02323 Introduction to Statistics

Lecture 11: One-way Analysis of Variance, ANOVA

DTU Compute
Technical University of Denmark 2800 Lyngby - Denmark

Overview

(1) Intro: Small example and TV-data from B\&O
(2) Model and hypothesis
(3) Computation - decomposition and the ANOVA table
(9) Hypothesis test (F-test)
(3) Within-group variability and relation to the 2-sample t-test
© Post hoc analysis
(1) Model control / model validation
(3) A complete example - from the book

Overview

(1) Intro: Small example and TV-data from B\&O
(2) Model and hypothesis
(3) Computation - decomposition and the ANOVA table
a Hypothesis test (F-test)
(3) Within-group variability and relation to the 2-sample t-test
© Post hoc analysis

- Model control / model validation
(3) A complete example - from the book

One-way ANOVA - simple example

Group A	Group B	Group C
2.8	5.5	5.8
3.6	6.3	8.3
3.4	6.1	6.9
2.3	5.7	6.1

Is there a difference (in means) between the groups A, B and C?

Analysis of variance (ANOVA) can be used for the analysis, if the observations in each group can be assumed to be normally distributed.

TV set development at Bang \& Olufsen

Sound and image quality measured by the human perceptual instrument.

Bang \& Olufsen data in R

```
# Get the B6O data from the lmerTest-package
library(lmerTest)
## Warning: pakke 'lmerTest' blev bygget under R version 4.1.3
## Warning: pakke 'lme4' blev bygget under R version 4.1.3
data(TVbo)
head(TVbo) # First rows of the data
# Define factor identifying the 12 TV set and picture combinations
TVbo$TVPic <- factor(TVbo$TVset:TVbo$Picture)
# Each of }8\mathrm{ assessors scored each of the 12 combinations twice.
# Average the two replicates for each assessor and combination of
# TV set and picture
library(doBy)
TVbonoise <- summaryBy(Noise ~ Assessor + TVPic, data = TVbo,
    keep.names = T)
# One-way ANOVA of the noise (not the correct analysis!)
anova(lm(Noise ~ TVPic, data = TVbonoise))
```


One-way ANOVA - simple example in R

```
# Input data
y <- c(2.8, 3.6, 3.4, 2.3,
    5.5, 6.3, 6.1, 5.7,
    5.8, 8.3, 6.9, 6.1)
## Define treatment groups
treatm <- factor(c(1, 1, 1, 1,
    2, 2, 2, 2,
    3, 3, 3, 3))
## Plot data by treatment groups
par(mfrow = c(1,2))
plot(y ~ as.numeric(treatm), xlab = "Treatment", ylab = "y")
boxplot(y ~ treatm, xlab = "Treatment", ylab = "y")
```


Overview

(1) Intro: Small example and TV-data from B\&O
(2) Model and hypothesis
© Computation - decomposition and the ANOVA table
(9) Hypothesis test (F-test)
(3) Within-group variability and relation to the 2-sample t-test
(0) Post hoc analysis
(a) Model control / model validation
(3) A complete example - from the book

One-way ANOVA, model

- The model may be formulated as

$$
Y_{i j}=\mu+\alpha_{i}+\varepsilon_{i j}
$$

where the $\varepsilon_{i j}$ are assumed to be independent and identically distributed (i.i.d.) with

$$
\varepsilon_{i j} \sim N\left(0, \sigma^{2}\right)
$$

- μ : overall mean.
- α_{i} : effect of group (treatment) i.
- $Y_{i j}$: j th measurement in group $i\left(j\right.$ runs from 1 to $\left.n_{i}\right)$.

One-way ANOVA, hypothesis

- We want to compare the (more than 2) means $\mu+\alpha_{i}$ in the model

$$
Y_{i j}=\mu+\alpha_{i}+\varepsilon_{i j}, \quad \varepsilon_{i j} \stackrel{\text { i.i.d. }}{\sim} N\left(0, \sigma^{2}\right) .
$$

- The hypothesis may be formulated as

$$
\begin{array}{lll}
H_{0}: & \alpha_{i}=0 & \text { for all } i \\
H_{1}: & \alpha_{i} \neq 0 & \text { for at least one } i
\end{array}
$$

Overview

(1) Intro: Small example and TV-data from B\&O
a Model and hypothesis
(3) Computation - decomposition and the ANOVA table
© Hypothesis test (F-test)
(3) Within-group variability and relation to the 2-sample t-test
© Post hoc analysis

- Model control / model validation
(3) A complete example - from the book

One-way ANOVA, decomposition and the ANOVA table

- With the model

$$
Y_{i j}=\mu+\alpha_{i}+\varepsilon_{i j}, \quad \varepsilon_{i j} \stackrel{\text { i.i.d. }}{\sim} N\left(0, \sigma^{2}\right)
$$

the total variation in the data can be decomposed:

$$
S S T=S S(T r)+S S E
$$

- 'One-way' refers to the fact that there is only one factor in the experiment on k levels.
- The method is called analysis of variance, because the testing is carried out by comparing certain variances.

Formulas for sums of squares

- Total sum of squares ("the total variance")

$$
S S T=\sum_{i=1}^{k} \sum_{j=1}^{n_{i}}\left(y_{i j}-\bar{y}\right)^{2}
$$

Formulas for sums of squares

- Total sum of squares ("the total variance")

$$
S S T=\sum_{i=1}^{k} \sum_{j=1}^{n_{i}}\left(y_{i j}-\bar{y}\right)^{2}
$$

- The sum of squares for the residuals (" residual variance after model fit")

$$
S S E=\sum_{i=1}^{k} \sum_{j=1}^{n_{i}}\left(y_{i j}-\bar{y}_{i}\right)^{2}
$$

Formulas for sums of squares

- Total sum of squares ("the total variance")

$$
S S T=\sum_{i=1}^{k} \sum_{j=1}^{n_{i}}\left(y_{i j}-\bar{y}\right)^{2}
$$

- The sum of squares for the residuals (" residual variance after model fit")

$$
S S E=\sum_{i=1}^{k} \sum_{j=1}^{n_{i}}\left(y_{i j}-\bar{y}_{i}\right)^{2}
$$

- Sum of squares of treatment ("variance explained by the model")

$$
S S(T r)=\sum_{i=1}^{k} n_{i}\left(\bar{y}_{i}-\bar{y}\right)^{2}
$$

The ANOVA table

Source of variation	Deg. of freedom	Sums of squares	Mean sum of squares
Treatment	$k-1$	$S S(T r)$	$M S(\operatorname{Tr})=\frac{S S(T r)}{k-1}$
Residual	$n-k$	$S S E$	$M S E=\frac{S S E}{n-k}$
Total	$n-1$	$S S T$	

```
# One-way ANOVA using anova() and lm()
anova(lm(y ~ treatm))
## Analysis of Variance Table
##
## Response: y
## Df Sum Sq Mean Sq F value Pr (>F)
## treatm 2 30.8 15.40 26.7 0.00017 ***
## Residuals 9 5.2 0.58
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```


Overview

(1) Intro: Small example and TV-data from B\&O
(2) Model and hypothesis
(3) Computation - decomposition and the ANOVA table
(9) Hypothesis test (F-test)
(3) Within-group variability and relation to the 2-sample t-test
© Post hoc analysis

- Model control / model validation
(3) A complete example - from the book

One-way ANOVA, F-test

- We have: (Theorem 8.2)

$$
S S T=S S(T r)+S S E
$$

- and we can find the test statistic

$$
F=\frac{S S(\operatorname{Tr}) /(k-1)}{S S E /(n-k)}=\frac{M S(T r)}{M S E}
$$

where

- k is the number of levels of the factor,
- n is the total number of observations.
- Choose the significance level α, and compute the test statistic F.
- Compare the test statistic to the relevant quantile of the F-distribution:

$$
F \sim F_{\alpha}(k-1, n-k)(\text { Theorem } 8.6)
$$

The F-distribution and the F-test

```
# Remember, this is "under HO" (i.e. we compute as if HO is true)
# Number of groups
k <- 3
# Total number of observations
n <- 12
# Sequence for plot
xseq <- seq(0, 10, by = 0.1)
# Plot density of the F-distribution
plot(xseq, df(xseq, df1 = k-1, df2 = n-k), type = "l")
# Plot critical value for significance level 5%
cr <- qf(0.95, df1 = k-1, df2 = n-k)
abline(v = cr, col = "red")
```


An F-distribution with a critical value

The ANOVA table

Source of variation	Deg. of freedom	Sums of squares	Mean sum of squares	Test- statistic F	p - value
treatment	$k-1$	$S S(T r)$	$M S(T r)=\frac{S S(T r)}{k-1}$	$F_{\text {obs }}=\frac{M S(T r)}{M S E}$	$P\left(F>F_{\text {obs }}\right)$
Residual	$n-k$	$S S E$	$M S E=\frac{S S E}{n-k}$		
Total	$n-1$	$S S T$			

```
anova(lm(y ~ treatm))
## Analysis of Variance Table
##
## Response: y
## Df Sum Sq Mean Sq F value }\operatorname{Pr}(>F
## treatm 2 30.8 15.40 26.7 0.00017 ***
## Residuals 9 5.2 0.58
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```


One-way ANOVA F-test "by hand"

```
k <- 3; n <- 12 # Number of groups k, total number of observations n
# Total variation, SST
(SST <- sum( (y - mean(y))^2 ))
# Residual variance after model fit, SSE
y1 <- y[1:4]; y2 <- y[5:8]; y3 <- y[9:12]
(SSE <- sum( (y1 - mean(y1))^2 ) +
    sum( (y2 - mean(y2))^2 ) +
    sum( (y3 - mean(y3))^2 ))
# Variance explained by the model, SS(Tr)
(SSTr <- SST - SSE)
# Test statistic
(Fobs <- (SSTr/(k-1)) / (SSE/(n-k)))
# P-value
(1 - pf(Fobs, df1 = k-1, df2 = n-k))
```


Overview

(1) Intro: Small example and TV-data from B\&O
(2) Model and hypothesis
© Computation - decomposition and the ANOVA table

- Hypothesis test (F-test)
(3) Within-group variability and relation to the 2-sample t-test
© Post hoc analysis
© Model control / model validation
(3) A complete example - from the book

Within-group variability and relation to the 2-sample t-test (Theorem 8.4)

The residual sum of squares, $S S E$, divided by $n-k$, also called residual mean square, $M S E=S S E /(n-k)$, is the average within-group variability:

$$
\begin{equation*}
M S E=\frac{S S E}{n-k}=\frac{\left(n_{1}-1\right) s_{1}^{2}+\cdots+\left(n_{k}-1\right) s_{k}^{2}}{n-k} \tag{1}
\end{equation*}
$$

$$
s_{i}^{2}=\frac{1}{n_{i}-1} \sum_{i=1}^{n_{i}}\left(y_{i j}-\bar{y}_{i}\right)^{2}
$$

ONLY when $k=2$: (cf. Method 3.52)

$$
\begin{gathered}
M S E=s_{p}^{2}=\frac{\left(n_{1}-1\right) s_{1}^{2}+\left(n_{2}-1\right) s_{2}^{2}}{n-2} \\
F_{\mathrm{obs}}=t_{\mathrm{obs}}^{2}
\end{gathered}
$$

where $t_{\text {obs }}$ is the pooled t-test statistic from Methods 3.52 and 3.53.

Overview

(1) Intro: Small example and TV-data from B\&O
(2) Model and hypothesis
© Computation - decomposition and the ANOVA table
© Hypothesis test (F-test)
(3) Within-group variability and relation to the 2-sample t-test
© Post hoc analysis

- Model control / model validation
(3) A complete example - from the book

Post hoc confidence interval - Method 8.9

- A single pre-planned confidence interval for the difference between treatment i and j is found as:

$$
\begin{equation*}
\bar{y}_{i}-\bar{y}_{j} \pm t_{1-\alpha / 2} \sqrt{\frac{S S E}{n-k}\left(\frac{1}{n_{i}}+\frac{1}{n_{j}}\right)} \tag{2}
\end{equation*}
$$

where $t_{1-\alpha / 2}$ is based on the t -distribution with $n-k$ degrees of freedom.

- Note the fewer degrees of freedom as more unknowns are estimated in the computation of $M S E=S S E /(n-k)=s_{p}^{2}$ (i.e. pooled variance estimate)
- If all $M=k(k-1) / 2$ combinations of pairwise confidence intervals are found use the formula M times, but each time with $\alpha_{\text {Bonferroni }}=\alpha / M$.

Post hoc pairwise hypothesis test- Method 8.10

- A single pre-planned level α hypothesis test:

$$
H_{0}: \mu_{i}=\mu_{j}, H_{1}: \mu_{i} \neq \mu_{j}
$$

is carried out as:

$$
\begin{equation*}
t_{\mathrm{obs}}=\frac{\bar{y}_{i}-\bar{y}_{j}}{\sqrt{M S E\left(\frac{1}{n_{i}}+\frac{1}{n_{j}}\right)}} \tag{3}
\end{equation*}
$$

and

$$
p-\text { value }=2 P\left(t>\left|t_{\mathrm{obs}}\right|\right)
$$

where the t-distribution with $n-k$ degrees of freedom is used.

- If all $M=k(k-1) / 2$ combinations of pairwise hypothesis tests are carried out use the approach M times, but each time with significance level $\alpha_{\text {Bonferroni }}=\alpha / M$.

Overview

(1) Intro: Small example and TV-data from B\&O
(2) Model and hypothesis
(3) Computation - decomposition and the ANOVA table
© Hypothesis test (F-test)
(3) Within-group variability and relation to the 2-sample t-test
© Post hoc analysis
(1) Model control / model validation
(3) A complete example - from the book

Variance homogeneity

Look at a box plot to check whether the variability seems different across the groups.

```
# Check assumption of homogeneous variance using, e.g.,
# a box plot.
plot(treatm, y)
```


Normal assumption

Look at a normal QQ-plot of the residuals

```
# Check normality of residuals using a normal QQ-plot
fit1 <- lm(y ~ treatm)
qqnorm(fit1$residuals)
qqline(fit1$residuals)
```


Overview

(1) Intro: Small example and TV-data from B\&O
(2) Model and hypothesis
© Computation - decomposition and the ANOVA table
(9) Hypothesis test (F-test)
(3) Within-group variability and relation to the 2-sample t-test
(0) Post hoc analysis
(a) Model control / model validation
(3) A complete example - from the book

A complete example - from the book

```
Introduction to Statistics
```

Agendas - eNotes Course Material Podcast Forum Quiz Admin

8.2.5 A complete worked through example: plastic types for lamps

|||| Example 8.17 Plastic types for lamps

On a lamp two plastic screens are to be mounted. It is essential that these plastic screens have a good impact strength. Therefore an experiment is carried out for 5 different types of plastic. 6 samples in each plastic type are tested. The strengths of these items are determined. The following measurement data was found (strength in $\mathrm{kJ} / \mathrm{m}^{2}$):

Type of plastic				
I	II	III	IV	V
44.6	52.8	53.1	51.5	48.2
50.5	58.3	50.0	53.7	40.8
46.3	55.4	54.4	50.5	44.5
48.5	57.4	55.3	54.4	43.9
45.2	58.1	50.6	47.5	45.9
52.3	54.6	53.4	47.8	42.5

Overview

(1) Intro: Small example and TV-data from B\&O
(2) Model and hypothesis
(3) Computation - decomposition and the ANOVA table
(4) Hypothesis test (F-test)
(3) Within-group variability and relation to the 2-sample t-test
© Post hoc analysis
(3) Model control / model validation
(8) A complete example - from the book

