Course 02323 Introduction to Statistics

Lecture 3: Random variables and continuous distributions

DTU Compute
Technical University of Denmark 2800 Lyngby - Denmark

Overview

(1) Continuous random variables and distributions

- Density and distribution functions
- Mean, variance, and covariance
(2) Specific continuous distributions
- The uniform distribution
- The normal distribution
- The log-normal distribution
- The exponential distribution
(3) Calculation rules for random variables

Overview

(1) Continuous random variables and distributions

- Density and distribution functions
- Mean, variance, and covariance
(2) Specific continuous distributions
- The uniform distribution
- The normal distribution
- The log-normal distribution
- The exponential distribution
- Calculation rules for random variables

The density function, Definition 2.32

- The density function (probability density function, pdf) for a random variable is denoted by $f(x)$.

The density function, Definition 2.32

- The density function (probability density function, pdf) for a random variable is denoted by $f(x)$.
- The density function says something about the frequency of the outcome x for the random variable X.

The density function, Definition 2.32

- The density function (probability density function, pdf) for a random variable is denoted by $f(x)$.
- The density function says something about the frequency of the outcome x for the random variable X.
- The density function for a continuous random variable does not correspond directly to a probability. In fact, $P(X=x)=0$ for all x.

The density function, Definition 2.32

- The density function (probability density function, pdf) for a random variable is denoted by $f(x)$.
- The density function says something about the frequency of the outcome x for the random variable X.
- The density function for a continuous random variable does not correspond directly to a probability. In fact, $P(X=x)=0$ for all x.
- The density function $f(x)$ for the distribution of a continuous random variable satisfies that

$$
f(x) \geq 0 \text { for all } x \text { and } \int_{-\infty}^{\infty} f(x) d x=1
$$

The density function

The distribution function, Definition 2.33

- The distribution function (cumulative density function, cdf) for a continuous random variable is denoted by $F(x)$.

The distribution function, Definition 2.33

- The distribution function (cumulative density function, cdf) for a continuous random variable is denoted by $F(x)$.
- The distribution function is defined by

$$
F(x)=P(X \leq x)=\int_{-\infty}^{x} f(t) d t
$$

The distribution function, Definition 2.33

- The distribution function (cumulative density function, cdf) for a continuous random variable is denoted by $F(x)$.
- The distribution function is defined by

$$
F(x)=P(X \leq x)=\int_{-\infty}^{x} f(t) d t
$$

- Note that as a consequence of this definition,

$$
f(x)=F^{\prime}(x)
$$

The distribution function, Definition 2.33

- The distribution function (cumulative density function, cdf) for a continuous random variable is denoted by $F(x)$.
- The distribution function is defined by

$$
F(x)=P(X \leq x)=\int_{-\infty}^{x} f(t) d t
$$

- Note that as a consequence of this definition,

$$
f(x)=F^{\prime}(x)
$$

- It's particularly useful to note that

$$
P(a<X \leq b)=F(b)-F(a)=\int_{a}^{b} f(x) d x
$$

The distribution function

The empirical cumulative distribution function (ecdf)

```
# Empirical cdf for sample of height data from Chapter 1
x <- c(168, 161, 167, 179, 184, 166, 198, 187, 191, 179)
plot(ecdf(x), verticals = TRUE, main = "")
# 'True cdf' for normal distribution (with sample mean and variance)
xp <- seq(0.9*min(x), 1.1*max(x), length = 100)
lines(xp, pnorm(xp, mean(x), sd(x)), col = 2)
```


Mean, continuous random variable, Definition 2.34

The mean/expected value of a continuous random variable:

$$
\mu=\int_{-\infty}^{\infty} x f(x) d x
$$

Mean, continuous random variable, Definition 2.34

The mean/expected value of a continuous random variable:

$$
\mu=\int_{-\infty}^{\infty} x f(x) d x
$$

Compare with the mean of a discrete random variable:

$$
\mu=\sum_{\text {all } x} x f(x)
$$

Variance, continuous random variable, Definition 2.34

The variance of a continuous random variable:

$$
\sigma^{2}=\int_{-\infty}^{\infty}(x-\mu)^{2} f(x) d x
$$

Variance, continuous random variable, Definition 2.34

The variance of a continuous random variable:

$$
\sigma^{2}=\int_{-\infty}^{\infty}(x-\mu)^{2} f(x) d x
$$

Compare with the variance of a discrete random variable:

$$
\sigma^{2}=\sum_{\text {all } x}(x-\mu)^{2} f(x)
$$

Covariance, Definition 2.58

The covariance between two random variables:
Let X and Y be two random variables. Then, the covariance between X and Y is

$$
\operatorname{Cov}(X, Y)=E[(X-E[X])(Y-E[Y])]
$$

Relationship between covariance and independence:
If two random variables are independent their covariance is 0 . The reverse is not necessarily true!

Overview

(1) Continuous random variables and distributions - Density and distribution functions - Mean, variance, and covariance
(2) Specific continuous distributions

- The uniform distribution
- The normal distribution
- The log-normal distribution
- The exponential distribution
© Calculation rules for random variables

Specific continuous distributions

A number of statistical distributions exist (both continuous and discrete) that can be used to describe and analyze different types of problems.

Today, we'll take a closer look at the following continuous distributions:

- The uniform distribution
- The normal distribution
- The log-normal distribution
- The exponential distribution

Continuous distributions in R

R	Distribution
norm	The normal distribution
unif	The uniform distribution
lnorm	The log-normal distribution
\exp	The exponential distribution

d Probability density function, $f(x)$.
p Cumulative distribution function, $F(x)$.
q Quantile function.
r Random numbers from the distribution.

Density of a uniform distribution (example)

The uniform distribution, Def. 2.35 \& Theo. 2.36

Syntax:

$X \sim U(\alpha, \beta)$

The uniform distribution, Def. 2.35 \& Theo. 2.36

Syntax:
$X \sim U(\alpha, \beta)$

Density function:
$f(x)=\frac{1}{\beta-\alpha}$ for $\alpha \leq x \leq \beta$

The uniform distribution, Def. 2.35 \& Theo. 2.36

Syntax:
$X \sim U(\alpha, \beta)$

Density function:
$f(x)=\frac{1}{\beta-\alpha}$ for $\alpha \leq x \leq \beta$

Mean:
$\mu=\frac{\alpha+\beta}{2}$

The uniform distribution, Def. 2.35 \& Theo. 2.36

Syntax:
$X \sim U(\alpha, \beta)$

Density function:
$f(x)=\frac{1}{\beta-\alpha}$ for $\alpha \leq x \leq \beta$

Mean:
$\mu=\frac{\alpha+\beta}{2}$

Variance:

$$
\sigma^{2}=\frac{1}{12}(\beta-\alpha)^{2}
$$

Example 1

Students attending a stats course arrive at a lecture between 8.00 and 8.30. It is assumed that the arival times can be described by a uniform distribution.

Question:

What is the probability that a randomly selected student arrives between 8.20 and 8.30?

Example 1

Students attending a stats course arrive at a lecture between 8.00 and 8.30. It is assumed that the arival times can be described by a uniform distribution.

Question:
What is the probability that a randomly selected student arrives between 8.20 and 8.30 ?

Answer:
$10 / 30=1 / 3$
Let $X \sim U(0,30)$ represent arrival time. Then:
$P(20 \leq X \leq 30)=P(X \leq 30)-P(X \leq 20)=1-2 / 3=1 / 3$
punif($q=30$, min=0, $\max =30$) - punif $(q=20, \min =0, \max =30)$
[1] 0.33

Example 1 (continued)

Question:
What is the probability that a randomly selected student arrives after 8.30?

Example 1 (continued)

Question:
What is the probability that a randomly selected student arrives after 8.30?

Answer:
0
Let $X \sim U(0,30)$ represent arrival time. Then:
$P(X>30)=1-P(X \leq 30)=1-1=0$
1 - punif $(q=30, \min =0, \max =30)$
[1] 0

Density of a normal distribution (example)

The normal distribution, Def. 2.37 \& Theo. 2.38

Syntax:
$X \sim N\left(\mu, \sigma^{2}\right)$

The normal distribution, Def. 2.37 \& Theo. 2.38

Syntax:
$X \sim N\left(\mu, \sigma^{2}\right)$

Density function:
$f(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}$ for $-\infty<x<\infty$

The normal distribution, Def. 2.37 \& Theo. 2.38

Syntax:
$X \sim N\left(\mu, \sigma^{2}\right)$

Density function:
$f(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}$ for $-\infty<x<\infty$

Mean:
$\mu=\mu$

The normal distribution, Def. 2.37 \& Theo. 2.38

Syntax:
$X \sim N\left(\mu, \sigma^{2}\right)$

Density function:
$f(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}$ for $-\infty<x<\infty$

Mean:
$\mu=\mu$

Variance:
$\sigma^{2}=\sigma^{2}$

Density of a standard normal distribution

Density of two normal distributions (example)

Two different normal distributions: Different means, same variance

Density of three normal distributions (example)

Three different normal distributions: Same mean, difference variances

The standard normal distribution

The standard normal distribution:

$$
Z \sim N\left(0,1^{2}\right)
$$

The normal distribution with mean 0 and variance 1.

The standard normal distribution

The standard normal distribution:

$$
Z \sim N\left(0,1^{2}\right)
$$

The normal distribution with mean 0 and variance 1.

Standardization:
An arbitrary normal distributed variable $X \sim N\left(\mu, \sigma^{2}\right)$ can be standardized by

$$
Z=\frac{X-\mu}{\sigma}
$$

Example 2

Measurement error:
A scale has a measurement error, Z, that can be described by the standard normal distribution, i.e.

$$
Z \sim N\left(0,1^{2}\right)
$$

That is, the mean measurement error is $\mu=0$ with standard deviation $\sigma=1 \mathrm{gram}$. The scale is used to measure the weight of a product.

Example 2

Measurement error:
A scale has a measurement error, Z, that can be described by the standard normal distribution, i.e.

$$
Z \sim N\left(0,1^{2}\right)
$$

That is, the mean measurement error is $\mu=0$ with standard deviation $\sigma=1 \mathrm{gram}$. The scale is used to measure the weight of a product.

Question a):
What is the probability that the scale yields a measurement which is at least 2 grams smaller than the true weight of the product?

Example 2

Measurement error:
A scale has a measurement error, Z, that can be described by the standard normal distribution, i.e.

$$
Z \sim N\left(0,1^{2}\right)
$$

That is, the mean measurement error is $\mu=0$ with standard deviation $\sigma=1 \mathrm{gram}$. The scale is used to measure the weight of a product.

Question a):
What is the probability that the scale yields a measurement which is at least 2 grams smaller than the true weight of the product?

Answer:
$P(Z \leq-2)=0.02275$

```
pnorm(-2); pnorm(q=-2, mean =0, sd=1)
```


Example 2

Answer:
pnorm(-2)
[1] 0.023

Example 2

Question b):
What is the probability that the scale yields a measurement which is at least 2 grams larger than the true weight of the product?

Example 2

Question b):
What is the probability that the scale yields a measurement which is at least 2 grams larger than the true weight of the product?

Answer:
$P(Z \geq 2)=0.02275$
1 - pnorm(2)

Example 2

Question c):
What is the probability that the scale is off by at most ± 1 gram?

Example 2

Question c):
What is the probability that the scale is off by at most ± 1 gram?

Answer:

$$
P(|Z| \leq 1)=P(-1 \leq Z \leq 1)=P(Z \leq 1)-P(Z \leq-1)=0.683
$$

```
pnorm(1) - pnorm(-1)
```


Example 3

Income distribution:
It is assumed that the annual salary distribution of elementary school teachers can be described using a normal distribution with mean $\mu=290$ (in DKK thousand) and standard deviation $\sigma=4$ (DKK thousand).

Example 3

Income distribution:
It is assumed that the annual salary distribution of elementary school teachers can be described using a normal distribution with mean $\mu=290$ (in DKK thousand) and standard deviation $\sigma=4$ (DKK thousand).

Question a):

What is the probability that a randomly selected teacher earns more than DKK 300.000?

Example 3

Question a):

What is the probability that a randomly selected teacher earns more than DKK 300.000?

Example 3

Question a):
What is the probability that a randomly selected teacher earns more than DKK 300.000?

Answer:
1 - pnorm(300, $m=290, s=4)$
[1] 0.0062

Example 4

(Same income distribution):
It is assumed that the annual salary distribution of elementary school teachers can be described using a normal distribution with mean $\mu=290$ (DKK thousand) and standard deviation $\sigma=4$ (DKK thousand).

Example 4

(Same income distribution):
It is assumed that the annual salary distribution of elementary school teachers can be described using a normal distribution with mean $\mu=290$ (DKK thousand) and standard deviation $\sigma=4$ (DKK thousand).
"Opposite question"
Give a salary interval (symmetric around the mean) which covers 95\% of all teachers' salary.

Example 4

(Same income distribution):
It is assumed that the annual salary distribution of elementary school teachers can be described using a normal distribution with mean $\mu=290$ (DKK thousand) and standard deviation $\sigma=4$ (DKK thousand).
"Opposite question"
Give a salary interval (symmetric around the mean) which covers 95\% of all teachers' salary.

Answer:
qnorm(c(0.025, 0.975), $m=290, s=4)$
[1] 282298

The log-normal distribution

Log-normal distribution LN(1,1)

The log-normal distribution, Def. 2.46 \& Theo. 2.47

Syntax:
$X \sim L N\left(\alpha, \beta^{2}\right)($ with $\beta>0)$

The log-normal distribution, Def. 2.46 \& Theo. 2.47

Syntax:
$X \sim L N\left(\alpha, \beta^{2}\right)($ with $\beta>0)$

Density function:

$$
f(x)= \begin{cases}\frac{1}{\beta \sqrt{2 \pi}} x^{-1} e^{-(\ln (x)-\alpha)^{2} / 2 \beta^{2}} & x>0 \\ 0 & \text { otherwise }\end{cases}
$$

The log-normal distribution, Def. 2.46 \& Theo. 2.47

Syntax:
$X \sim L N\left(\alpha, \beta^{2}\right)($ with $\beta>0)$

Density function:

$$
f(x)= \begin{cases}\frac{1}{\beta \sqrt{2 \pi}} x^{-1} e^{-(\ln (x)-\alpha)^{2} / 2 \beta^{2}} & x>0 \\ 0 & \text { otherwise }\end{cases}
$$

Mean:
$\mu=e^{\alpha+\beta^{2} / 2}$

The log-normal distribution, Def. 2.46 \& Theo. 2.47

Syntax:
$X \sim L N\left(\alpha, \beta^{2}\right)($ with $\beta>0)$

Density function:

$$
f(x)= \begin{cases}\frac{1}{\beta \sqrt{2 \pi}} x^{-1} e^{-(\ln (x)-\alpha)^{2} / 2 \beta^{2}} & x>0 \\ 0 & \text { otherwise }\end{cases}
$$

Mean:
$\mu=e^{\alpha+\beta^{2} / 2}$

Variance:
$\sigma^{2}=e^{2 \alpha+\beta^{2}}\left(e^{\beta^{2}}-1\right)$

The log-normal distribution

Log-normal and normal distributions:
A log-normal distributed variable $Y \sim L N\left(\alpha, \beta^{2}\right)$ can be transformed into a normal distributed variable:

$$
X=\ln (Y)
$$

is normal distributed with mean α and variance β^{2}, i.e. $X \sim N\left(\alpha, \beta^{2}\right)$.

$$
Z=\frac{\ln (Y)-\alpha}{\beta}
$$

is standard normal distributed, i.e. $Z \sim N(0,1)$.

The exponential distribution

The exponential distribution, Def. 2.48 \& Theo. 2.49

Syntax:

$$
X \sim \operatorname{Exp}(\lambda)
$$

with $\lambda>0$.

Density function:

$$
f(x)= \begin{cases}\lambda e^{-\lambda x} & x \geq 0 \\ 0 & \text { otherwise }\end{cases}
$$

Mean:

$$
\mu=\frac{1}{\lambda}
$$

Variance:

$$
\sigma^{2}=\frac{1}{\lambda^{2}}
$$

The exponential distribution

- The exponential distribution is a special case of the gamma distribution.
- The exponential distribution is used to describe lifespan and waiting times.
- The exponential distribution can be used to describe (waiting) time between Poisson events.

Connection between the exponential and Poisson distributions

Poisson: Discrete events per unit

Exponential: Continuous distance between events
t_{1}
t_{2}
\qquad
time t

Example 5

Queuing model - Poisson process
The time between customer arrivals at a post office is exponentially distributed with mean $\mu=2$ minutes.

Example 5

Queuing model - Poisson process

The time between customer arrivals at a post office is exponentially distributed with mean $\mu=2$ minutes.

Question:
One customer has just arrived. What is the probability that no other customers will arrive during the next 2 minutes?

Example 5

Queuing model - Poisson process
The time between customer arrivals at a post office is exponentially distributed with mean $\mu=2$ minutes.

Question:
One customer has just arrived. What is the probability that no other customers will arrive during the next 2 minutes?

Answer:
$X \sim \operatorname{Exp}(1 / 2)$ represents waiting time until next customer.
$P(X>2)=1-P(X \leq 2)$
$1-\operatorname{pexp}(2$, rate $=1 / 2)$
[1] 0.37

Example 5

Example 6

Question:
One customer has just arrived. Use the Poisson distribution to calculate the probability that no other costumers will arrive during the next two minutes.

Example 6

Question:
One customer has just arrived. Use the Poisson distribution to calculate the probability that no other costumers will arrive during the next two minutes.

Answer:
$\lambda_{2 \min }=1, P(X=0)=\frac{e^{-1}}{1!} 1^{0}=e^{-1}$
dpois(0,1)
[1] 0.37
$\exp (-1)$
[1] 0.37

Overview

(1) Continuous random variables and distributions - Density and distribution functions - Mean, variance, and covariance
(2) Specific continuous distributions

- The uniform distribution
- The normal distribution
- The log-normal distribution
- The exponential distribution
(3) Calculation rules for random variables

Calculation rules for random variables

These rules work for both continuous and discrete random variables!

X is a random variable, a and b are constants.

Calculation rules for random variables

These rules work for both continuous and discrete random variables!

X is a random variable, a and b are constants.
Mean rule:

$$
\mathrm{E}(a X+b)=a \mathrm{E}(X)+b
$$

Calculation rules for random variables

These rules work for both continuous and discrete random variables!

X is a random variable, a and b are constants.
Mean rule:

$$
\mathrm{E}(a X+b)=a \mathrm{E}(X)+b
$$

Variance rule:

$$
\operatorname{Var}(a X+b)=a^{2} \operatorname{Var}(X)
$$

Example 7

X is a random variable with mean 4 and variance 6.
Question:
Calculate the mean and variance of $Y=-3 X+2$

Example 7

X is a random variable with mean 4 and variance 6.
Question:
Calculate the mean and variance of $Y=-3 X+2$

Answer:

$$
\begin{gathered}
\mathrm{E}(Y)=-3 \mathrm{E}(X)+2=-3 \cdot 4+2=-10 \\
\operatorname{Var}(Y)=(-3)^{2} \operatorname{Var}(X)=9 \cdot 6=54
\end{gathered}
$$

Calculation rules for random variables

X_{1}, \ldots, X_{n} are independent random variables.

Calculation rules for random variables

X_{1}, \ldots, X_{n} are independent random variables.
Mean rule:

$$
\begin{gathered}
\mathrm{E}\left(a_{1} X_{1}+a_{2} X_{2}+\cdots+a_{n} X_{n}\right) \\
=a_{1} \mathrm{E}\left(X_{1}\right)+a_{2} \mathrm{E}\left(X_{2}\right)+\cdots+a_{n} \mathrm{E}\left(X_{n}\right)
\end{gathered}
$$

Calculation rules for random variables

X_{1}, \ldots, X_{n} are independent random variables.
Mean rule:

$$
\begin{gathered}
\mathrm{E}\left(a_{1} X_{1}+a_{2} X_{2}+\cdots+a_{n} X_{n}\right) \\
=a_{1} \mathrm{E}\left(X_{1}\right)+a_{2} \mathrm{E}\left(X_{2}\right)+\cdots+a_{n} \mathrm{E}\left(X_{n}\right)
\end{gathered}
$$

Variance rule:

$$
\begin{aligned}
& \operatorname{Var}\left(a_{1} X_{1}+a_{2} X_{2}+\cdots+a_{n} X_{n}\right) \\
& =a_{1}^{2} \operatorname{Var}\left(X_{1}\right)+\cdots+a_{n}^{2} \operatorname{Var}\left(X_{n}\right)
\end{aligned}
$$

Example 8

Airline Planning

The weight of each passenger on a flight is assumed to be normal distributed $X \sim N\left(70,10^{2}\right)$.

A plane, which can take 55 passengers, may not have a load exceeding 4000 kg (only the weight of the passengers is considered load).

Example 8

Airline Planning

The weight of each passenger on a flight is assumed to be normal distributed $X \sim N\left(70,10^{2}\right)$.

A plane, which can take 55 passengers, may not have a load exceeding 4000 kg (only the weight of the passengers is considered load).

Question:
Calculate the probability that the plain is overloaded

Example 8

Airline Planning
The weight of each passenger on a flight is assumed to be normal distributed $X \sim N\left(70,10^{2}\right)$.

A plane, which can take 55 passengers, may not have a load exceeding 4000 kg (only the weight of the passengers is considered load).

Question:
Calculate the probability that the plain is overloaded

What is $\mathrm{Y}=$ Total passenger weight?

Example 8

Airline Planning
The weight of each passenger on a flight is assumed to be normal distributed $X \sim N\left(70,10^{2}\right)$.

A plane, which can take 55 passengers, may not have a load exceeding 4000 kg (only the weight of the passengers is considered load).

Question:
Calculate the probability that the plain is overloaded

What is $\mathrm{Y}=$ Total passenger weight?

What is Y ?
Definitely NOT: $Y=55 \cdot X$

Example 8

What is $\mathrm{Y}=$ Total passenger weight?
$Y=\sum_{i=1}^{55} X_{i}$, where $X_{i} \sim N\left(70,10^{2}\right)$ (and assumed to be independent)

Example 8

What is $\mathrm{Y}=$ Total passenger weight?
$Y=\sum_{i=1}^{55} X_{i}$, where $X_{i} \sim N\left(70,10^{2}\right)$ (and assumed to be independent)

Mean and variance of Y :

$$
\begin{aligned}
\mathrm{E}(Y) & =\sum_{i=1}^{55} \mathrm{E}\left(X_{i}\right)=\sum_{i=1}^{55} 70=55 \cdot 70=3850 \\
\operatorname{Var}(Y) & =\sum_{i=1}^{55} \operatorname{Var}\left(X_{i}\right)=\sum_{i=1}^{55} 100=55 \cdot 100=5500
\end{aligned}
$$

Example 8

What is $\mathrm{Y}=$ Total passenger weight?
$Y=\sum_{i=1}^{55} X_{i}$, where $X_{i} \sim N\left(70,10^{2}\right)$ (and assumed to be independent)

Mean and variance of Y :

$$
\begin{aligned}
\mathrm{E}(Y) & =\sum_{i=1}^{55} \mathrm{E}\left(X_{i}\right)=\sum_{i=1}^{55} 70=55 \cdot 70=3850 \\
\operatorname{Var}(Y) & =\sum_{i=1}^{55} \operatorname{Var}\left(X_{i}\right)=\sum_{i=1}^{55} 100=55 \cdot 100=5500
\end{aligned}
$$

Y is normal distributed, so we may find $P(Y>4000)$ using:
$1-\operatorname{pnorm}(4000$, mean $=3850$, sd $=\operatorname{sqrt}(5500))$
[1] 0.022

Example 8 - WRONG ANALYSIS

What is Y ?

Definitely NOT: $Y=55 \cdot X$

Example 8 - WRONG ANALYSIS

What is Y ?
Definitely NOT: $Y=55 \cdot X$

Mean and variance of WRONG Y :

$$
\begin{gathered}
\mathrm{E}(Y)=55 \cdot 70=3850 \\
\operatorname{Var}(Y)=55^{2} \operatorname{Var}(X)=55^{2} \cdot 100=550^{2}
\end{gathered}
$$

Example 8 - WRONG ANALYSIS

What is Y ?
Definitely NOT: $Y=55 \cdot X$

Mean and variance of WRONG Y :

$$
\begin{gathered}
\mathrm{E}(Y)=55 \cdot 70=3850 \\
\operatorname{Var}(Y)=55^{2} \operatorname{Var}(X)=55^{2} \cdot 100=550^{2}
\end{gathered}
$$

Wrong Y is also normal distributed. Finding $P(Y>4000)$ using WRONG Y :
1 - pnorm(4000, mean $=3850$, sd $=550)$
[1] 0.39

Example 8 - WRONG ANALYSIS

What is Y ?
Definitely NOT: $Y=55 \cdot X$

Mean and variance of WRONG Y :

$$
\begin{gathered}
\mathrm{E}(Y)=55 \cdot 70=3850 \\
\operatorname{Var}(Y)=55^{2} \operatorname{Var}(X)=55^{2} \cdot 100=550^{2}
\end{gathered}
$$

Wrong Y is also normal distributed. Finding $P(Y>4000)$ using WRONG Y :
1 - pnorm(4000, mean $=3850$, sd $=550$)
[1] 0.39

Consequence of wrong calculation:
A LOT of wasted money for the airline company!!!

Overview

(1) Continuous random variables and distributions

- Density and distribution functions
- Mean, variance, and covariance
(2) Specific continuous distributions
- The uniform distribution
- The normal distribution
- The log-normal distribution
- The exponential distribution
(3) Calculation rules for random variables

