
Course 02402 Introduction to Statistics

Lecture 4: Confidence intervals

DTU Compute
Technical University of Denmark
2800 Lyngby – Denmark

Md Saifuddin Khalid (DTU Compute) Introduction to Statistics Spring 2023 1 / 44



Overview

1 Intro and example

2 Distribution of the sample mean
The t-distribution

3 Confidence interval (CI) for µ

Example: Heights

4 The language of statistics and the formal framework

5 Non-normal data, the Central Limit Theorem (CLT)

6 Formal interpretation of the CI

7 CI for variance σ2 and standard deviation σ

Md Saifuddin Khalid (DTU Compute) Introduction to Statistics Spring 2023 2 / 44



Intro and example

Overview

1 Intro and example

2 Distribution of the sample mean
The t-distribution

3 Confidence interval (CI) for µ

Example: Heights

4 The language of statistics and the formal framework

5 Non-normal data, the Central Limit Theorem (CLT)

6 Formal interpretation of the CI

7 CI for variance σ2 and standard deviation σ

Md Saifuddin Khalid (DTU Compute) Introduction to Statistics Spring 2023 3 / 44



Intro and example

Example: Heights

Sample, n = 10:

168 161 167 179 184 166 198 187 191 179

Sample mean and standard deviation:

x̄ = 178

s = 12.21

Estimate population mean and standard

deviation:

µ̂ = 178

σ̂ = 12.21

NEW: Confidence interval for µ :

178±2.26 · 12.21√
10

= [169.3; 186.7]

NEW: Confidence interval for σ :

[8.4; 22.3]
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Distribution of the sample mean

(Empirical) distribution of sample mean

# 'True' mean and standard deviation
mu <- 178
sigma <- 12

# Sample size
n <- 10

# Simulate normal distributed X_i for n = 10
x <- rnorm(n = n, mean = mu, sd = sigma)
x

# Empirical density
hist(x, prob = TRUE, col = 'blue')
# Compute sample mean
mean(x)

# Repeat the simulated sampling many times (100 samples)
mat <- replicate(100, rnorm(n = n, mean = mu, sd = sigma))

# Compute the sample mean for each sample
xbar <- apply(mat, 2, mean)
xbar

# See the distribution of the sample means
hist(xbar, prob = TRUE, col = 'blue')
# Empirical mean and variance of sample means
mean(xbar)
var(xbar)
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Distribution of the sample mean

Theorem 3.3: Distribution of the sample mean of i.i.d.
normal random variables

The distribution of X̄

Assume that X1, . . . ,Xn are independent and identically distributed (i.i.d.) normal random

variables, Xi ∼ N(µ,σ2), i = 1, . . . ,n, then:

X̄ =
1
n

n

∑
i=1

Xi ∼ N
(

µ,
σ2

n

)
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Distribution of the sample mean

Mean, variance and ’normality’ follow from ’rules’:

The mean of X̄ (Theorem 2.56):

E(X̄) =
1
n

n

∑
i=1

E(Xi) =
1
n

n

∑
i=1

µ =
1
n

nµ = µ

The variance of X̄ (Theorem 2.56):

Var(X̄) =
1
n2

n

∑
i=1

Var(Xi) =
1
n2

n

∑
i=1

σ
2 =

1
n2 nσ

2 =
σ2

n

The ’normality’ of X̄ (Theorem 2.40):

By this theorem, the distribution of X̄ is a normal distribution with mean µ and variance

σ2/n as specified above.
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Distribution of the sample mean

Distribution of the error X̄−µ

The standard deviation of X̄:

σX̄ =
σ√

n

The standard deviation of X̄−µ :

σ(X̄−µ) =
σ√

n
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Distribution of the sample mean

Standardized version of the above, Theorem 3.4

Distribution of the standardized sample mean (or standardized error):

Assume that X1, . . . ,Xn are i.i.d. normal random variables, Xi ∼ N
(
µ,σ2

)
for i = 1, . . . ,n, then:

Z =
X̄−µ

σ/
√

n
∼ N

(
0,12

)
That is, the standardized sample mean Z follows a standard normal
distribution.
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Distribution of the sample mean

Practical problem (and solution)

How do we use the results from the previous slides to say something about µ ...

... when the ’true’, unknown, population standard deviation σ enters into all the

formulas?

Obvious solution:

Use the estimate s instead of σ in formulas.

BUT:

Then, we need new theory! (There is also uncertainty linked to s.)
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Distribution of the sample mean The t-distribution

Theorem 3.5, a more applicable extension of the above

The t-distribution takes the uncertainty of s into account:

Assume that X1, . . . ,Xn are i.i.d. normal distributed random variables, where

Xi ∼ N
(
µ,σ2

)
for i = 1, . . . ,n, then:

T =
X̄−µ

S/
√

n
∼ t(n−1)

where t(n−1) is the t-distribution with n−1 degrees of freedom.
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Distribution of the sample mean The t-distribution

The t-distribution with 9 degrees of freedom (n = 10)

x <- seq(-4, 4, by = 0.01)
plot(x, dt(x, df = 9), type = "l", col = "red", ylab = "Density(x)")
lines(x, dnorm(x), type = "l")
text(2.5, 0.3,"Black: N(0,1)")
text(3, 0.1,"Red: t(9)", col = "red")
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Black: N(0,1)
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Distribution of the sample mean The t-distribution

The t-distribution with 9 degrees of freedom and standard
normal distribution

−4 −2 0 2 4

0.
0
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4

x

dt
(x

, 9
)

Black: N(0,1)

Red: T ~  t(9)

P(T > 1.96) = 0.041
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Distribution of the sample mean The t-distribution

The t-distribution with 9 degrees of freedom and standard
normal distribution
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Black: Z ~ N(0,1)

Red: t(9)

P(Z > 1.96) = 0.025
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Confidence interval (CI) for µ

Method 3.9: One-sample Confidence Interval (CI) for µ

Use the correct t-distribution to construct the confidence interval:

For a sample x1, . . . ,xn the 100(1−α)% confidence interval is given by:

x̄± t1−α/2 ·
s√
n

where t1−α/2 is the 100(1−α/2)% quantile from the t-distribution with n−1 degrees of

freedom.

Most commonly using α = 0.05:

The most commonly used is the 95% confidence interval:

x̄± t0.975 ·
s√
n
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Confidence interval (CI) for µ Example: Heights

Example: Heights, 95% CI

# 0.975 quantile for the t(9) distribution (n = 10):

qt(0.975, df = 9)

Gives the result t0.975 = 2.26.

Now, we can recognize the already given result

178±2.26 · 12.21√
10

which is

178±8.74 = [169.3, 186.7].
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Confidence interval (CI) for µ Example: Heights

Example: Heights, 99% CI

# 0.995 quantile for the t(9) distribution (n = 10):

qt(0.995, df = 9)

Gives the result t0.995 = 3.25.

In this case,

178±3.25 · 12.21√
10

giving

178±12.55 = [165.5; 190.5]
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Confidence interval (CI) for µ Example: Heights

An R function for computing these CI (and more):

# Data

x <- c(168, 161, 167, 179, 184, 166, 198, 187, 191, 179)

# 99% CI for mu

t.test(x, conf.level = 0.99)

##

## One Sample t-test

##

## data: x

## t = 46, df = 9, p-value = 5e-12

## alternative hypothesis: true mean is not equal to 0

## 99 percent confidence interval:

## 165.5 190.5

## sample estimates:

## mean of x

## 178
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The language of statistics and the formal framework
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The language of statistics and the formal framework

The formal framework for statistical inference

From eNote, Chapter 1:

An observational unit is the single entity/level at which information is sought (e.g.

a person). (Observationsenhed)

The statistical population consists of all possible “measurements” on each possible

observational unit. (Population)

The sample from a statistical population is the actual set of data collected.

(Stikprøve)

Language and concepts:

µ and σ are parameters describing the population.

x̄ is the estimate of µ (specific realization).

X̄ is the estimator of µ (now seen as a random variable).

The word ’statistic(s)’ is used for both.
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The language of statistics and the formal framework

The formal framework for statistical inference - Example

From eNote, Chapter 1. Example: Heights

We measured the heights of 10 randomly selected students.

The sample:

The 10 specific numbers (heights): x1, . . . ,x10.

The population:

The heights for all people in Denmark.

Observational unit:

A person.
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The language of statistics and the formal framework

Statistical inference = Learning from data

Learning from data:

Learning about parameters of distributions that describe populations.

Important:

The sample must, in a meaningful way, represent some well defined population.

How to ensure this:

For example, by making sure that the sample is taken completely at random.
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The language of statistics and the formal framework

Random Sampling

Definition 3.12:

A random sample from an (infinite) population: A set of observations
X1,X2, ...,Xn constitutes a random sample of size n from the infinite
population f (x) if:

1 Each Xi is a random variable whose distribution is given by f (x).
2 These n random variables are independent.

What does that mean?

1 All observations must come from the same population.

2 They cannot share any information with each other (e.g., shouldn’t be
related).
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Non-normal data, the Central Limit Theorem (CLT)
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Non-normal data, the Central Limit Theorem (CLT)

Theorem 3.14: The Central Limit Theorem (CLT)

”No matter the distribution of Xi”, the distribution of the mean of i.i.d. random variables

approaches a normal distribution:

Let X̄ be the mean of a random sample of size n taken from a population with mean µ

and variance σ2. Then

Z =
X̄−µ

σ/
√

n

is a random variable whose distribution function approaches that of the standard normal

distribution, N(0,12), as n → ∞.

Hence, if n is large enough, we can assume (approximately) that:

X̄−µ

σ/
√

n
∼ N(0,12)
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Non-normal data, the Central Limit Theorem (CLT)

CLT example: Mean of uniformly distributed observations

n <- 1 # Sample size

k <- 1000 # No. of samples (i.e. no. of means to be computed)

# Simulations from U(0,1)-distribution (k = 1000 samples, each of size n = 1)

u <- matrix(runif(k*n), ncol = n)

# Empirical density of means

hist(apply(u, 1, mean), col = "blue", main = "n = 1", xlab = "Means", prob = TRUE)

n = 1

Means
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Non-normal data, the Central Limit Theorem (CLT)

CLT example: Mean of uniformly distributed observations

n <- 2 # Sample size

k <- 1000 # No. of samples (i.e. no. of means to be computed)

# Simulations from U(0,1)-distribution (k = 1000 samples, each of size n = 2)

u <- matrix(runif(k*n), ncol = n)

# Empirical density of means

hist(apply(u, 1, mean), col = "blue", main = "n = 2", xlab = "Means", xlim = c(0,1), prob = TRUE)

n = 2
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Non-normal data, the Central Limit Theorem (CLT)

CLT example: Mean of uniformly distributed observations

n <- 6 # Sample size

k <- 1000 # No. of samples (i.e. no. of means to be computed)

# Simulations from U(0,1)-distribution (k = 1000 samples, each of size n = 6)

u <- matrix(runif(k*n), ncol = n)

# Empirical density of means

hist(apply(u, 1, mean), col = "blue", main = "n = 6", xlab = "Means", xlim = c(0,1), prob = TRUE)

n = 6
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Non-normal data, the Central Limit Theorem (CLT)

CLT example: Mean of uniformly distributed observations

n <- 30 # Sample size

k <- 1000 # No. of samples (i.e. no. of means to be computed)

# Simulations from U(0,1)-distribution (k = 1000 samples, each of size n = 30)

u <- matrix(runif(k*n), ncol = n)

# Empirical density of means

hist(apply(u, 1, mean), col = "blue", main = "n = 30", xlab = "Means", xlim = c(0,1), prob = TRUE)

n = 30
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Non-normal data, the Central Limit Theorem (CLT)

Consequence of the CLT:

Our CI-method also works for non-normal data:

We can use the confidence-interval based on the t-distribution in basically any situation,

as long as n is large enough.

When is n ”large enough”?

Actually difficult to say exactly, BUT:

Rule of thumb: n ≥ 30

Even for smaller n the approach can be (almost) valid for non-normal data.
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Formal interpretation of the CI

’Repeated sampling’ interpretation

In the long run, we catch the true value in 95% of cases (95% CI):

The confidence interval will vary in both width (s) and position (x̄) if the study is

repeated.

More formally expressed (Theorem 3.5):

P
(
|X̄−µ|
S/

√
n

< t0.975

)
= 0.95

Which is equivalent to:

P
(

X̄− t0.975
S√
n
< µ < X̄+ t0.975

S√
n

)
= 0.95
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CI for variance σ2 and standard deviation σ
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CI for variance σ2 and standard deviation σ

Motivating Example

Production of tablets

In the production of tablets, an active matter is mixed with a powder and
then the mixture is formed to tablets. It is important that the mixture is
homogenous, so that each tablet has the same strength.

We consider a mixture (of the active matter and powder) from where a
large amount of tablets is to be produced.

We seek to produce the mixtures (and the final tablets) so that the mean
content of the active matter is 1 mg/g with the smallest variance as
possible. A random sample is collected where the amount of active matter
is measured. It is assumed that all the measurements follow a normal
distribution with the unit mg/g.
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CI for variance σ2 and standard deviation σ

The sampling distribution of the variance estimator,
Theorem 2.81

Assume i.i.d. normal distributed variables, Xi ∼ N(µ,σ2) for i = 1, . . . ,n.

Variance estimators behaves like a χ2-distribution:

Let

S2 =
1

n−1

n

∑
i=1

(Xi − X̄)2

then:

χ
2 =

(n−1)S2

σ2

is a stochastic variable following the χ2-distribution with v = n−1 degrees of freedom.
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CI for variance σ2 and standard deviation σ

χ2-distribution with ν = 9 degrees of freedom

x <- seq(0, 20, by = 0.1)
plot(x, dchisq(x, df = 9), type = "l")
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CI for variance σ2 and standard deviation σ

Method 3.19: Confidence interval for the variance and
standard deviation

Assume i.i.d. normal distributed variables, Xi ∼ N(µ,σ2) for i = 1, . . . ,n.

The variance:

A 100(1−α)% confidence interval for the variance σ2 is:[
(n−1)s2

χ2
1−α/2

;
(n−1)s2

χ2
α/2

]

where the quantiles come from a χ2-distribution with ν = n−1 degrees of freedom.

The standard deviation:

A 100(1−α)% confidence interval for the standard deviation σ is:[√
(n−1)s2

χ2
1−α/2

;

√
(n−1)s2

χ2
α/2

]
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CI for variance σ2 and standard deviation σ

Example

Data:

A random sample with n = 20 tablets is taken and from this we get:

µ̂ = x̄ = 1.01, σ̂
2 = s2 = 0.072

95% confidence interval for the variance - we need the χ2-quantiles (19 degrees of

freedom):

χ
2
0.025 = 8.9065, χ

2
0.975 = 32.8523

qchisq(c(0.025, 0.975), df = 19)

[1] 8.907 32.852
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CI for variance σ2 and standard deviation σ

Example

So the confidence interval for the variance σ2 becomes:[
19 ·0.072

32.85
;

19 ·0.072

8.907

]
= [0.002834; 0.01045]

and the confidence interval for the standard deviation σ becomes:[√
0.002834;

√
0.01045

]
= [0.053; 0.102]
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CI for variance σ2 and standard deviation σ

Example: Heights

We need the χ2-quantiles with ν = 9 degrees of freedom:

χ
2
0.025 = 2.700389, χ

2
0.975 = 19.022768

qchisq(c(0.025, 0.975), df = 9)

[1] 2.70 19.02

So the confidence interval for the height standard deviation σ becomes:[√
9 ·12.212

19.022768
;

√
9 ·12.212

2.700389

]
= [8.4; 22.3]
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CI for variance σ2 and standard deviation σ

Example: Heights

Sample, n = 10:

168 161 167 179 184 166 198 187 191 179

Sample mean and standard deviation:

x̄ = 178

s = 12.21

Estimate population mean and standard

deviation:

µ̂ = 178

σ̂ = 12.21

NEW: Confidence interval, µ :

178±2.26 · 12.21√
10

= [169.3; 186.7]

NEW: Confidence interval, σ :

[8.4; 22.3]

Md Saifuddin Khalid (DTU Compute) Introduction to Statistics Spring 2023 43 / 44



CI for variance σ2 and standard deviation σ

Overview

1 Intro and example

2 Distribution of the sample mean
The t-distribution

3 Confidence interval (CI) for µ

Example: Heights

4 The language of statistics and the formal framework

5 Non-normal data, the Central Limit Theorem (CLT)

6 Formal interpretation of the CI

7 CI for variance σ2 and standard deviation σ

Md Saifuddin Khalid (DTU Compute) Introduction to Statistics Spring 2023 44 / 44


	Intro and example
	Distribution of the sample mean
	Confidence interval (CI) for 
	The language of statistics and the formal framework
	Non-normal data, the Central Limit Theorem (CLT)
	Formal interpretation of the CI
	CI for variance 2 and standard deviation 

