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Continuous random variables and distributions Density and distribution functions

The density function, Definition 2.32

The density function (probability density function, pdf) for a random variable is

denoted by f (x).

The density function says something about the frequency of the outcome x for the

random variable X.

The density function for a continuous random variable does not correspond directly

to a probability. In fact, P(X = x) = 0 for all x.

The density function f (x) for the distribution of a continuous random variable

satisfies that

f (x)≥ 0 for all x and

∫
∞

−∞

f (x)dx = 1 .
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Continuous random variables and distributions Density and distribution functions

The density function

x

f
(x

)

P (a < X  b)

a b
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Continuous random variables and distributions Density and distribution functions

The distribution function, Definition 2.33

The distribution function (cumulative density function, cdf) for a continuous

random variable is denoted by F(x).

The distribution function is defined by

F(x) = P(X ≤ x) =
∫ x

−∞

f (t)dt .

Note that as a consequence of this definition,

f (x) = F
′
(x) .

It’s particularly useful to note that

P(a < X ≤ b) = F(b)−F(a) =
∫ b

a
f (x)dx .
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Continuous random variables and distributions Density and distribution functions

The distribution function
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Continuous random variables and distributions Density and distribution functions

The empirical cumulative distribution function (ecdf)

# Empirical cdf for sample of height data from Chapter 1

x <- c(168, 161, 167, 179, 184, 166, 198, 187, 191, 179)

plot(ecdf(x), verticals = TRUE, main = "")

# 'True cdf' for normal distribution (with sample mean and variance)

xp <- seq(0.9*min(x), 1.1*max(x), length = 100)

lines(xp, pnorm(xp, mean(x), sd(x)), col = 2)
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Continuous random variables and distributions Mean, variance, and covariance

Mean, continuous random variable, Definition 2.34

The mean/expected value of a continuous random variable:

µ =
∫

∞

−∞

x f (x)dx

Compare with the mean of a discrete random variable:

µ = ∑
all x

x f (x)
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Continuous random variables and distributions Mean, variance, and covariance

Variance, continuous random variable, Definition 2.34

The variance of a continuous random variable:

σ
2 =

∫
∞

−∞

(x−µ)2 f (x)dx

Compare with the variance of a discrete random variable:

σ
2 = ∑

all x
(x−µ)2 f (x)
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Variance, continuous random variable, Definition 2.34
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σ
2 =

∫
∞

−∞

(x−µ)2 f (x)dx

Compare with the variance of a discrete random variable:

σ
2 = ∑

all x
(x−µ)2 f (x)

Md Saifuddin Khalid (DTU Compute) Introduction to Statistics Autumn 2023 10 / 49



Continuous random variables and distributions Mean, variance, and covariance

Covariance, Definition 2.58

The covariance between two random variables:

Let X and Y be two random variables. Then, the covariance between X and Y is

Cov(X,Y) = E[(X−E[X])(Y −E[Y])]

Relationship between covariance and independence:

If two random variables are independent their covariance is 0. The reverse is not

necessarily true!
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Specific continuous distributions
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Specific continuous distributions

Specific continuous distributions

A number of statistical distributions exist (both continuous and discrete) that can be

used to describe and analyze different types of problems.

Today, we’ll take a closer look at the following continuous distributions:

The uniform distribution

The normal distribution

The log-normal distribution

The exponential distribution
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Specific continuous distributions

Continuous distributions in R

R Distribution

norm The normal distribution

unif The uniform distribution

lnorm The log-normal distribution

exp The exponential distribution

d Probability density function, f (x).

p Cumulative distribution function, F(x).

q Quantile function.

r Random numbers from the distribution.
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Specific continuous distributions The uniform distribution

Density of a uniform distribution (example)
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Specific continuous distributions The uniform distribution

The uniform distribution, Def. 2.35 & Theo. 2.36

Syntax:

X ∼ U(α,β )

Density function:

f (x) = 1
β−α

for α ≤ x ≤ β

Mean:

µ = α+β

2

Variance:

σ2 = 1
12 (β −α)2
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Specific continuous distributions The uniform distribution

Example 1

Students attending a stats course arrive at a lecture between 8.00 and 8.30. It is assumed

that the arival times can be described by a uniform distribution.

Question:

What is the probability that a randomly selected student arrives between 8.20 and 8.30?

Answer:

10/30 = 1/3

Let X ∼ U(0,30) represent arrival time. Then:

P(20 ≤ X ≤ 30) = P(X ≤ 30)−P(X ≤ 20) = 1−2/3 = 1/3

punif(q=30, min=0, max=30) - punif(q=20, min=0, max =30)

[1] 0.33
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Specific continuous distributions The uniform distribution

Example 1 (continued)

Question:

What is the probability that a randomly selected student arrives after 8.30?

Answer:

0

Let X ∼ U(0,30) represent arrival time. Then:

P(X > 30) = 1−P(X ≤ 30) = 1−1 = 0

1 - punif(q=30, min=0, max=30)

[1] 0
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Specific continuous distributions The normal distribution

Density of a normal distribution (example)
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Specific continuous distributions The normal distribution

The normal distribution, Def. 2.37 & Theo. 2.38

Syntax:

X ∼ N(µ,σ2)

Density function:

f (x) = 1
σ
√

2π
e−

(x−µ)2

2σ2 for −∞ < x < ∞

Mean:

µ = µ

Variance:

σ2 = σ2
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Specific continuous distributions The normal distribution
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Specific continuous distributions The normal distribution

Density of a standard normal distribution
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Specific continuous distributions The normal distribution

Density of two normal distributions (example)
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Specific continuous distributions The normal distribution

Density of three normal distributions (example)
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Specific continuous distributions The normal distribution

The standard normal distribution

The standard normal distribution:

Z ∼ N(0,12)

The normal distribution with mean 0 and variance 1.

Standardization:

An arbitrary normal distributed variable X ∼ N(µ,σ2) can be standardized by

Z =
X−µ

σ
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Specific continuous distributions The normal distribution

Example 2

Measurement error:

A scale has a measurement error, Z, that can be described by the standard normal

distribution, i.e.

Z ∼ N(0,12) .

That is, the mean measurement error is µ = 0 with standard deviation σ = 1 gram. The

scale is used to measure the weight of a product.

Question a):

What is the probability that the scale yields a measurement which is at least 2 grams

smaller than the true weight of the product?

Answer:

P(Z ≤−2) = 0.02275

pnorm(-2); pnorm(q=-2, mean =0, sd=1)
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Specific continuous distributions The normal distribution

Example 2

Answer:

pnorm(-2)

[1] 0.023

z

dn
or

m
(z

)

−3 −2 −1 0 1 2 3
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Specific continuous distributions The normal distribution

Example 2

Question b):

What is the probability that the scale yields a measurement which is at least 2 grams

larger than the true weight of the product?

Answer:

P(Z ≥ 2) = 0.02275

1 - pnorm(2)

z

dn
or

m
(z

)

−3 −2 −1 0 1 2 3

Md Saifuddin Khalid (DTU Compute) Introduction to Statistics Autumn 2023 27 / 49



Specific continuous distributions The normal distribution

Example 2

Question b):

What is the probability that the scale yields a measurement which is at least 2 grams

larger than the true weight of the product?

Answer:

P(Z ≥ 2) = 0.02275

1 - pnorm(2)

z

dn
or

m
(z

)

−3 −2 −1 0 1 2 3

Md Saifuddin Khalid (DTU Compute) Introduction to Statistics Autumn 2023 27 / 49



Specific continuous distributions The normal distribution

Example 2

Question c):

What is the probability that the scale is off by at most ±1 gram?

Answer:

P(|Z| ≤ 1) = P(−1 ≤ Z ≤ 1) = P(Z ≤ 1)−P(Z ≤−1) = 0.683

pnorm(1) - pnorm(-1)

z

dn
or

m
(z

)

−3 −2 −1 0 1 2 3
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Specific continuous distributions The normal distribution

Example 3

Income distribution:

It is assumed that the annual salary distribution of elementary school teachers can be

described using a normal distribution with mean µ = 290 (in DKK thousand) and

standard deviation σ = 4 (DKK thousand).

Question a):

What is the probability that a randomly selected teacher earns more than DKK 300.000?
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Specific continuous distributions The normal distribution

Example 3

Income distribution:

It is assumed that the annual salary distribution of elementary school teachers can be

described using a normal distribution with mean µ = 290 (in DKK thousand) and

standard deviation σ = 4 (DKK thousand).

Question a):

What is the probability that a randomly selected teacher earns more than DKK 300.000?

Md Saifuddin Khalid (DTU Compute) Introduction to Statistics Autumn 2023 29 / 49



Specific continuous distributions The normal distribution

Example 3

Question a):

What is the probability that a randomly selected teacher earns more than DKK 300.000?

Answer:

1 - pnorm(300, m = 290, s = 4)

[1] 0.0062

z

dn
or

m
(z

)

278 282 286 290 294 298 302
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Specific continuous distributions The normal distribution

Example 4

(Same income distribution):

It is assumed that the annual salary distribution of elementary school teachers can be

described using a normal distribution with mean µ = 290 (DKK thousand) and standard

deviation σ = 4 (DKK thousand).

”Opposite question”

Give a salary interval (symmetric around the mean) which covers 95% of all teachers’

salary.

Answer:

qnorm(c(0.025, 0.975), m = 290, s = 4)

[1] 282 298
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Specific continuous distributions The log-normal distribution

The log-normal distribution
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Specific continuous distributions The log-normal distribution

The log-normal distribution, Def. 2.46 & Theo. 2.47

Syntax:

X ∼ LN(α,β 2) (with β > 0)

Density function:

f (x) =

{
1

β
√

2π
x−1e−(ln(x)−α)2/2β 2

x > 0
0 otherwise

Mean:

µ = eα+β 2/2

Variance:

σ2 = e2α+β 2
(eβ 2 −1)
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Specific continuous distributions The log-normal distribution

The log-normal distribution

Log-normal and normal distributions:

A log-normal distributed variable Y ∼ LN(α,β 2) can be transformed into a normal

distributed variable:

X = ln(Y)

is normal distributed with mean α and variance β 2, i.e. X ∼ N(α,β 2).

Z =
ln(Y)−α

β

is standard normal distributed, i.e. Z ∼ N(0,1).
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Specific continuous distributions The exponential distribution

The exponential distribution
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Specific continuous distributions The exponential distribution

The exponential distribution, Def. 2.48 & Theo. 2.49

Syntax:

X ∼ Exp(λ )

with λ > 0.

Density function:

f (x) =
{

λe−λx x ≥ 0
0 otherwise

Mean:

µ =
1
λ

Variance:

σ
2 =

1
λ 2
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Specific continuous distributions The exponential distribution

The exponential distribution

The exponential distribution is a special case of the gamma distribution.

The exponential distribution is used to describe lifespan and waiting times.

The exponential distribution can be used to describe (waiting) time between

Poisson events.
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Specific continuous distributions The exponential distribution

Connection between the exponential and Poisson
distributions

time t

∗ ∗ ∗ ∗ ∗ ∗ ∗

t1 t2

Poisson: Discrete events per unit

Exponential: Continuous distance between events
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Specific continuous distributions The exponential distribution

Example 5

Queuing model – Poisson process

The time between customer arrivals at a post office is exponentially distributed with

mean µ = 2 minutes.

Question:

One customer has just arrived. What is the probability that no other customers will arrive

during the next 2 minutes?

Answer:

X ∼ Exp(1/2) represents waiting time until next customer.

P(X > 2) = 1−P(X ≤ 2)

1 - pexp(2, rate = 1/2)

[1] 0.37
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Specific continuous distributions The exponential distribution

Example 5
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P(X > 2)
 = 0.37

P(X < 2)
 = 0.63
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Specific continuous distributions The exponential distribution

Example 6

Question:

One customer has just arrived. Use the Poisson distribution to calculate the probability

that no other costumers will arrive during the next two minutes.

Answer:

λ2min = 1, P(X = 0) = e−1

1! 10 = e−1

dpois(0,1)

[1] 0.37

exp(-1)

[1] 0.37
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Calculation rules for random variables

Overview

1 Continuous random variables and distributions
Density and distribution functions
Mean, variance, and covariance

2 Specific continuous distributions
The uniform distribution
The normal distribution
The log-normal distribution
The exponential distribution

3 Calculation rules for random variables
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Calculation rules for random variables

Calculation rules for random variables

These rules work for both continuous and discrete random variables!

X is a random variable, a and b are constants.

Mean rule:

E(aX+b) = aE(X)+b

Variance rule:

Var(aX+b) = a2Var(X)
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Calculation rules for random variables

Example 7

X is a random variable with mean 4 and variance 6.

Question:

Calculate the mean and variance of Y =−3X+2

Answer:

E(Y) =−3E(X)+2 =−3 ·4+2 =−10

Var(Y) = (−3)2Var(X) = 9 ·6 = 54
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Calculation rules for random variables

Calculation rules for random variables

X1, . . . ,Xn are independent random variables.

Mean rule:

E(a1X1 +a2X2 + · · ·+anXn)

= a1E(X1)+a2E(X2)+ · · ·+anE(Xn)

Variance rule:

Var(a1X1 +a2X2 + · · ·+anXn)

= a2
1Var(X1)+ · · ·+a2

nVar(Xn)
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Calculation rules for random variables

Example 8

Airline Planning

The weight of each passenger on a flight is assumed to be normal distributed

X ∼ N(70,102).

A plane, which can take 55 passengers, may not have a load exceeding 4000 kg (only the

weight of the passengers is considered load).

Question:

Calculate the probability that the plain is overloaded

What is Y = Total passenger weight?

What is Y?

Definitely NOT: Y = 55 ·X
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Calculation rules for random variables

Example 8

What is Y = Total passenger weight?

Y = ∑
55
i=1 Xi, where Xi ∼ N(70,102) (and assumed to be independent)

Mean and variance of Y:

E(Y) =
55

∑
i=1

E(Xi) =
55

∑
i=1

70 = 55 ·70 = 3850

Var(Y) =
55

∑
i=1

Var(Xi) =
55

∑
i=1

100 = 55 ·100 = 5500

Y is normal distributed, so we may find P(Y > 4000) using:

1-pnorm(4000, mean = 3850, sd = sqrt(5500))

[1] 0.022
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Calculation rules for random variables

Example 8 - WRONG ANALYSIS

What is Y?

Definitely NOT: Y = 55 ·X

Mean and variance of WRONG Y:

E(Y) = 55 ·70 = 3850

Var(Y) = 552Var(X) = 552 ·100 = 5502

Wrong Y is also normal distributed. Finding P(Y > 4000) using WRONG Y:

1 - pnorm(4000, mean = 3850, sd = 550)

[1] 0.39

Consequence of wrong calculation:

A LOT of wasted money for the airline company!!!
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