / 44

Example: 99% CI for Q_3 assuming a normal distribution

Heights data
x <- c(168, 161, 167, 179, 184, 166, 198, 187, 191, 179)
n <- length(x)</pre>

Define a Q3-function
Q3 <- function(x) { quantile(x, 0.75)}</pre>

Set number of simulations
k <- 100000</pre>

Simulate k samples of n = 10 normals with the 'right' mean and variance sim_samples <- replicate(k, rnorm(n, mean(x), sd(x)))

Compute the Q3 of the n = 10 simulated observations k times simQ3s <- apply(sim_samples, 2, Q3)

Find the two relevant quantiles of the k simulated Q3s quantile(simQ3s, c(0.005, 0.995))

0.5% 99.5% ## 173 198

Introduction to Statistics

26 / 44

Fall 2023

Parametric bootstrap Two-sample confidence interval assuming any distributions

Example: Confidence interval for the difference of exponential means

Day 1 data
x <- c(32.6, 1.6, 42.1, 29.2, 53.4, 79.3, 2.3, 4.7, 13.6, 2.0)
n1 <- length(x)</pre>

Fall 2023

- Two-sample confidence interval assuming any distributions
- Non-parametric bootstrap
 - One-sample confidence interval for any feature
 - Two-sample confidence interval

Fall 2023

Fall 2023

Non-parametric bootstrap One-sample confidence interval for any feature

Example: Womens' cigarette consumption

In a study, womens' cigarette consumption before and after giving birth is explored. The following observations of the number of smoked cigarettes per day were obtained:

before	after	before	after	
8	5	13	15	
24	11	15	19	
7	0	11	12	
20	15	22	0	
6	0	15	6	
20	20			

Compare the before and after means! (Are they different?)

Khalid, Md Saifuddin	(DTU Compute)	Introduction	to Statistics	Fall 2023	33 / 44
	I	Non-parametric bootstrap	One-sample confidence in	terval for any feature	
Example:	Women's	cigarette	consumptio	on - bootstrappir	ng

<pre>t(replicate(5, sample(dif, replace = TRUE)))</pre>												
##		[,1]	[,2]	[,3]	[,4]	[,5]	[,6]	[,7]	[,8]	[,9]	[,10]	[,11]
##	[1,]	-2	0	9	22	0	-1	0	-2	0	3	0
##	[2,]	13	3	-2	-1	-2	7	13	-4	-2	-1	5
##	[3,]	9	-4	5	-4	5	3	-4	13	3	0	22
##	[4,]	-1	22	-2	-1	13	6	-4	0	0	-1	22
##	[5,]	9	-2	13	6	9	22	0	-1	7	7	-1

Example: Womens' cigarette consumption

A paired *t*-test setting, but with clearly non-normal data!

<pre># Data x1 <- c(8, 24, 7, 20, 6, 20, 13, 15, 11, 22, 15) x2 <- c(5, 11, 0, 15, 0, 20, 15, 19, 12, 0, 6)</pre>
<pre># Compute differences dif <- x1-x2 dif</pre>
[1] 3 13 7 5 6 0 -2 -4 -1 22 9
<pre># Compute average difference mean(dif)</pre>
[1] 5.3

Introduction to Statistics

Non-parametric bootstrap One-sample confidence interval for any feature

Example: Womens' cigarette consumption - the non-parametric results

Let us find the 95% confidence interval for the *mean* change in cigarette consumption.

k = 100000
sim_samples = replicate(k, sample(dif, replace = TRUE))
sim_means = apply(sim_samples, 2, mean)
quantile(sim_means, c(0.025,0.975))
2.5% 97.5%

1.4 9.8

Fall 2023

Chalid, Md Saifuddin, (DTU Compute

Fall 2023

Non-parametric bootstrap One-sample confidence interval for any feature

One-sample confidence interval for any feature θ (including μ)

Method 4.15: Confidence interval for any feature θ by non-parametric bootstrap

Assume we have actual observations x_1, \ldots, x_n .

- Simulate k samples of size n by randomly sampling from the available data (with replacement).
- Calculate the statistic $\hat{\theta}$ for each of the k samples: $\hat{\theta}_1^*, \dots, \hat{\theta}_k^*$.
- Find the $100(\alpha/2)\%$ and $100(1-\alpha/2)\%$ quantiles for these, $q^*_{\alpha/2}$ and $q^*_{1-\alpha/2}$, as the $100(1-\alpha)\%$ confidence interval: $\left[q^*_{\alpha/2}, q^*_{1-\alpha/2}\right]$

Introduction to Statistics

Non-parametric bootstrap Two-sample confidence interval

Example: Womens' cigarette consumption

Let us find the 95% confidence interval for the *median* change in cigarette consumption in the example from above.

```
k = 100000
sim_samples = replicate(k, sample(dif, replace = TRUE))
sim_medians = apply(sim_samples, 2, median)
quantile(sim_medians, c(0.025,0.975))
## 2.5% 97.5%
## -1 9
```

Khalid, Md Saifuddin (DTU Compute)

```
Introduction to Statistics
```

38 / 44

Fall 2023

Example: Tooth health and infant bottle use

In a study, it was explored whether children who had received milk from a bottle had worse or better tooth health than those who had *not* received milk from a bottle. For 19 randomly selected children, is was recorded when they had had their first incident of caries:

bottle	age	bottle	age	bottle	age
no	9	no	10	yes	16
yes	14	no	8	yes	14
yes	15	no	6	yes	9
no	10	yes	12	no	12
no	12	yes	13	yes	12
no	6	no	20		
yes	19	yes	13		

Non-parametric bootstrap Two-sample confidence interval

Example: Tooth health and infant bottle use - a 95% confidence interval for $\mu_1 - \mu_2$

Fall 2023

Fall 2023

Two-sample confidence interval for $\theta_1 - \theta_2$ (including $\mu_1 - \mu_2$) by non-parametric bootstrap

Method 4.17: Two-sample confidence interval for $\theta_1 - \theta_2$ by non-parametric bootstrap

Assume we have actual observations x_1, \ldots, x_n and y_1, \ldots, y_n .

- Randomly draw k sets of 2 samples of n₁ and n₂ observations from the respective groups of data (with replacement).
- Calculate the difference between the features in each of the k samples: $\hat{\theta}_{x1}^* \hat{\theta}_{y1}^*, \dots, \hat{\theta}_{xk}^* \hat{\theta}_{yk}^*$.
- Find the $100(\alpha/2)\%$ and $100(1-\alpha/2)\%$ quantiles for these, $q^*_{\alpha/2}$ and $q^*_{1-\alpha/2}$, to obtain the $100(1-\alpha)\%$ confidence interval: $\left[q^*_{\alpha/2}, q^*_{1-\alpha/2}\right]$

Non-parametric bootstrap Two-sample confidence interval

Khalid, Md Saifuddin (DTU Compute)

Fall 2023

Bootstrapping - an overview

We were given 4 similar method boxes

- With distribution assumptions or not (parametric or non-parametric).
- Is For one- or two-sample analysis.

Note:

Means also included in *other features*. Or: These methods may be used *not only* for means!

Hypothesis testing also possible

We can do hypothesis testing by looking at the confidence intervals!

Example: Tooth health and infant bottle use - a 99% confidence interval for the difference of medians

k <- 100000							
<pre>simx_samples <- replicate(k, sample(x, replace = TRUE))</pre>							
<pre>simy_samples <- replicate(k, sample(y, replace = TRUE))</pre>							
<pre>sim_median_difs <- apply(simx_samples, 2, median)-</pre>							
<pre>apply(simy_samples, 2, median)</pre>							
<pre>quantile(sim_median_difs, c(0.005,0.995))</pre>							
## 0.5% 99.5% ## -8 0							

alid, Md Saifuddin (DTU Compute)

Fall 2023

Non-parametric bootstrap Two-sample confidence interval

Overview

- Introduction to simulation what is it really?
 - Example: Area of plates
- Propagation of error
- Parametric bootstrap
 - Introduction to bootstrap
 - One-sample confidence interval for any feature
 - Two-sample confidence interval assuming any distributions
- Non-parametric bootstrap
 - One-sample confidence interval for any feature

Introduction to Statistics

Two-sample confidence interval

Fall 2023

Fall 2023