"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# specifying bin-edges:\n",
"plt.hist(x, bins=[160,165,170,175,180,185,190,195,200], edgecolor='black', color='red', alpha=0.7, density=True)\n",
"plt.xlabel('x')\n",
"plt.ylabel('Density')\n",
"plt.title('Histogram Example')\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Histograms are important - they show how the data is **distributed** \n",
"\n",
"Next week we will talk more about theoretical distributions. \n",
"\n",
"Histograms serve as *empirical distributions* \n",
"\n",
"Based on the histogram above, how would you guess the height-distribution in the *population* looks like? "
]
},
{
"cell_type": "code",
"execution_count": 39,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAkoAAAHHCAYAAABA5XcCAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAA9hAAAPYQGoP6dpAABHCUlEQVR4nO3dfVxUZf7/8fcMCqgIiCiIqXi3qamgqETrqiUbVt9VVjI1W5U1rVYqpdyWtlCrDfMGqTTZbtTadDX351pfMwrJm1pREzTLktRSTG68C1BUQDi/P/o62wRHbgQH6PV8PM4j5jqfc53rOsPgu3POzFgMwzAEAACAcqyOHgAAAEB9RVACAAAwQVACAAAwQVACAAAwQVACAAAwQVACAAAwQVACAAAwQVACAAAwQVACAAAwQVACIEny9/fX5MmTHT0M1FPDhg3TsGHDHD0M4LojKAGN0MqVK2WxWLRnz54K1w8bNky9e/e+5v1s2rRJc+bMueZ+Gjp/f39ZLJYKlxEjRjh6eACuQRNHDwBA/ZCRkSGrtXr/77Rp0yYtXbqUsCQpMDBQjz32WLl2Pz8/B4wGQG0hKAGQJLm4uDh6CNVWWFioFi1aOHoYkqT27dvrvvvuc/QwANQyLr0BkFT+HqWSkhLNnTtX3bt3l6urq1q3bq3BgwcrOTlZkjR58mQtXbpUkuwuNV1RWFioxx57TB06dJCLi4tuvPFGLVy4UIZh2O334sWLeuSRR+Tt7a2WLVtq5MiROnHihCwWi92Zqjlz5shiseirr77Svffeq1atWmnw4MGSpP3792vy5Mnq0qWLXF1d5evrqz/+8Y86c+aM3b6u9PHNN9/ovvvuk4eHh9q0aaOnn35ahmHo+PHjGjVqlNzd3eXr66tFixbV2vE9efKk2rRpo2HDhtkdg8OHD6tFixYaO3asre2TTz7RmDFj1LFjR7m4uKhDhw6aOXOmLl68aNfn5MmT5ebmpszMTP3P//yP3Nzc1L59e9vz8sUXX+i2225TixYt1KlTJ61evdpu+yuXaLdv364HHnhArVu3lru7uyZOnKgffvih0jkVFRVp9uzZ6tatm22cf/7zn1VUVHQthwqoVzijBDRi+fn5On36dLn2kpKSSredM2eO4uLidP/992vQoEEqKCjQnj17lJ6ert/+9rd64IEHlJWVpeTkZP3jH/+w29YwDI0cOVJbtmzRlClTFBgYqA8//FCzZs3SiRMntHjxYlvt5MmT9c477+gPf/iDbr75Zm3btk133XWX6bjGjBmj7t276/nnn7cFjuTkZH377beKjIyUr6+vDhw4oFdffVUHDhzQzp077QKcJI0dO1Y9e/bUvHnz9P777+u5556Tl5eX/v73v+u2227TCy+8oFWrVunxxx/XwIEDNWTIkEqPV0lJSYXHukWLFmrWrJnatm2rZcuWacyYMXr55Zf1yCOPqKysTJMnT1bLli31yiuv2LZZt26dLly4oIceekitW7fW7t279fLLL+v777/XunXr7PovLS3VHXfcoSFDhmj+/PlatWqVoqKi1KJFC/31r3/VhAkTNHr0aCUmJmrixIkKCQlR586d7fqIioqSp6en5syZo4yMDC1btkzHjh3T1q1byx27K8rKyjRy5Eh9+umnmjZtmnr27KkvvvhCixcv1jfffKMNGzZUesyABsEA0OisWLHCkHTV5aabbrLbplOnTsakSZNsjwMCAoy77rrrqvuZPn26UdGfkQ0bNhiSjOeee86u/e677zYsFotx+PBhwzAMIy0tzZBkzJgxw65u8uTJhiRj9uzZtrbZs2cbkozx48eX29+FCxfKtf3zn/80JBnbt28v18e0adNsbZcvXzZuuOEGw2KxGPPmzbO1//DDD0azZs3sjomZTp06mR7nuLg4u9rx48cbzZs3N7755htjwYIFhiRjw4YNlc4nLi7OsFgsxrFjx2xtkyZNMiQZzz//fLlxWywWY82aNbb2gwcPljumV35PgoKCjOLiYlv7/PnzDUnGu+++a2sbOnSoMXToUNvjf/zjH4bVajU++eQTu3EmJiYakoz//Oc/lRw1oGHg0hvQiC1dulTJycnllr59+1a6raenpw4cOKBDhw5Ve7+bNm2Sk5OTHnnkEbv2xx57TIZh6IMPPpAkJSUlSZL+9Kc/2dU9/PDDpn0/+OCD5dqaNWtm+/nSpUs6ffq0br75ZklSenp6ufr777/f9rOTk5MGDBggwzA0ZcoUW7unp6duvPFGffvtt6Zj+ang4OAKj/X48ePt6pYsWSIPDw/dfffdevrpp/WHP/xBo0aNMp1PYWGhTp8+rVtuuUWGYWjv3r1Xnc+Vcbdo0UL33HOPrf3GG2+Up6dnhfOZNm2amjZtanv80EMPqUmTJtq0aZPpfNetW6eePXuqR48eOn36tG257bbbJElbtmwx3RZoSLj0BjRigwYN0oABA8q1t2rVqsLLRD/1zDPPaNSoUfrVr36l3r17a8SIEfrDH/5QpZB17Ngx+fn5qWXLlnbtPXv2tK2/8l+r1VruUlC3bt1M+/55rSSdPXtWc+fO1Zo1a3Ty5Em7dfn5+eXqO3bsaPfYw8NDrq6u8vb2Ltf+8/uczHh7eys0NLTSOi8vL7300ksaM2aMfHx89NJLL5WryczMVGxsrN57771y9wr9fD6urq5q06ZNuXHfcMMN5S6beXh4VHjvUffu3e0eu7m5qV27djp69KjpPA4dOqSvv/663L6v+PnzADRUBCUAFRoyZIiOHDmid999Vx999JFef/11LV68WImJiXZnMK63n55tueKee+7Rjh07NGvWLAUGBsrNzU1lZWUaMWKEysrKytU7OTlVqU1SuZvPa8OHH34oSfrhhx/0/fffy9PT07autLRUv/3tb3X27Fk98cQT6tGjh1q0aKETJ05o8uTJ5eZjNu66nk9ZWZn69Omj+Pj4Ctd36NChVvYDOBpBCYApLy8vRUZGKjIyUufPn9eQIUM0Z84cW1Ayu9G3U6dO2rx5s86dO2d3VungwYO29Vf+W1ZWpu+++87urMbhw4erPMYffvhBKSkpmjt3rmJjY23tNblkeD0kJSXp9ddf15///GetWrVKkyZN0q5du9SkyY9/jr/44gt98803evPNNzVx4kTbdlfebVgXDh06pFtvvdX2+Pz588rOztadd95puk3Xrl31+eefa/jw4aa/B0BjwD1KACr080tObm5u6tatm91bv698hlFeXp5d7Z133qnS0lItWbLErn3x4sWyWCy64447JElhYWGSZPeOL0l6+eWXqzzOK2dOfn6mJCEhocp9XC95eXm2dxE+//zzev3115Wenq7nn3/eVlPRfAzD0Isvvlhn43r11Vft3gm5bNkyXb582fY8VeSee+7RiRMn9Nprr5Vbd/HiRRUWFtbJWIHrjTNKACrUq1cvDRs2TEFBQfLy8tKePXv0r3/9S1FRUbaaoKAgSdIjjzyisLAwOTk5ady4cfrd736nW2+9VX/961919OhRBQQE6KOPPtK7776rGTNmqGvXrrbtIyIilJCQoDNnztg+HuCbb76RZH7G6qfc3d1tb40vKSlR+/bt9dFHH+m7776rg6Ni7sSJE3r77bfLtbu5uSk8PFyS9Oijj+rMmTPavHmznJycNGLECN1///167rnnNGrUKAUEBKhHjx7q2rWrHn/8cZ04cULu7u76f//v/1Xpc41qqri4WMOHD9c999yjjIwMvfLKKxo8eLBGjhxpus0f/vAHvfPOO3rwwQe1ZcsW/frXv1ZpaakOHjyod955Rx9++GGF98cBDY7j3nAHoK5cedv3Z599VuH6oUOHVvrxAM8995wxaNAgw9PT02jWrJnRo0cP429/+5vd28gvX75sPPzww0abNm0Mi8Vi91EB586dM2bOnGn4+fkZTZs2Nbp3724sWLDAKCsrs9tvYWGhMX36dMPLy8twc3MzwsPDjYyMDEOS3dv1r7y1/9SpU+Xm8/333xu///3vDU9PT8PDw8MYM2aMkZWVZfoRAz/vY9KkSUaLFi2qdJwqcrWPB+jUqZNhGIbx7rvvGpKMRYsW2W1bUFBgdOrUyQgICLAd26+++soIDQ013NzcDG9vb2Pq1KnG559/bkgyVqxYUeNxd+rUye4jH678nmzbts2YNm2a0apVK8PNzc2YMGGCcebMmXJ9/vTjAQzDMIqLi40XXnjBuOmmmwwXFxejVatWRlBQkDF37lwjPz+/0uMGNAQWw6iDOxUB4Brs27dP/fr109tvv60JEyY4ejiN1sqVKxUZGanPPvuMsz+ACe5RAuBQP/9aDunH+4usVmuVPhEbAOoS9ygBcKj58+crLS1Nt956q5o0aaIPPvhAH3zwgaZNm8ZbzAE4HEEJgEPdcsstSk5O1rPPPqvz58+rY8eOmjNnjv761786emgAIO5RAgAAMME9SgAAACYISgAAACa4R6mGysrKlJWVpZYtW/Lx/QAANBCGYejcuXPy8/OT1Vr5+SKCUg1lZWXxjhwAABqo48eP64Ybbqi0jqBUQ1e+6PP48eNyd3d38GgAAEBVFBQUqEOHDnZf2H01BKUaunK5zd3dnaAEAEADU9XbZriZGwAAwARBCQAAwARBCQAAwARBCQAAwARBCQAAwARBCQAAwARBCQAAwARBCQAAwARBCQAAwARBCQAAwES9CEpLly6Vv7+/XF1dFRwcrN27d5vWvvbaa/rNb36jVq1aqVWrVgoNDS1XbxiGYmNj1a5dOzVr1kyhoaE6dOiQXc3Zs2c1YcIEubu7y9PTU1OmTNH58+frZH4AAKBhcnhQWrt2raKjozV79mylp6crICBAYWFhOnnyZIX1W7du1fjx47VlyxalpqaqQ4cOuv3223XixAlbzfz58/XSSy8pMTFRu3btUosWLRQWFqZLly7ZaiZMmKADBw4oOTlZGzdu1Pbt2zVt2rQ6ny8AAGg4LIZhGI4cQHBwsAYOHKglS5ZIksrKytShQwc9/PDD+stf/lLp9qWlpWrVqpWWLFmiiRMnyjAM+fn56bHHHtPjjz8uScrPz5ePj49WrlypcePG6euvv1avXr302WefacCAAZKkpKQk3Xnnnfr+++/l5+dX6X4LCgrk4eGh/Px8vhQXAIAGorr/fjv0jFJxcbHS0tIUGhpqa7NarQoNDVVqamqV+rhw4YJKSkrk5eUlSfruu++Uk5Nj16eHh4eCg4NtfaampsrT09MWkiQpNDRUVqtVu3btqo2pAQCARqCJI3d++vRplZaWysfHx67dx8dHBw8erFIfTzzxhPz8/GzBKCcnx9bHz/u8si4nJ0dt27a1W9+kSRN5eXnZan6uqKhIRUVFtscFBQVVGh+A+u3UqVPVej27u7urTZs2dTgiAPWJQ4PStZo3b57WrFmjrVu3ytXVtU73FRcXp7lz59bpPgBcX6dOndJD996rojNnqryNS+vWWrZ6NWEJ+IVwaFDy9vaWk5OTcnNz7dpzc3Pl6+t71W0XLlyoefPmafPmzerbt6+t/cp2ubm5ateunV2fgYGBtpqf3yx++fJlnT171nS/MTExio6Otj0uKChQhw4dKp8kgHqroKBARWfO6DEXF3Vo1qzS+uMXL2rRmTMqKCggKAG/EA69R8nZ2VlBQUFKSUmxtZWVlSklJUUhISGm282fP1/PPvuskpKS7O4zkqTOnTvL19fXrs+CggLt2rXL1mdISIjy8vKUlpZmq/n4449VVlam4ODgCvfp4uIid3d3uwVA49ChWTN1bdGi0qUqYQpA4+LwS2/R0dGaNGmSBgwYoEGDBikhIUGFhYWKjIyUJE2cOFHt27dXXFycJOmFF15QbGysVq9eLX9/f9s9RW5ubnJzc5PFYtGMGTP03HPPqXv37urcubOefvpp+fn5KTw8XJLUs2dPjRgxQlOnTlViYqJKSkoUFRWlcePGVekdbwAA4JfB4UFp7NixOnXqlGJjY5WTk6PAwEAlJSXZbsbOzMyU1frfE1/Lli1TcXGx7r77brt+Zs+erTlz5kiS/vznP6uwsFDTpk1TXl6eBg8erKSkJLv7mFatWqWoqCgNHz5cVqtVEREReumll+p+wgAAoMFw+OcoNVR8jhLQ8B05ckQzxoxRgqenurZoUXl9YaFm5OUpYd06de3a9TqMEEBta1CfowQAAFCfEZQAAABMEJQAAABMEJQAAABMEJQAAABMEJQAAABMEJQAAABMEJQAAABMEJQAAABMEJQAAABMEJQAAABMEJQAAABMEJQAAABMEJQAAABMEJQAAABMEJQAAABMEJQAAABMEJQAAABMEJQAAABMEJQAAABMEJQAAABMEJQAAABMEJQAAABMEJQAAABMEJQAAABMEJQAAABMEJQAAABMEJQAAABMEJQAAABMEJQAAABMEJQAAABMEJQAAABMEJQAAABMODwoLV26VP7+/nJ1dVVwcLB2795tWnvgwAFFRETI399fFotFCQkJ5WqurPv5Mn36dFvNsGHDyq1/8MEH62J6AACgAXNoUFq7dq2io6M1e/ZspaenKyAgQGFhYTp58mSF9RcuXFCXLl00b948+fr6Vljz2WefKTs727YkJydLksaMGWNXN3XqVLu6+fPn1+7kAABAg+fQoBQfH6+pU6cqMjJSvXr1UmJiopo3b67ly5dXWD9w4EAtWLBA48aNk4uLS4U1bdq0ka+vr23ZuHGjunbtqqFDh9rVNW/e3K7O3d291ucHAAAaNocFpeLiYqWlpSk0NPS/g7FaFRoaqtTU1Frbx9tvv60//vGPslgsdutWrVolb29v9e7dWzExMbpw4UKt7BMAADQeTRy149OnT6u0tFQ+Pj527T4+Pjp48GCt7GPDhg3Ky8vT5MmT7drvvfdederUSX5+ftq/f7+eeOIJZWRkaP369aZ9FRUVqaioyPa4oKCgVsYIAADqL4cFpevhjTfe0B133CE/Pz+79mnTptl+7tOnj9q1a6fhw4fryJEj6tq1a4V9xcXFae7cuXU6XgAAUL847NKbt7e3nJyclJuba9eem5treqN2dRw7dkybN2/W/fffX2ltcHCwJOnw4cOmNTExMcrPz7ctx48fv+YxAgCA+s1hQcnZ2VlBQUFKSUmxtZWVlSklJUUhISHX3P+KFSvUtm1b3XXXXZXW7tu3T5LUrl070xoXFxe5u7vbLQAAoHFz6KW36OhoTZo0SQMGDNCgQYOUkJCgwsJCRUZGSpImTpyo9u3bKy4uTtKPN2d/9dVXtp9PnDihffv2yc3NTd26dbP1W1ZWphUrVmjSpElq0sR+ikeOHNHq1at15513qnXr1tq/f79mzpypIUOGqG/fvtdp5gAAoCFwaFAaO3asTp06pdjYWOXk5CgwMFBJSUm2G7wzMzNltf73pFdWVpb69etne7xw4UItXLhQQ4cO1datW23tmzdvVmZmpv74xz+W26ezs7M2b95sC2UdOnRQRESEnnrqqbqbKAAAaJAcfjN3VFSUoqKiKlz30/Aj/fip24ZhVNrn7bffblrXoUMHbdu2rdrjBAAAvzwO/woTAACA+oqgBAAAYIKgBAAAYIKgBAAAYIKgBAAAYIKgBAAAYIKgBAAAYIKgBAAAYIKgBAAAYIKgBAAAYIKgBAAAYIKgBAAAYIKgBAAAYIKgBAAAYIKgBAAAYIKgBAAAYIKgBAAAYIKgBAAAYIKgBAAAYIKgBAAAYIKgBAAAYIKgBAAAYIKgBAAAYIKgBAAAYIKgBAAAYIKgBAAAYIKgBAAAYIKgBAAAYIKgBAAAYIKgBAAAYIKgBAAAYIKgBAAAYIKgBAAAYMLhQWnp0qXy9/eXq6urgoODtXv3btPaAwcOKCIiQv7+/rJYLEpISChXM2fOHFksFrulR48edjWXLl3S9OnT1bp1a7m5uSkiIkK5ubm1PTUAANDAOTQorV27VtHR0Zo9e7bS09MVEBCgsLAwnTx5ssL6CxcuqEuXLpo3b558fX1N+73pppuUnZ1tWz799FO79TNnztT//u//at26ddq2bZuysrI0evToWp0bAABo+BwalOLj4zV16lRFRkaqV69eSkxMVPPmzbV8+fIK6wcOHKgFCxZo3LhxcnFxMe23SZMm8vX1tS3e3t62dfn5+XrjjTcUHx+v2267TUFBQVqxYoV27NihnTt31vocAQBAw+WwoFRcXKy0tDSFhob+dzBWq0JDQ5WamnpNfR86dEh+fn7q0qWLJkyYoMzMTNu6tLQ0lZSU2O23R48e6tix4zXvFwAANC4OC0qnT59WaWmpfHx87Np9fHyUk5NT436Dg4O1cuVKJSUladmyZfruu+/0m9/8RufOnZMk5eTkyNnZWZ6entXab1FRkQoKCuwWAADQuDVx9ABq2x133GH7uW/fvgoODlanTp30zjvvaMqUKTXuNy4uTnPnzq2NIQIAgAbCYWeUvL295eTkVO7dZrm5uVe9Ubu6PD099atf/UqHDx+WJPn6+qq4uFh5eXnV2m9MTIzy8/Nty/Hjx2ttjAAAoH5yWFBydnZWUFCQUlJSbG1lZWVKSUlRSEhIre3n/PnzOnLkiNq1aydJCgoKUtOmTe32m5GRoczMzKvu18XFRe7u7nYLAABo3Bx66S06OlqTJk3SgAEDNGjQICUkJKiwsFCRkZGSpIkTJ6p9+/aKi4uT9OMN4F999ZXt5xMnTmjfvn1yc3NTt27dJEmPP/64fve736lTp07KysrS7Nmz5eTkpPHjx0uSPDw8NGXKFEVHR8vLy0vu7u56+OGHFRISoptvvtkBRwEAANRXDg1KY8eO1alTpxQbG6ucnBwFBgYqKSnJdoN3ZmamrNb/nvTKyspSv379bI8XLlyohQsXaujQodq6dask6fvvv9f48eN15swZtWnTRoMHD9bOnTvVpk0b23aLFy+W1WpVRESEioqKFBYWpldeeeX6TBoAADQYFsMwDEcPoiEqKCiQh4eH8vPzuQwHNFBHjhzRjDFjlODpqa4tWlReX1ioGXl5Sli3Tl27dr0OIwRQ26r777fDv8IEAACgviIoAQAAmCAoAQAAmCAoAQAAmCAoAQAAmCAoAQAAmCAoAQAAmCAoAQAAmCAoAQAAmCAoAQAAmCAoAQAAmCAoAQAAmCAoAQAAmCAoAQAAmCAoAQAAmCAoAQAAmCAoAQAAmCAoAQAAmCAoAQAAmCAoAQAAmCAoAQAAmCAoAQAAmCAoAQAAmCAoAQAAmCAoAQAAmCAoAQAAmCAoAQAAmCAoAQAAmCAoAQAAmCAoAQAAmCAoAQAAmCAoAQAAmCAoAQAAmHB4UFq6dKn8/f3l6uqq4OBg7d6927T2wIEDioiIkL+/vywWixISEsrVxMXFaeDAgWrZsqXatm2r8PBwZWRk2NUMGzZMFovFbnnwwQdre2oAAKCBc2hQWrt2raKjozV79mylp6crICBAYWFhOnnyZIX1Fy5cUJcuXTRv3jz5+vpWWLNt2zZNnz5dO3fuVHJyskpKSnT77bersLDQrm7q1KnKzs62LfPnz6/1+QEAgIatiSN3Hh8fr6lTpyoyMlKSlJiYqPfff1/Lly/XX/7yl3L1AwcO1MCBAyWpwvWSlJSUZPd45cqVatu2rdLS0jRkyBBbe/PmzU3DFgAAgOTAM0rFxcVKS0tTaGjofwdjtSo0NFSpqam1tp/8/HxJkpeXl137qlWr5O3trd69eysmJkYXLlyotX0CAIDGwWFnlE6fPq3S0lL5+PjYtfv4+OjgwYO1so+ysjLNmDFDv/71r9W7d29b+7333qtOnTrJz89P+/fv1xNPPKGMjAytX7/etK+ioiIVFRXZHhcUFNTKGAEAQP3l0EtvdW369On68ssv9emnn9q1T5s2zfZznz591K5dOw0fPlxHjhxR165dK+wrLi5Oc+fOrdPxAgCA+sVhl968vb3l5OSk3Nxcu/bc3NxauXcoKipKGzdu1JYtW3TDDTdctTY4OFiSdPjwYdOamJgY5efn25bjx49f8xgBAED95rCg5OzsrKCgIKWkpNjaysrKlJKSopCQkBr3axiGoqKi9O9//1sff/yxOnfuXOk2+/btkyS1a9fOtMbFxUXu7u52CwAAaNwceuktOjpakyZN0oABAzRo0CAlJCSosLDQ9i64iRMnqn379oqLi5P04w3gX331le3nEydOaN++fXJzc1O3bt0k/Xi5bfXq1Xr33XfVsmVL5eTkSJI8PDzUrFkzHTlyRKtXr9add96p1q1ba//+/Zo5c6aGDBmivn37OuAoAACA+sqhQWns2LE6deqUYmNjlZOTo8DAQCUlJdlu8M7MzJTV+t+TXllZWerXr5/t8cKFC7Vw4UINHTpUW7dulSQtW7ZM0o8fKvlTK1as0OTJk+Xs7KzNmzfbQlmHDh0UERGhp556qm4nCwAAGhyH38wdFRWlqKioCtddCT9X+Pv7yzCMq/ZX2foOHTpo27Zt1RojAAD4ZXL4V5gAAADUVwQlAAAAEwQlAAAAEwQlAAAAEwQlAAAAEwQlAAAAEzUKSt9++21tjwMAAKDeqVFQ6tatm2699Va9/fbbunTpUm2PCQAAoF6oUVBKT09X3759FR0dLV9fXz3wwAPavXt3bY8NAADAoWoUlAIDA/Xiiy8qKytLy5cvV3Z2tgYPHqzevXsrPj5ep06dqu1xAgAAXHfXdDN3kyZNNHr0aK1bt04vvPCCDh8+rMcff1wdOnTQxIkTlZ2dXVvjBAAAuO6uKSjt2bNHf/rTn9SuXTvFx8fr8ccf15EjR5ScnKysrCyNGjWqtsYJAABw3dXoS3Hj4+O1YsUKZWRk6M4779Rbb72lO++8U1brj7mrc+fOWrlypfz9/WtzrAAAANdVjYLSsmXL9Mc//lGTJ09Wu3btKqxp27at3njjjWsaHAAAgCPVKCglJyerY8eOtjNIVxiGoePHj6tjx45ydnbWpEmTamWQAAAAjlCje5S6du2q06dPl2s/e/asOnfufM2DAgAAqA9qFJQMw6iw/fz583J1db2mAQEAANQX1br0Fh0dLUmyWCyKjY1V8+bNbetKS0u1a9cuBQYG1uoAAQAAHKVaQWnv3r2Sfjyj9MUXX8jZ2dm2ztnZWQEBAXr88cdrd4QAAAAOUq2gtGXLFklSZGSkXnzxRbm7u9fJoAAAAOqDGr3rbcWKFbU9DgAAgHqnykFp9OjRWrlypdzd3TV69Oir1q5fv/6aBwYAAOBoVQ5KHh4eslgstp8BAAAauyoHpZ9ebuPSGwAA+CWo0ecoXbx4URcuXLA9PnbsmBISEvTRRx/V2sAAAAAcrUZBadSoUXrrrbckSXl5eRo0aJAWLVqkUaNGadmyZbU6QAAAAEepUVBKT0/Xb37zG0nSv/71L/n6+urYsWN666239NJLL9XqAAEAABylRkHpwoULatmypSTpo48+0ujRo2W1WnXzzTfr2LFjtTpAAAAAR6lRUOrWrZs2bNig48eP68MPP9Ttt98uSTp58iQfQgkAABqNGgWl2NhYPf744/L391dwcLBCQkIk/Xh2qV+/frU6QAAAAEep0Sdz33333Ro8eLCys7MVEBBgax8+fLh+//vf19rgAAAAHKlGQUmSfH195evra9c2aNCgax4QAABAfVGjoFRYWKh58+YpJSVFJ0+eVFlZmd36b7/9tlYGBwAA4Eg1ukfp/vvv1xtvvKHf/OY3ioqK0qOPPmq3VMfSpUvl7+8vV1dXBQcHa/fu3aa1Bw4cUEREhPz9/WWxWJSQkFCjPi9duqTp06erdevWcnNzU0REhHJzc6s1bgAA0PjV6IzSBx98oPfff1+//vWvr2nna9euVXR0tBITExUcHKyEhASFhYUpIyNDbdu2LVd/4cIFdenSRWPGjNHMmTNr3OfMmTP1/vvva926dfLw8FBUVJRGjx6t//znP9c0HwAA0LjU6IxSq1at5OXldc07j4+P19SpUxUZGalevXopMTFRzZs31/LlyyusHzhwoBYsWKBx48bJxcWlRn3m5+frjTfeUHx8vG677TYFBQVpxYoV2rFjh3bu3HnNcwIAAI1HjYLSs88+q9jYWLvve6uu4uJipaWlKTQ09L+DsVoVGhqq1NTUOuszLS1NJSUldjU9evRQx44da7xfAADQONXo0tuiRYt05MgR+fj4yN/fX02bNrVbn56eXmkfp0+fVmlpqXx8fOzafXx8dPDgwZoMq0p95uTkyNnZWZ6enuVqcnJyTPsuKipSUVGR7XFBQUGNxlgXTp06VeXxuLu7q02bNnU8orpRnXkWFxfL2dm5yn1Xp74hH0P8ctWXvxPVGUddj6W66ssxbMga4jGsUVAKDw+v5WHUf3FxcZo7d66jh1HOqVOn9NC996rozJkq1bu0bq1lq1fXi1++6qjOPItKSvRdVpa6tW+vJk0q/xWvbn1DPYb45aovfyeqO466HEt11Zdj2JA11GNYo6A0e/bsa96xt7e3nJycyr3bLDc3t9znM9Vmn76+viouLlZeXp7dWaXK9hsTE6Po6Gjb44KCAnXo0KFG46xNBQUFKjpzRo+5uKhDs2ZXrT1+8aIWnTmjgoICh//iVVd15rnzhx/0t4sX9YiTk371szOH11rfkI8hfrnqy9+J6oyjrsdSXfXlGDZkDfUY1vgDJ/Py8vSvf/1LR44c0axZs+Tl5aX09HT5+Pioffv2lW7v7OysoKAgpaSk2M5QlZWVKSUlRVFRUTUaU1X6DAoKUtOmTZWSkqKIiAhJUkZGhjIzM21fxVIRFxcX0xvI64MOzZqpa4sWlRf+5PJhQ1SVeR67eFGSdIOra5WOSXXrG/oxxC9Xffk7UeVxXIexVFd9OYYNWUM7hjUKSvv371doaKg8PDx09OhRTZ06VV5eXlq/fr0yMzP11ltvVamf6OhoTZo0SQMGDNCgQYOUkJCgwsJCRUZGSpImTpyo9u3bKy4uTtKP95F89dVXtp9PnDihffv2yc3NTd26datSnx4eHpoyZYqio6Pl5eUld3d3PfzwwwoJCdHNN99ck8MBAAAaqRoFpejoaE2ePFnz589Xy5Ytbe133nmn7r333ir3M3bsWJ06dUqxsbHKyclRYGCgkpKSbDdjZ2Zmymr97xvzsrKy7L50d+HChVq4cKGGDh2qrVu3VqlPSVq8eLGsVqsiIiJUVFSksLAwvfLKKzU5FAAAoBGrUVD67LPP9Pe//71ce/v27a/6zrGKREVFmV5quxJ+rvD395dhGNfUpyS5urpq6dKlWrp0abXGCgAAfllq9DlKLi4uFb6975tvvnH4TVcAAAC1pUZBaeTIkXrmmWdUUlIiSbJYLMrMzNQTTzxhu0EaAACgoatRUFq0aJHOnz+vNm3a6OLFixo6dKi6deumli1b6m9/+1ttjxEAAMAhanSPkoeHh5KTk/Wf//xHn3/+uc6fP6/+/fvbfS0IAABAQ1ftoFRWVqaVK1dq/fr1Onr0qCwWizp37ixfX18ZhiGLxVIX4wQAALjuqnXpzTAMjRw5Uvfff79OnDihPn366KabbtKxY8c0efJk/f73v6+rcQIAAFx31TqjtHLlSm3fvl0pKSm69dZb7dZ9/PHHCg8P11tvvaWJEyfW6iABAAAcoVpnlP75z3/qySefLBeSJOm2227TX/7yF61atarWBgcAAOBI1QpK+/fv14gRI0zX33HHHfr888+veVAAAAD1QbWC0tmzZ+2+CuTnfHx89MMPP1zzoAAAAOqDagWl0tJSNWlifluTk5OTLl++fM2DAgAAqA+qdTO3YRiaPHmyXFxcKlxfVFRUK4MCAACoD6oVlCZNmlRpDe94AwAAjUW1gtKKFSvqahwAAAD1To2+6w0AAOCXgKAEAABggqAEAABggqAEAABggqAEAABggqAEAABggqAEAABggqAEAABggqAEAABggqAEAABggqAEAABggqAEAABggqAEAABggqAEAABggqAEAABggqAEAABggqAEAABggqAEAABggqAEAABgol4EpaVLl8rf31+urq4KDg7W7t27r1q/bt069ejRQ66ururTp482bdpkt95isVS4LFiwwFbj7+9fbv28efPqZH4AAKBhcnhQWrt2raKjozV79mylp6crICBAYWFhOnnyZIX1O3bs0Pjx4zVlyhTt3btX4eHhCg8P15dffmmryc7OtluWL18ui8WiiIgIu76eeeYZu7qHH364TucKAAAaFocHpfj4eE2dOlWRkZHq1auXEhMT1bx5cy1fvrzC+hdffFEjRozQrFmz1LNnTz377LPq37+/lixZYqvx9fW1W959913deuut6tKli11fLVu2tKtr0aJFnc4VAAA0LA4NSsXFxUpLS1NoaKitzWq1KjQ0VKmpqRVuk5qaalcvSWFhYab1ubm5ev/99zVlypRy6+bNm6fWrVurX79+WrBggS5fvnwNswEAAI1NE0fu/PTp0yotLZWPj49du4+Pjw4ePFjhNjk5ORXW5+TkVFj/5ptvqmXLlho9erRd+yOPPKL+/fvLy8tLO3bsUExMjLKzsxUfH19hP0VFRSoqKrI9LigoqHR+AACgYXNoULoeli9frgkTJsjV1dWuPTo62vZz37595ezsrAceeEBxcXFycXEp109cXJzmzp1b5+MFAAD1h0MvvXl7e8vJyUm5ubl27bm5ufL19a1wG19f3yrXf/LJJ8rIyND9999f6ViCg4N1+fJlHT16tML1MTExys/Pty3Hjx+vtE8AANCwOTQoOTs7KygoSCkpKba2srIypaSkKCQkpMJtQkJC7OolKTk5ucL6N954Q0FBQQoICKh0LPv27ZPValXbtm0rXO/i4iJ3d3e7BQAANG4Ov/QWHR2tSZMmacCAARo0aJASEhJUWFioyMhISdLEiRPVvn17xcXFSZIeffRRDR06VIsWLdJdd92lNWvWaM+ePXr11Vft+i0oKNC6deu0aNGicvtMTU3Vrl27dOutt6ply5ZKTU3VzJkzdd9996lVq1Z1P2kAANAgODwojR07VqdOnVJsbKxycnIUGBiopKQk2w3bmZmZslr/e+Lrlltu0erVq/XUU0/pySefVPfu3bVhwwb17t3brt81a9bIMAyNHz++3D5dXFy0Zs0azZkzR0VFRercubNmzpxpd98SAACAw4OSJEVFRSkqKqrCdVu3bi3XNmbMGI0ZM+aqfU6bNk3Tpk2rcF3//v21c+fOao8TAAD8sjj8AycBAADqK4ISAACACYISAACACYISAACACYISAACACYISAACACYISAACACYISAACACYISAACACYISAACACYISAACACYISAACACYISAACACYISAACACYISAACACYISAACACYISAACACYISAACACYISAACACYISAACACYISAACACYISAACACYISAACACYISAACACYISAACACYISAACACYISAACACYISAACACYISAACACYISAACACYISAACACYISAACACYISAACAiXoRlJYuXSp/f3+5uroqODhYu3fvvmr9unXr1KNHD7m6uqpPnz7atGmT3frJkyfLYrHYLSNGjLCrOXv2rCZMmCB3d3d5enpqypQpOn/+fK3PDQAANFwOD0pr165VdHS0Zs+erfT0dAUEBCgsLEwnT56ssH7Hjh0aP368pkyZor179yo8PFzh4eH68ssv7epGjBih7Oxs2/LPf/7Tbv2ECRN04MABJScna+PGjdq+fbumTZtWZ/MEAAANj8ODUnx8vKZOnarIyEj16tVLiYmJat68uZYvX15h/YsvvqgRI0Zo1qxZ6tmzp5599ln1799fS5YssatzcXGRr6+vbWnVqpVt3ddff62kpCS9/vrrCg4O1uDBg/Xyyy9rzZo1ysrKqtP5AgCAhsOhQam4uFhpaWkKDQ21tVmtVoWGhio1NbXCbVJTU+3qJSksLKxc/datW9W2bVvdeOONeuihh3TmzBm7Pjw9PTVgwABbW2hoqKxWq3bt2lUbUwMAAI1AE0fu/PTp0yotLZWPj49du4+Pjw4ePFjhNjk5ORXW5+Tk2B6PGDFCo0ePVufOnXXkyBE9+eSTuuOOO5SamionJyfl5OSobdu2dn00adJEXl5edv38VFFRkYqKimyPCwoKqjVXAADQ8Dg0KNWVcePG2X7u06eP+vbtq65du2rr1q0aPnx4jfqMi4vT3Llza2uIAACgAXDopTdvb285OTkpNzfXrj03N1e+vr4VbuPr61uteknq0qWLvL29dfjwYVsfP79Z/PLlyzp79qxpPzExMcrPz7ctx48fr3R+AACgYXNoUHJ2dlZQUJBSUlJsbWVlZUpJSVFISEiF24SEhNjVS1JycrJpvSR9//33OnPmjNq1a2frIy8vT2lpabaajz/+WGVlZQoODq6wDxcXF7m7u9stAACgcXP4u96io6P12muv6c0339TXX3+thx56SIWFhYqMjJQkTZw4UTExMbb6Rx99VElJSVq0aJEOHjyoOXPmaM+ePYqKipIknT9/XrNmzdLOnTt19OhRpaSkaNSoUerWrZvCwsIkST179tSIESM0depU7d69W//5z38UFRWlcePGyc/P7/ofBAAAUC85/B6lsWPH6tSpU4qNjVVOTo4CAwOVlJRku2E7MzNTVut/89wtt9yi1atX66mnntKTTz6p7t27a8OGDerdu7ckycnJSfv379ebb76pvLw8+fn56fbbb9ezzz4rFxcXWz+rVq1SVFSUhg8fLqvVqoiICL300kvXd/IAAKBec3hQkqSoqCjbGaGf27p1a7m2MWPGaMyYMRXWN2vWTB9++GGl+/Ty8tLq1aurNU4AAPDL4vBLbwAAAPUVQQkAAMAEQQkAAMAEQQkAAMAEQQkAAMAEQQkAAMAEQQkAAMAEQQkAAMAEQQkAAMAEQQkAAMAEQQkAAMAEQQkAAMAEQQkAAMAEQQkAAMAEQQkAAMAEQQkAAMAEQQkAAMAEQQkAAMAEQQkAAMAEQQkAAMAEQQkAAMAEQQkAAMAEQQkAAMAEQQkAAMAEQQkAAMAEQQkAAMAEQQkAAMAEQQkAAMAEQQkAAMAEQQkAAMAEQQkAAMAEQQkAAMAEQQkAAMBEvQhKS5culb+/v1xdXRUcHKzdu3dftX7dunXq0aOHXF1d1adPH23atMm2rqSkRE888YT69OmjFi1ayM/PTxMnTlRWVpZdH/7+/rJYLHbLvHnz6mR+AACgYXJ4UFq7dq2io6M1e/ZspaenKyAgQGFhYTp58mSF9Tt27ND48eM1ZcoU7d27V+Hh4QoPD9eXX34pSbpw4YLS09P19NNPKz09XevXr1dGRoZGjhxZrq9nnnlG2dnZtuXhhx+u07kCAICGxeFBKT4+XlOnTlVkZKR69eqlxMRENW/eXMuXL6+w/sUXX9SIESM0a9Ys9ezZU88++6z69++vJUuWSJI8PDyUnJyse+65RzfeeKNuvvlmLVmyRGlpacrMzLTrq2XLlvL19bUtLVq0qPP5AgCAhsOhQam4uFhpaWkKDQ21tVmtVoWGhio1NbXCbVJTU+3qJSksLMy0XpLy8/NlsVjk6elp1z5v3jy1bt1a/fr104IFC3T58uWaTwYAADQ6TRy589OnT6u0tFQ+Pj527T4+Pjp48GCF2+Tk5FRYn5OTU2H9pUuX9MQTT2j8+PFyd3e3tT/yyCPq37+/vLy8tGPHDsXExCg7O1vx8fEV9lNUVKSioiLb44KCgirNEQAANFwODUp1raSkRPfcc48Mw9CyZcvs1kVHR9t+7tu3r5ydnfXAAw8oLi5OLi4u5fqKi4vT3Llz63zMAACg/nDopTdvb285OTkpNzfXrj03N1e+vr4VbuPr61ul+ish6dixY0pOTrY7m1SR4OBgXb58WUePHq1wfUxMjPLz823L8ePHK5kdAABo6BwalJydnRUUFKSUlBRbW1lZmVJSUhQSElLhNiEhIXb1kpScnGxXfyUkHTp0SJs3b1br1q0rHcu+fftktVrVtm3bCte7uLjI3d3dbgEAAI2bwy+9RUdHa9KkSRowYIAGDRqkhIQEFRYWKjIyUpI0ceJEtW/fXnFxcZKkRx99VEOHDtWiRYt01113ac2aNdqzZ49effVVST+GpLvvvlvp6enauHGjSktLbfcveXl5ydnZWampqdq1a5duvfVWtWzZUqmpqZo5c6buu+8+tWrVyjEHAgAA1DsOD0pjx47VqVOnFBsbq5ycHAUGBiopKcl2w3ZmZqas1v+e+Lrlllu0evVqPfXUU3ryySfVvXt3bdiwQb1795YknThxQu+9954kKTAw0G5fW7Zs0bBhw+Ti4qI1a9Zozpw5KioqUufOnTVz5ky7+5YAAAAcHpQkKSoqSlFRURWu27p1a7m2MWPGaMyYMRXW+/v7yzCMq+6vf//+2rlzZ7XHCQAAflkc/oGTAAAA9RVBCQAAwARBCQAAwARBCQAAwARBCQAAwARBCQAAwARBCQAAwARBCQAAwARBCQAAwARBCQAAwARBCQAAwARBCQAAwARBCQAAwARBCQAAwARBCQAAwARBCQAAwARBCQAAwARBCQAAwARBCQAAwARBCQAAwARBCQAAwARBCQAAwARBCQAAwARBCQAAwARBCQAAwARBCQAAwARBCQAAwARBCQAAwARBCQAAwARBCQAAwARBCQAAwARBCQAAwARBCQAAwES9CEpLly6Vv7+/XF1dFRwcrN27d1+1ft26derRo4dcXV3Vp08fbdq0yW69YRiKjY1Vu3bt1KxZM4WGhurQoUN2NWfPntWECRPk7u4uT09PTZkyRefPn6/1uQEAgIbL4UFp7dq1io6O1uzZs5Wenq6AgACFhYXp5MmTFdbv2LFD48eP15QpU7R3716Fh4crPDxcX375pa1m/vz5eumll5SYmKhdu3apRYsWCgsL06VLl2w1EyZM0IEDB5ScnKyNGzdq+/btmjZtWp3PFwAANBwOD0rx8fGaOnWqIiMj1atXLyUmJqp58+Zavnx5hfUvvviiRowYoVmzZqlnz5569tln1b9/fy1ZskTSj2eTEhIS9NRTT2nUqFHq27ev3nrrLWVlZWnDhg2SpK+//lpJSUl6/fXXFRwcrMGDB+vll1/WmjVrlJWVdb2mDgAA6jmHBqXi4mKlpaUpNDTU1ma1WhUaGqrU1NQKt0lNTbWrl6SwsDBb/XfffaecnBy7Gg8PDwUHB9tqUlNT5enpqQEDBthqQkNDZbVatWvXrlqbHwAAaNiaOHLnp0+fVmlpqXx8fOzafXx8dPDgwQq3ycnJqbA+JyfHtv5K29Vq2rZta7e+SZMm8vLystX8XFFRkYqKimyP8/PzJUkFBQVXnWNNnD17Vnl5eVWqPX78uC4VFenguXM6d/nyVWtPXLyoC0VF+uqrr3Tu3LlaGOn1U515HiksVKlh6JvCQpU2bVpp39Wpb8jHEOVV5/dKarjPf335O9GQj3d9OYYNWXWPYUlpqc6dO1fr/85e6c8wjCrVOzQoNSRxcXGaO3duufYOHTo4YDTlba5G7ccjR9bZOOpadeZ59xdfVKvv6tQ35GOI8qrzeyU13Oe/vvydaMjHu74cw4asOsfww3796mwc586dk4eHR6V1Dg1K3t7ecnJyUm5url17bm6ufH19K9zG19f3qvVX/pubm6t27drZ1QQGBtpqfn6z+OXLl3X27FnT/cbExCg6Otr2uKysTGfPnlXr1q1lsViqMNuqKSgoUIcOHXT8+HG5u7vXWr/1DfNsXJhn4/FLmKPEPBub6szTMAydO3dOfn5+VerboUHJ2dlZQUFBSklJUXh4uKQfA0hKSoqioqIq3CYkJEQpKSmaMWOGrS05OVkhISGSpM6dO8vX11cpKSm2YFRQUKBdu3bpoYcesvWRl5entLQ0BQUFSZI+/vhjlZWVKTg4uML9uri4yMXFxa7N09OzhjOvnLu7e6P+pb6CeTYuzLPx+CXMUWKejU1V51mVM0lXOPzSW3R0tCZNmqQBAwZo0KBBSkhIUGFhoSIjIyVJEydOVPv27RUXFydJevTRRzV06FAtWrRId911l9asWaM9e/bo1VdflSRZLBbNmDFDzz33nLp3767OnTvr6aeflp+fny2M9ezZUyNGjNDUqVOVmJiokpISRUVFady4cVVOmAAAoPFzeFAaO3asTp06pdjYWOXk5CgwMFBJSUm2m7EzMzNltf73zXm33HKLVq9eraeeekpPPvmkunfvrg0bNqh37962mj//+c8qLCzUtGnTlJeXp8GDByspKUmurq62mlWrVikqKkrDhw+X1WpVRESEXnrppes3cQAAUP8ZqFcuXbpkzJ4927h06ZKjh1KnmGfjwjwbj1/CHA2DeTY2dTlPi2FU8f1xAAAAvzAO/2RuAACA+oqgBAAAYIKgBAAAYIKgBAAAYIKgdJ1s375dv/vd7+Tn5yeLxaINGzaUq/n66681cuRIeXh4qEWLFho4cKAyMzNt6y9duqTp06erdevWcnNzU0RERLlPKXek2pjjsGHDZLFY7JYHH3zwOs6icpXN8+fjv7IsWLDAVnP27FlNmDBB7u7u8vT01JQpU3T+/PnrPJOrq415+vv7l1s/b9686zyTq6tsnufPn1dUVJRuuOEGNWvWTL169VJiYqJdTX1/bUq1M8/6/vqsbI65ubmaPHmy/Pz81Lx5c40YMUKHDh2yq2kMz2VV5lnfn0vpx68OGzhwoFq2bKm2bdsqPDxcGRkZdjVVeb4yMzN11113qXnz5mrbtq1mzZqly1X4rsErCErXSWFhoQICArR06dIK1x85ckSDBw9Wjx49tHXrVu3fv19PP/203Wc/zZw5U//7v/+rdevWadu2bcrKytLo0aOv1xQqVRtzlKSpU6cqOzvbtsyfP/96DL/KKpvnT8eenZ2t5cuXy2KxKCIiwlYzYcIEHThwQMnJydq4caO2b9+uadOmXa8pVEltzFOSnnnmGbu6hx9++HoMv8oqm2d0dLSSkpL09ttv6+uvv9aMGTMUFRWl9957z1ZT31+bUu3MU6rfr8+rzdEwDIWHh+vbb7/Vu+++q71796pTp04KDQ1VYWGhra6hP5dVnadUv59LSdq2bZumT5+unTt3Kjk5WSUlJbr99tur9XyVlpbqrrvuUnFxsXbs2KE333xTK1euVGxsbNUHUusfOIBKSTL+/e9/27WNHTvWuO+++0y3ycvLM5o2bWqsW7fO1vb1118bkozU1NS6GmqN1WSOhmEYQ4cONR599NG6G1gtq2iePzdq1Cjjtttusz3+6quvDEnGZ599Zmv74IMPDIvFYpw4caKuhnpNajJPwzCMTp06GYsXL667gdWyiuZ50003Gc8884xdW//+/Y2//vWvhmE0vNemYdRsnobRsF6fP59jRkaGIcn48ssvbW2lpaVGmzZtjNdee80wjMbxXFZlnobRsJ7LK06ePGlIMrZt22YYRtWer02bNhlWq9XIycmx1Sxbtsxwd3c3ioqKqrRfzijVA2VlZXr//ff1q1/9SmFhYWrbtq2Cg4PtTqempaWppKREoaGhtrYePXqoY8eOSk1NdcCoq6cqc7xi1apV8vb2Vu/evRUTE6MLFy5c/wHXktzcXL3//vuaMmWKrS01NVWenp4aMGCArS00NFRWq1W7du1yxDCvWUXzvGLevHlq3bq1+vXrpwULFlTrlHd9cMstt+i9997TiRMnZBiGtmzZom+++Ua33367pIb/2ryisnle0VBfn0VFRZJkdwbbarXKxcVFn376qaTG8VxWZZ5XNLTnMj8/X5Lk5eUlqWrPV2pqqvr06WP7tg9JCgsLU0FBgQ4cOFCl/Tr8K0wgnTx5UufPn9e8efP03HPP6YUXXlBSUpJGjx6tLVu2aOjQocrJyZGzs3O5L+L18fFRTk6OYwZeDVWZoyTde++96tSpk/z8/LR//3498cQTysjI0Pr16x08g5p588031bJlS7tTwTk5OWrbtq1dXZMmTeTl5dUgnsuKVDRPSXrkkUfUv39/eXl5aceOHYqJiVF2drbi4+MdNNLqe/nllzVt2jTdcMMNatKkiaxWq1577TUNGTJEkhr8a/OKyuYpNezX55V/QGNiYvT3v/9dLVq00OLFi/X9998rOztbUuN4LqsyT6nhPZdlZWWaMWOGfv3rX9u+sqwqz1dOTo5dSLqy/sq6qiAo1QNlZWWSpFGjRmnmzJmSpMDAQO3YsUOJiYm2ENGQVXWOP71Pp0+fPmrXrp2GDx+uI0eOqGvXrtd/4Ndo+fLlmjBhQrn7sBobs3lGR0fbfu7bt6+cnZ31wAMPKC4uTi4uLtd7mDXy8ssva+fOnXrvvffUqVMnbd++XdOnT5efn5/d/8k2dFWZZ0N+fTZt2lTr16/XlClT5OXlJScnJ4WGhuqOO+6Q0Yi+oKKq82xoz+X06dP15Zdfljsrdj1w6a0e8Pb2VpMmTdSrVy+79p49e9reEebr66vi4mLl5eXZ1eTm5srX1/d6DbXGqjLHigQHB0uSDh8+XKfjqwuffPKJMjIydP/999u1+/r66uTJk3Ztly9f1tmzZxvEc/lzZvOsSHBwsC5fvqyjR4/W/cBqwcWLF/Xkk08qPj5ev/vd79S3b19FRUVp7NixWrhwoaSG/9qUqjbPijS012dQUJD27dunvLw8ZWdnKykpSWfOnFGXLl0kNY7nUqp8nhWpz89lVFSUNm7cqC1btuiGG26wtVfl+fL19S33Lrgrj6v6nBKU6gFnZ2cNHDiw3Nsev/nmG3Xq1EnSj7/4TZs2VUpKim19RkaGMjMzFRIScl3HWxNVmWNF9u3bJ0lq165dXQ6vTrzxxhsKCgpSQECAXXtISIjy8vKUlpZma/v4449VVlZm+2PVkJjNsyL79u2T1Wotd+mxviopKVFJSYmsVvs/lU5OTrazpA39tSlVbZ4VaaivTw8PD7Vp00aHDh3Snj17NGrUKEmN47n8KbN5VqQ+PpeGYSgqKkr//ve/9fHHH6tz585266vyfIWEhOiLL76w+5/T5ORkubu7l/sf96sNBNfBuXPnjL179xp79+41JBnx8fHG3r17jWPHjhmGYRjr1683mjZtarz66qvGoUOHjJdfftlwcnIyPvnkE1sfDz74oNGxY0fj448/Nvbs2WOEhIQYISEhjppSOdc6x8OHDxvPPPOMsWfPHuO7774z3n33XaNLly7GkCFDHDmtciqbp2EYRn5+vtG8eXNj2bJlFfYxYsQIo1+/fsauXbuMTz/91Ojevbsxfvz46zWFKrnWee7YscNYvHixsW/fPuPIkSPG22+/bbRp08aYOHHi9ZxGpSqb59ChQ42bbrrJ2LJli/Htt98aK1asMFxdXY1XXnnF1kd9f20axrXPsyG8Piub4zvvvGNs2bLFOHLkiLFhwwajU6dOxujRo+36aAzPZWXzbAjPpWEYxkMPPWR4eHgYW7duNbKzs23LhQsXbDWVPV+XL182evfubdx+++3Gvn37jKSkJKNNmzZGTExMlcdBULpOtmzZYkgqt0yaNMlW88YbbxjdunUzXF1djYCAAGPDhg12fVy8eNH405/+ZLRq1cpo3ry58fvf/97Izs6+zjMxd61zzMzMNIYMGWJ4eXkZLi4uRrdu3YxZs2YZ+fn5DpiNuarM8+9//7vRrFkzIy8vr8I+zpw5Y4wfP95wc3Mz3N3djcjISOPcuXPXaQZVc63zTEtLM4KDgw0PDw/D1dXV6Nmzp/H8888bly5duo6zqFxl88zOzjYmT55s+Pn5Ga6ursaNN95oLFq0yCgrK7P1Ud9fm4Zx7fNsCK/Pyub44osvGjfccIPRtGlTo2PHjsZTTz1V7i3ijeG5rGyeDeG5NAyjwjlKMlasWGGrqcrzdfToUeOOO+4wmjVrZnh7exuPPfaYUVJSUuVxWP5vMAAAAPgZ7lECAAAwQVACAAAwQVACAAAwQVACAAAwQVACAAAwQVACAAAwQVACAAAwQVACAAAwQVACAAAwQVACAAAwQVACAEmnTp2Sr6+vnn/+eVvbjh075OzsbPft5AB+WfiuNwD4P5s2bVJ4eLh27NihG2+8UYGBgRo1apTi4+MdPTQADkJQAoCfmD59ujZv3qwBAwboiy++0GeffSYXFxdHDwuAgxCUAOAnLl68qN69e+v48eNKS0tTnz59HD0kAA7EPUoA8BNHjhxRVlaWysrKdPToUUcPB4CDcUYJAP5PcXGxBg0apMDAQN14441KSEjQF198obZt2zp6aAAchKAEAP9n1qxZ+te//qXPP/9cbm5uGjp0qDw8PLRx40ZHDw2Ag3DpDQAkbd26VQkJCfrHP/4hd3d3Wa1W/eMf/9Ann3yiZcuWOXp4AByEM0oAAAAmOKMEAABggqAEAABggqAEAABggqAEAABggqAEAABggqAEAABggqAEAABggqAEAABggqAEAABggqAEAABggqAEAABggqAEAABg4v8DAFO3PyRDiQYAAAAASUVORK5CYII=",
"text/plain": [
"
"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# lets try with really small bins, such that the histogram diplays all the details in the data:\n",
"plt.hist(x, bins=np.arange(160,200,1), edgecolor='black', color='red', alpha=0.7, density=True)\n",
"plt.xlabel('x')\n",
"plt.ylabel('Density')\n",
"plt.title('Histogram Example')\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Cumulative distribution\n",
"\n",
"The \"detailed\" histogram with small bins is maybe not the nicest way to display data. \n",
"\n",
"But histograms are dependent on bin-choices, which is also (sometimes) not ideal.. \n",
"\n",
"An alternative is to do a cumulative kind of plot:"
]
},
{
"cell_type": "code",
"execution_count": 40,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAGiCAYAAAA1LsZRAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAh20lEQVR4nO3df3DT9eHH8VcamrQVWwqFlkJodzoFpxRsIdYf/Ngy6/RQpt4hqEWGOB0yJDcHVWgnOosiyCa4KoPTnfNkeIoorB7rQPToZFR76oQiIJYxWmDYFtralubz/cOvmbUtTaDtu0mfj7vcLW8+n+b93oeYJ59Pmtgsy7IEAABgSITpCQAAgN6NGAEAAEYRIwAAwChiBAAAGEWMAAAAo4gRAABgFDECAACMIkYAAIBRxAgAADCKGAEAAEYFHSPbt2/XpEmTlJycLJvNpg0bNnS4z7Zt23T55ZfL6XTqwgsv1AsvvHAWUwUAAOEo6Bipra1VWlqaVq1aFdD2n3/+uW644QZNnDhRpaWleuCBB3T33Xfr7bffDnqyAAAg/NjO5YvybDabXn/9dU2ePLndbebPn69Nmzbpk08+8Y/ddtttqqqqUmFh4dk+NAAACBN9uvoBiouL5fF4WoxlZWXpgQceaHefhoYGNTQ0+O/7fD6dOHFCAwYMkM1m66qpAgCATmRZlk6ePKnk5GRFRLR/MabLY6SiokKJiYktxhITE1VTU6P6+npFR0e32ic/P1+PPPJIV08NAAB0g0OHDmno0KHt/nmXx8jZyMnJkdfr9d+vrq7WsGHDdOjQIcXGxhqcGQAA4aOu8bTG/rZIkrTz4R8pxtG5WVBTUyOXy6Xzzz//jNt1eYwkJSWpsrKyxVhlZaViY2PbPCsiSU6nU06ns9V4bGwsMQIAQCfp03haEc4YSV+/xnZ2jHyjo7dYdPnnjGRmZqqoqKjF2JYtW5SZmdnVDw0AAEJA0DFy6tQplZaWqrS0VNLXv7pbWlqq8vJySV9fYsnOzvZvf++99+rAgQP69a9/rT179ujZZ5/VX/7yF82bN69zVgAAAEJa0DGya9cujR49WqNHj5Ykeb1ejR49Wrm5uZKkI0eO+MNEkr73ve9p06ZN2rJli9LS0rRs2TL98Y9/VFZWVictAQAAhLKgLw5NmDBBZ/pokrY+XXXChAn68MMPg30oAADQC/DdNAAAwChiBAAAGEWMAAAAo4gRAABgFDECAACMIkYAAIBRxAgAADCKGAEAAEYRIwAAwChiBAAAGEWMAAAAo4gRAABgFDECAACMIkYAAIBRxAgAADCKGAEAAEYRIwAAwChiBAAAGEWMAAAAo4gRAABgFDECAACMIkYAAIBRxAgAADCKGAEAAEYRIwAAwChiBAAAGEWMAAAAo4gRAABgVB/TEwAAIFCWZam+qdn0NMJGXWPP+P+SGAEAhATLsnRrQbFKvvjS9FTQybhMAwAICfVNzYRIF8lIiVd0pN3Y43NmBAAQcnYt9CjGYe7FM9xER9pls9mMPT4xAgAIOTEOu2IcvISFCy7TAAAAo4gRAABgFDECAACMIkYAAIBRxAgAADCKGAEAAEYRIwAAwChiBAAAGEWMAAAAo4gRAABgFDECAACMIkYAAIBRxAgAADCKGAEAAEYRIwAAwChiBAAAGEWMAAAAo4gRAABgFDECAACMIkYAAIBRxAgAADCKGAEAAEYRIwAAwChiBAAAGEWMAAAAo4gRAABgFDECAACMIkYAAIBRxAgAADCKGAEAAEadVYysWrVKqampioqKktvt1s6dO8+4/YoVK3TxxRcrOjpaLpdL8+bN01dffXVWEwYAAOEl6BhZt26dvF6v8vLy9MEHHygtLU1ZWVk6evRom9u//PLLWrBggfLy8rR7926tWbNG69at00MPPXTOkwcAAKGvT7A7LF++XLNmzdKMGTMkSQUFBdq0aZPWrl2rBQsWtNp+x44duuqqqzRt2jRJUmpqqqZOnar333//HKcOAAiGZVmqb2o2PY2zVtcYunPHmQUVI42NjSopKVFOTo5/LCIiQh6PR8XFxW3uc+WVV+qll17Szp07NXbsWB04cECbN2/WnXfe2e7jNDQ0qKGhwX+/pqYmmGkCAL7DsizdWlCski++ND0VoJWgYuT48eNqbm5WYmJii/HExETt2bOnzX2mTZum48eP6+qrr5ZlWTp9+rTuvffeM16myc/P1yOPPBLM1AAAZ1Df1Bw2IZKREq/oSLvpaaATBX2ZJljbtm3T448/rmeffVZut1v79u3T3Llz9eijj2rRokVt7pOTkyOv1+u/X1NTI5fL1dVTBYBeYddCj2IcoftiHh1pl81mMz0NdKKgYiQhIUF2u12VlZUtxisrK5WUlNTmPosWLdKdd96pu+++W5J02WWXqba2Vvfcc48efvhhRUS0fg+t0+mU0+kMZmoAgADFOOyKcXT5v0WBgAX12zQOh0Pp6ekqKiryj/l8PhUVFSkzM7PNferq6loFh93+dZFblhXsfAEAQJgJOo29Xq+mT5+ujIwMjR07VitWrFBtba3/t2uys7M1ZMgQ5efnS5ImTZqk5cuXa/To0f7LNIsWLdKkSZP8UQIAAHqvoGNkypQpOnbsmHJzc1VRUaFRo0apsLDQ/6bW8vLyFmdCFi5cKJvNpoULF+rw4cMaOHCgJk2apN/+9redtwoAABCybFYIXCupqalRXFycqqurFRsba3o6ABBy6hpP65LctyVJny7O4j0j6BaBvn7z3TQAAMAoYgQAABhFjAAAAKOIEQAAYBQxAgAAjCJGAACAUcQIAAAwihgBAABGESMAAMAoYgQAABhFjAAAAKOIEQAAYBQxAgAAjCJGAACAUcQIAAAwihgBAABGESMAAMAoYgQAABhFjAAAAKOIEQAAYBQxAgAAjCJGAACAUcQIAAAwihgBAABGESMAAMAoYgQAABhFjAAAAKOIEQAAYFQf0xMAgHBlWZbqm5pNT0OSVNfYM+YBtIUYAYAuYFmWbi0oVskXX5qeCtDjcZkGALpAfVNzjwyRjJR4RUfaTU8DaIEzIwDQxXYt9CjG0TMCIDrSLpvNZnoaQAvECAB0sRiHXTEO/nMLtIfLNAAAwChiBAAAGEWMAAAAo4gRAABgFDECAACMIkYAAIBRxAgAADCKGAEAAEYRIwAAwChiBAAAGEWMAAAAo4gRAABgFDECAACMIkYAAIBRxAgAADCKGAEAAEYRIwAAwChiBAAAGEWMAAAAo4gRAABgFDECAACMIkYAAIBRxAgAADCKGAEAAEYRIwAAwChiBAAAGEWMAAAAo4gRAABgFDECAACMIkYAAIBRZxUjq1atUmpqqqKiouR2u7Vz584zbl9VVaXZs2dr8ODBcjqduuiii7R58+azmjAAAAgvfYLdYd26dfJ6vSooKJDb7daKFSuUlZWlsrIyDRo0qNX2jY2N+vGPf6xBgwbp1Vdf1ZAhQ/TFF1+oX79+nTF/AAAQ4oKOkeXLl2vWrFmaMWOGJKmgoECbNm3S2rVrtWDBglbbr127VidOnNCOHTsUGRkpSUpNTT23WQMIOZZlqb6p2fQ0uk1dY+9ZK3CugoqRxsZGlZSUKCcnxz8WEREhj8ej4uLiNvfZuHGjMjMzNXv2bL3xxhsaOHCgpk2bpvnz58tut7e5T0NDgxoaGvz3a2pqgpkmgB7GsizdWlCski++ND0VAD1QUO8ZOX78uJqbm5WYmNhiPDExURUVFW3uc+DAAb366qtqbm7W5s2btWjRIi1btkyPPfZYu4+Tn5+vuLg4/83lcgUzTQA9TH1Tc68NkYyUeEVHtv0PLwBfC/oyTbB8Pp8GDRqk559/Xna7Xenp6Tp8+LCWLl2qvLy8NvfJycmR1+v136+pqSFIgDCxa6FHMY7e8+IcHWmXzWYzPQ2gRwsqRhISEmS321VZWdlivLKyUklJSW3uM3jwYEVGRra4JDNixAhVVFSosbFRDoej1T5Op1NOpzOYqQEIETEOu2IcXf7vIAAhJKjLNA6HQ+np6SoqKvKP+Xw+FRUVKTMzs819rrrqKu3bt08+n88/tnfvXg0ePLjNEAEAAL1L0J8z4vV6tXr1ar344ovavXu37rvvPtXW1vp/uyY7O7vFG1zvu+8+nThxQnPnztXevXu1adMmPf7445o9e3bnrQIAAISsoM+VTpkyRceOHVNubq4qKio0atQoFRYW+t/UWl5eroiI/zWOy+XS22+/rXnz5mnkyJEaMmSI5s6dq/nz53feKgAAQMiyWZZlmZ5ER2pqahQXF6fq6mrFxsaang6AINU1ntYluW9Lkj5dnMV7RoBeItDXb76bBgAAGEWMAAAAo4gRAABgFDECAACMIkYAAIBRxAgAADCKGAEAAEYRIwAAwChiBAAAGEWMAAAAo4gRAABgFDECAACMIkYAAIBRxAgAADCKGAEAAEYRIwAAwChiBAAAGEWMAAAAo4gRAABgFDECAACMIkYAAIBRxAgAADCKGAEAAEYRIwAAwChiBAAAGEWMAAAAo4gRAABgFDECAACMIkYAAIBRxAgAADCKGAEAAEYRIwAAwChiBAAAGEWMAAAAo4gRAABgFDECAACMIkYAAIBRxAgAADCKGAEAAEYRIwAAwChiBAAAGEWMAAAAo4gRAABgFDECAACMIkYAAIBRxAgAADCKGAEAAEYRIwAAwChiBAAAGEWMAAAAo4gRAABgFDECAACMIkYAAIBRxAgAADCKGAEAAEYRIwAAwChiBAAAGEWMAAAAo4gRAABgFDECAACMIkYAAIBRxAgAADCKGAEAAEadVYysWrVKqampioqKktvt1s6dOwPa75VXXpHNZtPkyZPP5mEBAEAY6hPsDuvWrZPX61VBQYHcbrdWrFihrKwslZWVadCgQe3ud/DgQf3qV7/SNddcc04TRs9nWZbqm5pNTwM9SF0jfx8AtM9mWZYVzA5ut1tjxozRypUrJUk+n08ul0tz5szRggUL2tynublZ48aN089+9jO9++67qqqq0oYNG9p9jIaGBjU0NPjv19TUyOVyqbq6WrGxscFMF93MsizdWlCski++ND0V9FCfLs5SjCPofwcBCEE1NTWKi4vr8PU7qMs0jY2NKikpkcfj+d8PiIiQx+NRcXFxu/stXrxYgwYN0syZMwN6nPz8fMXFxflvLpcrmGnCoPqmZkIE7cpIiVd0pN30NAD0MEH98+T48eNqbm5WYmJii/HExETt2bOnzX3ee+89rVmzRqWlpQE/Tk5Ojrxer//+N2dGEFp2LfQoxsELD/4nOtIum81mehoAepguPVd68uRJ3XnnnVq9erUSEhIC3s/pdMrpdHbhzNAdYhx2TscDADoU1CtFQkKC7Ha7KisrW4xXVlYqKSmp1fb79+/XwYMHNWnSJP+Yz+f7+oH79FFZWZkuuOCCs5k3AAAIE0G9Z8ThcCg9PV1FRUX+MZ/Pp6KiImVmZrbafvjw4fr4449VWlrqv914442aOHGiSktLufQCAACCv0zj9Xo1ffp0ZWRkaOzYsVqxYoVqa2s1Y8YMSVJ2draGDBmi/Px8RUVF6dJLL22xf79+/SSp1TgAAOidgo6RKVOm6NixY8rNzVVFRYVGjRqlwsJC/5tay8vLFRHBB7sCAIDABP05IyYE+nvKMK+u8bQuyX1bEp8nAQC9XZd8zggAAEBnI0YAAIBRxAgAADCKGAEAAEYRIwAAwChiBAAAGEWMAAAAo4gRAABgFDECAACMIkYAAIBRxAgAADCKGAEAAEYRIwAAwChiBAAAGEWMAAAAo4gRAABgFDECAACMIkYAAIBRxAgAADCKGAEAAEYRIwAAwChiBAAAGEWMAAAAo4gRAABgFDECAACMIkYAAIBRxAgAADCqj+kJoGezLEv1Tc0Bb1/XGPi2AABIxAjOwLIs3VpQrJIvvjQ9FQBAGOMyDdpV39R81iGSkRKv6Eh7J88IABCOODOCgOxa6FGMI/C4iI60y2azdeGMAADhghhBQGIcdsU4+OsCAOh8XKYBAABGESMAAMAoYgQAABhFjAAAAKOIEQAAYBQxAgAAjCJGAACAUcQIAAAwihgBAABGESMAAMAoYgQAABhFjAAAAKOIEQAAYBQxAgAAjCJGAACAUcQIAAAwihgBAABGESMAAMAoYgQAABhFjAAAAKOIEQAAYBQxAgAAjCJGAACAUcQIAAAwihgBAABGESMAAMAoYgQAABhFjAAAAKOIEQAAYBQxAgAAjCJGAACAUWcVI6tWrVJqaqqioqLkdru1c+fOdrddvXq1rrnmGsXHxys+Pl4ej+eM2wMAgN4l6BhZt26dvF6v8vLy9MEHHygtLU1ZWVk6evRom9tv27ZNU6dO1datW1VcXCyXy6Vrr71Whw8fPufJI3iWZamu8XSAt2bT0wUA9AI2y7KsYHZwu90aM2aMVq5cKUny+XxyuVyaM2eOFixY0OH+zc3Nio+P18qVK5Wdnd3mNg0NDWpoaPDfr6mpkcvlUnV1tWJjY4OZLr7FsizdWlCski++DHrfTxdnKcbRpwtmBQAIVzU1NYqLi+vw9TuoMyONjY0qKSmRx+P53w+IiJDH41FxcXFAP6Ourk5NTU3q379/u9vk5+crLi7Of3O5XMFME+2ob2o+qxDJSIlXdKS9C2YEAIAU1D91jx8/rubmZiUmJrYYT0xM1J49ewL6GfPnz1dycnKLoPmunJwceb1e//1vzoyg8+xa6FGMI7DAiI60y2azdfGMAAC9Vbeed1+yZIleeeUVbdu2TVFRUe1u53Q65XQ6u3FmvU+Mw85lFwBAjxDUq1FCQoLsdrsqKytbjFdWViopKemM+z711FNasmSJ/va3v2nkyJHBzxQAAISloN4z4nA4lJ6erqKiIv+Yz+dTUVGRMjMz293vySef1KOPPqrCwkJlZGSc/WwBAEDYCfo8vdfr1fTp05WRkaGxY8dqxYoVqq2t1YwZMyRJ2dnZGjJkiPLz8yVJTzzxhHJzc/Xyyy8rNTVVFRUVkqS+ffuqb9++nbgUAAAQioKOkSlTpujYsWPKzc1VRUWFRo0apcLCQv+bWsvLyxUR8b8TLn/4wx/U2NioW2+9tcXPycvL029+85tzmz0AAAh5QX/OiAmB/p4yzqyu8bQuyX1bEp8bAgDoel3yOSMAAACdjRgBAABGESMAAMAoYgQAABhFjAAAAKOIEQAAYBQxAgAAjCJGAACAUcQIAAAwihgBAABGESMAAMAoYgQAABhFjAAAAKOIEQAAYBQxAgAAjCJGAACAUcQIAAAwihgBAABGESMAAMAoYgQAABhFjAAAAKOIEQAAYBQxAgAAjCJGAACAUcQIAAAwihgBAABGESMAAMCoPqYnYJJlWapvajY9jW5T19h71goACB29NkYsy9KtBcUq+eJL01MBAKBX67WXaeqbmnttiGSkxCs60m56GgAASOrFZ0a+bddCj2IcvefFOTrSLpvNZnoaAABIIkYkSTEOu2Ic/F8BAIAJvfYyDQAA6BmIEQAAYBQxAgAAjCJGAACAUcQIAAAwihgBAABGESMAAMAoYgQAABhFjAAAAKOIEQAAYBQxAgAAjCJGAACAUcQIAAAwihgBAABGESMAAMAoYgQAABhFjAAAAKOIEQAAYBQxAgAAjCJGAACAUcQIAAAwihgBAABGESMAAMAoYgQAABhFjAAAAKOIEQAAYBQxAgAAjCJGAACAUcQIAAAwihgBAABGESMAAMCos4qRVatWKTU1VVFRUXK73dq5c+cZt1+/fr2GDx+uqKgoXXbZZdq8efNZTRYAAISfoGNk3bp18nq9ysvL0wcffKC0tDRlZWXp6NGjbW6/Y8cOTZ06VTNnztSHH36oyZMna/Lkyfrkk0/OefIAACD02SzLsoLZwe12a8yYMVq5cqUkyefzyeVyac6cOVqwYEGr7adMmaLa2lq99dZb/rErrrhCo0aNUkFBQZuP0dDQoIaGBv/96upqDRs2TIcOHVJsbGww021XXeNpjf1tkSRp58M/UoyjT6f8XAAA8LWamhq5XC5VVVUpLi6u/Q2tIDQ0NFh2u916/fXXW4xnZ2dbN954Y5v7uFwu6+mnn24xlpuba40cObLdx8nLy7MkcePGjRs3btzC4Hbo0KEz9kVQpwOOHz+u5uZmJSYmthhPTEzUnj172tynoqKize0rKirafZycnBx5vV7/fZ/PpxMnTmjAgAGy2Wzt7vdNgXXmGZSejjWz5nDFmllzuOpNa7YsSydPnlRycvIZt+uR1yacTqecTmeLsX79+gW8f2xsbNgf4O9izb0Da+4dWHPv0FvWfMbLM/8vqDewJiQkyG63q7KyssV4ZWWlkpKS2twnKSkpqO0BAEDvElSMOBwOpaenq6ioyD/m8/lUVFSkzMzMNvfJzMxssb0kbdmypd3tAQBA7xL0ZRqv16vp06crIyNDY8eO1YoVK1RbW6sZM2ZIkrKzszVkyBDl5+dLkubOnavx48dr2bJluuGGG/TKK69o165dev755zt3Jfr68k5eXl6rSzzhjDX3Dqy5d2DNvUNvXHNHgv7VXklauXKlli5dqoqKCo0aNUq///3v5Xa7JUkTJkxQamqqXnjhBf/269ev18KFC3Xw4EF9//vf15NPPqnrr7++0xYBAABC11nFCAAAQGfhu2kAAIBRxAgAADCKGAEAAEYRIwAAwKgeHyPbt2/XpEmTlJycLJvNpg0bNrTaZvfu3brxxhsVFxen8847T2PGjFF5ebn/z7/66ivNnj1bAwYMUN++fXXLLbe0+iC2nqQz1jxhwgTZbLYWt3vvvbcbVxGcjtb83bV8c1u6dKl/mxMnTuj2229XbGys+vXrp5kzZ+rUqVPdvJLAdcaaU1NTW/35kiVLunklgetozadOndL999+voUOHKjo6WpdcckmrL9QMt+dzIGsOt+dzZWWl7rrrLiUnJysmJkbXXXedPvvssxbbhNtxDmTNoXacO1OPj5Ha2lqlpaVp1apVbf75/v37dfXVV2v48OHatm2bPvroIy1atEhRUVH+bebNm6c333xT69ev1zvvvKP//Oc/uvnmm7trCUHrjDVL0qxZs3TkyBH/7cknn+yO6Z+Vjtb87XUcOXJEa9eulc1m0y233OLf5vbbb9e//vUvbdmyRW+99Za2b9+ue+65p7uWELTOWLMkLV68uMV2c+bM6Y7pn5WO1uz1elVYWKiXXnpJu3fv1gMPPKD7779fGzdu9G8Tbs/nQNYshc/z2bIsTZ48WQcOHNAbb7yhDz/8UCkpKfJ4PKqtrfVvF07HOdA1S6F1nDvVmb+nt2eR1Oobg6dMmWLdcccd7e5TVVVlRUZGWuvXr/eP7d6925JkFRcXd9VUO83ZrNmyLGv8+PHW3Llzu25iXaitNX/XTTfdZP3whz/03//0008tSdY///lP/9hf//pXy2azWYcPH+6qqXaas1mzZVlWSkpKq2/FDhVtrfkHP/iBtXjx4hZjl19+ufXwww9blhWez+eO1mxZ4fV8LisrsyRZn3zyiX+subnZGjhwoLV69WrLssLvOAeyZssK7eN8rnr8mZEz8fl82rRpky666CJlZWVp0KBBcrvdLU6PlZSUqKmpSR6Pxz82fPhwDRs2TMXFxQZmfW4CWfM3/vznPyshIUGXXnqpcnJyVFdX1/0T7gKVlZXatGmTZs6c6R8rLi5Wv379lJGR4R/zeDyKiIjQ+++/b2KanaqtNX9jyZIlGjBggEaPHq2lS5fq9OnTBmbYOa688kpt3LhRhw8flmVZ2rp1q/bu3atrr71WUvg9n6WO1/yNcHk+NzQ0SFKLM7kRERFyOp167733JIXfcQ5kzd8Il+McrB75rb2BOnr0qE6dOqUlS5boscce0xNPPKHCwkLdfPPN2rp1q8aPH6+Kigo5HI5W3/qbmJioiooKMxM/B4GsWZKmTZumlJQUJScn66OPPtL8+fNVVlam1157zfAKzt2LL76o888/v8Up24qKCg0aNKjFdn369FH//v1D8jh/V1trlqRf/vKXuvzyy9W/f3/t2LFDOTk5OnLkiJYvX25opufmmWee0T333KOhQ4eqT58+ioiI0OrVqzVu3DhJCrvns9TxmqXwej5/ExU5OTl67rnndN555+npp5/Wv//9bx05ckRS+B3nQNYshddxDlZIx4jP55Mk3XTTTZo3b54kadSoUdqxY4cKCgr8L8zhJNA1f/u9EpdddpkGDx6sH/3oR9q/f78uuOCC7p94J1q7dq1uv/32Vu+RCWftrdnr9fr/98iRI+VwOPTzn/9c+fn5Ifm9F88884z+8Y9/aOPGjUpJSdH27ds1e/ZsJScnt/hXcjgJZM3h9HyOjIzUa6+9ppkzZ6p///6y2+3yeDz6yU9+IitMPxA80DWH03EOVkjHSEJCgvr06aNLLrmkxfiIESP8p76SkpLU2NioqqqqFpVdWVmppKSk7pxupwhkzW355ruD9u3bF9J/qd99912VlZVp3bp1LcaTkpJ09OjRFmOnT5/WiRMnQvI4f1t7a26L2+3W6dOndfDgQV188cXdMLvOU19fr4ceekivv/66brjhBklfB1ZpaameeuopeTyesHs+B7LmtoT68zk9PV2lpaWqrq5WY2OjBg4cKLfb7b/MGm7HWep4zW0J9eMcjJB+z4jD4dCYMWNUVlbWYnzv3r1KSUmR9PVfgMjISBUVFfn/vKysTOXl5crMzOzW+XaGQNbcltLSUknS4MGDu3J6XW7NmjVKT09XWlpai/HMzExVVVWppKTEP/b3v/9dPp/P/4QOVe2tuS2lpaWKiIhodckqFDQ1NampqUkRES3/s2S32/1nBMPt+RzImtsSLs/nuLg4DRw4UJ999pl27dqlm266SVL4Hedva2/NbQmX4xyIHn9m5NSpU9q3b5///ueff67S0lL1799fw4YN04MPPqgpU6Zo3LhxmjhxogoLC/Xmm29q27Ztkr4+8DNnzpTX61X//v0VGxurOXPmKDMzU1dccYWhVZ3Zua55//79evnll3X99ddrwIAB+uijjzRv3jyNGzdOI0eONLSqM+tozZJUU1Oj9evXa9myZa32HzFihK677jrNmjVLBQUFampq0v3336/bbrtNycnJ3baOYJzrmouLi/X+++9r4sSJOv/881VcXKx58+bpjjvuUHx8fLetIxgdrXn8+PF68MEHFR0drZSUFL3zzjv605/+5H8PTDg+nztaczg+n9evX6+BAwdq2LBh+vjjjzV37lxNnjzZ/6bdcDzOHa05FI9zpzL7yzwd27p1qyWp1W369On+bdasWWNdeOGFVlRUlJWWlmZt2LChxc+or6+3fvGLX1jx8fFWTEyM9dOf/tQ6cuRIN68kcOe65vLycmvcuHFW//79LafTaV144YXWgw8+aFVXVxtYTWACWfNzzz1nRUdHW1VVVW3+jP/+97/W1KlTrb59+1qxsbHWjBkzrJMnT3bTCoJ3rmsuKSmx3G63FRcXZ0VFRVkjRoywHn/8ceurr77qxlUEp6M1HzlyxLrrrrus5ORkKyoqyrr44outZcuWWT6fz/8zwu353NGaw/H5/Lvf/c4aOnSoFRkZaQ0bNsxauHCh1dDQ0OJnhNtx7mjNoXicO5PNssL0HUMAACAkhPR7RgAAQOgjRgAAgFHECAAAMIoYAQAARhEjAADAKGIEAAAYRYwAAACjiBEAAGAUMQIAAIwiRgAAgFHECAAAMOr/ACALanBT6zk7AAAAAElFTkSuQmCC",
"text/plain": [
"
"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# plot the \"empirical cumulated density function\"\n",
"plt.ecdf(x)\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 43,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[161 166 167 168 179 179 184 187 191 198]\n"
]
}
],
"source": [
"# compare with values \n",
"print(x)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"In the cumulated distribution all detailed information is kept - but is is another way to visualise the distribution of data. "
]
},
{
"cell_type": "code",
"execution_count": 44,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHHCAYAAABDUnkqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAA9hAAAPYQGoP6dpAAA7aElEQVR4nO3deVyU5f7/8feAMEAKboiiBGRlLomKQlpKC0XWsUwtW1HzaJZWyjcryy0rrUyzUxZlWZ2yk2lli6WnOJp65Ljg2nHLvVxQMkHFQJnr90c/5jgCMuDAwM3r+XjM4yHXXPfcn+u+73He3Pd1DzZjjBEAAIBF+Hi7AAAAAE8i3AAAAEsh3AAAAEsh3AAAAEsh3AAAAEsh3AAAAEsh3AAAAEsh3AAAAEsh3AAAAEsh3MDSxo8fL5vN5nZ/m82m8ePHV0gtu3fvls1m0/vvv18hr18VREVFqX///t4uw0VZj4GzXX311br66qs9V1A59e/fX1FRUZWyrlWrVqlLly664IILZLPZtG7dukpZb1lVxeMNVQPhBlXG+++/L5vNVuLjP//5j7dLRAXZv3+/xo8fX2U/RKui3NxcjR8/XosXL/bo6546dUq33367jhw5oldeeUUffvihIiMjPbqOsli+fLnGjx+vo0ePeq0GVD+1vF0AcLYJEyYoOjq6SPvFF19c5tcaPXq0nnzySbf7nzx5UrVq8baobPv379czzzyjqKgotWvXztvlVEkzZsyQw+Fw/pybm6tnnnlGkjx6ZmnHjh3as2ePZsyYob/+9a8ee93yWr58uZ555hn1799fdevWdXlu69at8vHhd3QUxf/iqHK6d++ujh07euS1atWqVWpYcTgcys/PV0BAgAICAjyyXsDT/Pz8KmU9hw4dkqQiQaIqstvt3i4BVRSRF9VO4dyVl19+Wa+88ooiIyMVGBiohIQE/fTTTy59i5tvYbPZNGzYMM2aNUutW7eW3W7XggULnM+dPedm3759GjhwoMLDw2W32xUdHa0HH3xQ+fn5kqQjR47oscce0+WXX67atWsrODhY3bt31/r168s9xqNHj2rEiBGKioqS3W5Xs2bNlJycrKysLEn/u4S3e/dul+UWL14sm83mcqni6quvVps2bbRhwwYlJCQoKChIF198sebOnStJ+vHHHxUfH6/AwEC1aNFCP/zwg8trljTXw525LO5sm8WLF6tTp06SpAEDBjgvQ545N2nFihW68cYbFRISoqCgICUkJOjf//53kfUtW7ZMnTp1UkBAgJo3b6633nrrnPWd7e2331bz5s0VGBiouLg4LV26tNh+eXl5GjdunC6++GLZ7XZFRETo8ccfV15enku/wmNt3rx5atOmjex2u1q3bu083godO3ZMw4cPd+7vRo0a6frrr9eaNWucfc7cD7t371ZoaKgk6ZlnnnFus/Hjx+u9996TzWbT2rVri9Q9ceJE+fr6at++fcWOq3///kpISJAk3X777bLZbM6zQiXNPTr7+Djz/Vm4Pe12uzp16qRVq1YVWX7Lli264447FBoa6jwGn376aUl/HmMjR46UJEVHRzvHWXjcFzfnZufOnbr99ttVv359BQUF6YorrtD8+fNd+hS+Tz799FM9//zzatasmQICAnTddddp+/btxW4bVC+cuUGVk52d7fwQL2Sz2dSgQQOXtr///e86duyYhg4dqj/++EOvvvqqrr32Wm3cuFFhYWHnXMe//vUvffrppxo2bJgaNmxY4kTN/fv3Ky4uTkePHtXgwYN12WWXad++fZo7d65yc3Pl7++vnTt3at68ebr99tsVHR2tzMxMvfXWW0pISNCmTZsUHh5epvEfP35cXbt21ebNm3X//ferQ4cOysrK0ldffaVff/1VDRs2LNPrSdLvv/+uv/zlL7rzzjt1++23680339Sdd96pWbNmafjw4RoyZIjuvvtuTZ48WX369NEvv/yiOnXqlHk9Z3Nn27Rs2VITJkzQ2LFjNXjwYHXt2lWS1KVLF0l/7qvu3bsrNjZW48aNk4+Pj9577z1de+21Wrp0qeLi4iRJGzdu1A033KDQ0FCNHz9ep0+f1rhx40o9Fgq9++67euCBB9SlSxcNHz5cO3fu1C233KL69esrIiLC2c/hcOiWW27RsmXLNHjwYLVs2VIbN27UK6+8om3btmnevHkur7ts2TJ9/vnneuihh1SnTh397W9/U+/evbV3717nMT1kyBDNnTtXw4YNU6tWrfTbb79p2bJl2rx5szp06FCk1tDQUL355pt68MEHddttt6lXr16SpLZt2yo6OlpDhw7VrFmz1L59e5flZs2apauvvlpNmzYtdhs88MADatq0qSZOnKhHHnlEnTp1cnv7ne3jjz/WsWPH9MADD8hms+mll15Sr169tHPnTudZqA0bNqhr167y8/PT4MGDFRUVpR07dujrr7/W888/r169emnbtm36xz/+oVdeecV57BcGu7NlZmaqS5cuys3N1SOPPKIGDRrogw8+0C233KK5c+fqtttuc+n/wgsvyMfHR4899piys7P10ksv6Z577tGKFSvKNWZUIQaoIt577z0jqdiH3W539tu1a5eRZAIDA82vv/7qbF+xYoWRZEaMGOFsGzdunDn7MJdkfHx8zH//+98iNUgy48aNc/6cnJxsfHx8zKpVq4r0dTgcxhhj/vjjD1NQUODy3K5du4zdbjcTJkwoUvd77713zu0wduxYI8l8/vnnJa6zcFvt2rXL5flFixYZSWbRokXOtoSEBCPJfPzxx862LVu2OLfDf/7zH2f7woULi9TYr18/ExkZWaSW4rZtZGSk6devn/Nnd7fNqlWrit02DofDXHLJJSYpKck5dmOMyc3NNdHR0eb66693tvXs2dMEBASYPXv2ONs2bdpkfH19i9R5tvz8fNOoUSPTrl07k5eX52x/++23jSSTkJDgbPvwww+Nj4+PWbp0qctrpKamGknm3//+t7NNkvH39zfbt293tq1fv95IMq+99pqzLSQkxAwdOvScNZ69Hw4fPlzkeC101113mfDwcJdtv2bNGreOv8JjaM6cOS7tCQkJLtuhpLoKj/MGDRqYI0eOONu//PJLI8l8/fXXzrZu3bqZOnXquOwzY4zLvp48eXKxx7oxRY+34cOHG0ku++bYsWMmOjraREVFObdH4Rhbtmzpsr9fffVVI8ls3Lix+I2DaoPLUqhypk+fru+//97l8d133xXp17NnT5ffQOPi4hQfH69vv/221HUkJCSoVatW5+zjcDg0b9489ejRo9g5QIWXZOx2u3NSY0FBgX777TfVrl1bLVq0cLms4K7PPvtMMTExRX7LPHOdZVW7dm3deeedzp9btGihunXrqmXLloqPj3e2F/57586d5VrP2c5326xbt04///yz7r77bv3222/KyspSVlaWTpw4oeuuu05LliyRw+FQQUGBFi5cqJ49e+rCCy90Lt+yZUslJSWVup7Vq1fr0KFDGjJkiPz9/Z3t/fv3V0hIiEvfOXPmqGXLlrrsssuc9WRlZenaa6+VJC1atMilf2Jiopo3b+78uW3btgoODnbZxnXr1tWKFSu0f//+Umt1R3Jysvbv3+9Sy6xZsxQYGKjevXt7ZB2l6du3r+rVq+f8ufCMXOG4Dx8+rCVLluj+++932WdS+Y/zb7/9VnFxcbrqqqucbbVr19bgwYO1e/dubdq0yaX/gAEDXPb32TWi+uKyFKqcuLg4tyYUX3LJJUXaLr30Un366aelLlvc3VhnO3z4sHJyctSmTZtz9nM4HHr11Vf1xhtvaNeuXSooKHA+d/alNHfs2LHD4x9AzZo1K/KBERIS4nK5pbBN+vMyliec77b5+eefJUn9+vUrsU92drby8vJ08uTJYo+JFi1alBp49+zZI6noMeXn56eLLrqoSE2bN28u8dJI4YTcQmd/cEtSvXr1XLbxSy+9pH79+ikiIkKxsbG66aablJycXGTd7rr++uvVpEkTzZo1S9ddd50cDof+8Y9/6NZbb/XI5UZ3nD3uwqBTOO7CAFHa+6ss9uzZ4xLWC7Vs2dL5/JnrK61GVF+EG9RIgYGBHnutiRMnasyYMbr//vv17LPPqn79+vLx8dHw4cNdbt31pJJ+sz0zPJzJ19e3TO3GmHKv60znu20K+0yePLnEW8Rr165dZCJvRXI4HLr88ss1derUYp8/OzC6s43vuOMOde3aVV988YX++c9/avLkyXrxxRf1+eefq3v37mWu0dfXV3fffbdmzJihN954Q//+97+1f/9+3XvvvWV+rUI2m82l5kJlPeaKew1vqQ41onwIN6i2Cn+rP9O2bds89i2uoaGhCg4OLnIH1tnmzp2ra665Ru+++65L+9GjR8s1+bd58+alrrPwN8yzv9is8AyEJ9WrV6/YL1BzZ13ubpuSAlTh5Zzg4GAlJiaWuJ7CO22KOya2bt1aap2FX1L3888/Oy8vSX9+od2uXbsUExPjUtP69et13XXXndc3H5+tSZMmeuihh/TQQw/p0KFD6tChg55//vkSw01p605OTtaUKVP09ddf67vvvlNoaKhbl+hKUq9evWIv15T3mCs8K1XasV6WbRwZGVns/t6yZYvzedQMzLlBtTVv3jyXW1pXrlypFStWlOs33eL4+PioZ8+e+vrrr7V69eoizxf+dufr61vkN705c+aUeLttaXr37q3169friy++KHGdhR/6S5YscT5XUFCgt99+u1zrPJfmzZsrOztbGzZscLYdOHCg2PrO5u62ueCCCyQVDWuxsbFq3ry5Xn75ZR0/frzI6x8+fNi5nqSkJM2bN0979+51Pr9582YtXLiw1Do7duyo0NBQpaamOm/xl/685f7smu644w7t27dPM2bMKPI6J0+e1IkTJ0pd35kKCgqUnZ3t0taoUSOFh4ef84xUUFCQpKLbrFDbtm3Vtm1bvfPOO/rss8905513ntcXVDZv3lxbtmxxbnNJWr9+fbG35LsjNDRU3bp108yZM132meR65qSkY6M4N910k1auXKn09HRn24kTJ/T2228rKiqq1Hl2sA7O3KDK+e6775y/aZ2pS5cuLnMQLr74Yl111VV68MEHlZeXp2nTpqlBgwZ6/PHHPVbLxIkT9c9//lMJCQnO234PHDigOXPmaNmyZapbt67+8pe/aMKECRowYIC6dOmijRs3atasWeWeLzFy5EjNnTtXt99+u+6//37FxsbqyJEj+uqrr5SamqqYmBi1bt1aV1xxhUaNGqUjR46ofv36+uSTT3T69GmPjb3QnXfeqSeeeEK33XabHnnkEeXm5urNN9/UpZdeWuqkYHe3TfPmzVW3bl2lpqaqTp06uuCCCxQfH6/o6Gi988476t69u1q3bq0BAwaoadOm2rdvnxYtWqTg4GB9/fXXkv78vpcFCxaoa9eueuihh3T69Gm99tprat26tUswK46fn5+ee+45PfDAA7r22mvVt29f7dq1S++9916RWu+77z59+umnGjJkiBYtWqQrr7xSBQUF2rJliz799FMtXLiwTF9CeezYMTVr1kx9+vRRTEyMateurR9++EGrVq3SlClTSlwuMDBQrVq10uzZs3XppZeqfv36atOmjcuckuTkZD322GOSdF6XpCTp/vvv19SpU5WUlKSBAwfq0KFDSk1NVevWrZWTk1Ou1/zb3/6mq666Sh06dNDgwYMVHR2t3bt3a/78+c4/xREbGytJevrpp3XnnXfKz89PPXr0cIaeMz355JP6xz/+oe7du+uRRx5R/fr19cEHH2jXrl367LPP+DbjmsRbt2kBZzvXreA64xbWwltNJ0+ebKZMmWIiIiKM3W43Xbt2NevXr3d5zZJuBS/ptlsVc2vtnj17THJysgkNDTV2u91cdNFFZujQoc5bSP/44w/zf//3f6ZJkyYmMDDQXHnllSY9Pb3IrbPu3gpujDG//fabGTZsmGnatKnx9/c3zZo1M/369TNZWVnOPjt27DCJiYnGbrebsLAw89RTT5nvv/++2FvBW7duXWQdkZGR5uabby52G5y9ff75z3+aNm3aGH9/f9OiRQvz0UcfuX0ruDvbxpg/bxVu1aqVqVWrVpHttHbtWtOrVy/ToEEDY7fbTWRkpLnjjjtMWlqay2v8+OOPJjY21vj7+5uLLrrIpKamFltnSd544w0THR1t7Ha76dixo1myZEmxtebn55sXX3zRtG7d2tjtdlOvXj0TGxtrnnnmGZOdnX3ObXn2dsrLyzMjR440MTExpk6dOuaCCy4wMTEx5o033nBZprhb8pcvX+4cb3HH7oEDB4yvr6+59NJL3Rq/MSXfCm6MMR999JG56KKLjL+/v2nXrp1ZuHBhibeCT548ucjyxdX4008/mdtuu83UrVvXBAQEmBYtWpgxY8a49Hn22WdN06ZNjY+Pj8tt4Wcfb8b8+b7o06eP8/Xi4uLMN99849YYy/IeRdVmM4aZU6hedu/erejoaE2ePNn5WymAorKystSkSRONHTtWY8aM8XY5QKXhHB0AWNT777+vgoIC3Xfffd4uBahUzLkBAIv517/+pU2bNun5559Xz549PXYHIVBdEG4AwGImTJig5cuX68orr9Rrr73m7XKASsecGwAAYCnMuQEAAJZCuAEAAJZS4+bcOBwO7d+/X3Xq1PHoV6cDAICKY4zRsWPHFB4eXuoXMta4cLN///4if9gOAABUD7/88ouaNWt2zj41LtzUqVNH0p8bJzg42MvVAAAAd+Tk5CgiIsL5OX4uNS7cFF6KCg4OJtwAAFDNuDOlhAnFAADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUrwabpYsWaIePXooPDxcNptN8+bNK3WZxYsXq0OHDrLb7br44ov1/vvvV3idAACg+vBquDlx4oRiYmI0ffp0t/rv2rVLN998s6655hqtW7dOw4cP11//+lctXLiwgisFAADVRS1vrrx79+7q3r272/1TU1MVHR2tKVOmSJJatmypZcuW6ZVXXlFSUlJFlQkAANxgjNHJUwWSpEA/X9lsNq/UUa3m3KSnpysxMdGlLSkpSenp6SUuk5eXp5ycHJcHAADwvJOnCtRq7EK1GrvQGXK8oVqFm4MHDyosLMylLSwsTDk5OTp58mSxy0yaNEkhISHOR0RERGWUCgAAvKRahZvyGDVqlLKzs52PX375xdslAQCACuTVOTdl1bhxY2VmZrq0ZWZmKjg4WIGBgcUuY7fbZbfbK6M8AABQBVSrMzedO3dWWlqaS9v333+vzp07e6kiAABQ1Xg13Bw/flzr1q3TunXrJP15q/e6deu0d+9eSX9eUkpOTnb2HzJkiHbu3KnHH39cW7Zs0RtvvKFPP/1UI0aM8Eb5AACgCvJquFm9erXat2+v9u3bS5JSUlLUvn17jR07VpJ04MABZ9CRpOjoaM2fP1/ff/+9YmJiNGXKFL3zzjvcBg4AAJy8Oufm6quvljGmxOeL+/bhq6++WmvXrq3AqgAAQHVWrebcAAAAlIZwAwAALIVwAwAALIVwAwAALIVwAwAALIVwAwAALIVwAwAALIVwAwAALIVwAwAALIVwAwAALIVwAwAALIVwAwAALIVwAwAALIVwAwAALIVwAwAALIVwAwAALIVwAwAALIVwAwAALIVwAwAALIVwAwAALIVwAwAALIVwAwAALKWWtwsAAMAbjDE6earA22VYSm5+1diehBsAQI1jjFGf1HRl7Pnd26WgAnBZCgBQ45w8VUCwqUAdI+sp0M/Xa+vnzA0AoEZbPTpRQf7e+yC2okA/X9lsNq+tn3ADAKjRgvx9FeTPx6GVcFkKAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYitfDzfTp0xUVFaWAgADFx8dr5cqV5+w/bdo0tWjRQoGBgYqIiNCIESP0xx9/VFK1AACgqvNquJk9e7ZSUlI0btw4rVmzRjExMUpKStKhQ4eK7f/xxx/rySef1Lhx47R582a9++67mj17tp566qlKrhwAAFRVXg03U6dO1aBBgzRgwAC1atVKqampCgoK0syZM4vtv3z5cl155ZW6++67FRUVpRtuuEF33XVXqWd7AABAzVHLWyvOz89XRkaGRo0a5Wzz8fFRYmKi0tPTi12mS5cu+uijj7Ry5UrFxcVp586d+vbbb3XfffdVVtkAgP/PGKOTpwq8XUa55OZXz7rhHq+Fm6ysLBUUFCgsLMylPSwsTFu2bCl2mbvvvltZWVm66qqrZIzR6dOnNWTIkHNelsrLy1NeXp7z55ycHM8MAABqMGOM+qSmK2PP794uBSjC6xOKy2Lx4sWaOHGi3njjDa1Zs0aff/655s+fr2effbbEZSZNmqSQkBDnIyIiohIrBgBrOnmqwBLBpmNkPQX6+Xq7DHiY187cNGzYUL6+vsrMzHRpz8zMVOPGjYtdZsyYMbrvvvv017/+VZJ0+eWX68SJExo8eLCefvpp+fgUzWqjRo1SSkqK8+ecnBwCDgB40OrRiQryr54BIdDPVzabzdtlwMO8Fm78/f0VGxurtLQ09ezZU5LkcDiUlpamYcOGFbtMbm5ukQDj6/vnG8oYU+wydrtddrvdc4UDAFwE+fsqyN9rHydAEV49GlNSUtSvXz917NhRcXFxmjZtmk6cOKEBAwZIkpKTk9W0aVNNmjRJktSjRw9NnTpV7du3V3x8vLZv364xY8aoR48ezpADAABqNq+Gm759++rw4cMaO3asDh48qHbt2mnBggXOScZ79+51OVMzevRo2Ww2jR49Wvv27VNoaKh69Oih559/3ltDAAAAVYzNlHQ9x6JycnIUEhKi7OxsBQcHe7scAKiWcvNPq9XYhZKkTROSuCyFCleWz+9qdbcUAABAaQg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUmp5uwAAQOmMMTp5qsDbZTjl5ledWoCzEW4AoIozxqhParoy9vzu7VKAaoHLUgBQxZ08VVBlg03HyHoK9PP1dhmAC87cAEA1snp0ooL8q06YCPTzlc1m83YZgAvCDQBUI0H+vgry579u4Fy4LAUAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACzF6+Fm+vTpioqKUkBAgOLj47Vy5cpz9j969KiGDh2qJk2ayG6369JLL9W3335bSdUCAICqrpY3Vz579mylpKQoNTVV8fHxmjZtmpKSkrR161Y1atSoSP/8/Hxdf/31atSokebOnaumTZtqz549qlu3buUXDwAAqiSvhpupU6dq0KBBGjBggCQpNTVV8+fP18yZM/Xkk08W6T9z5kwdOXJEy5cvl5+fnyQpKiqqMksGUAUYY3TyVIG3y6g0ufk1Z6yAJ3gt3OTn5ysjI0OjRo1ytvn4+CgxMVHp6enFLvPVV1+pc+fOGjp0qL788kuFhobq7rvv1hNPPCFfX99il8nLy1NeXp7z55ycHM8OBEClMsaoT2q6Mvb87u1SAFRRXptzk5WVpYKCAoWFhbm0h4WF6eDBg8Uus3PnTs2dO1cFBQX69ttvNWbMGE2ZMkXPPfdcieuZNGmSQkJCnI+IiAiPjgNA5Tp5qqDGBpuOkfUU6Ff8L3IA/serl6XKyuFwqFGjRnr77bfl6+ur2NhY7du3T5MnT9a4ceOKXWbUqFFKSUlx/pyTk0PAASxi9ehEBfnXnA/7QD9f2Ww2b5cBVHleCzcNGzaUr6+vMjMzXdozMzPVuHHjYpdp0qSJ/Pz8XC5BtWzZUgcPHlR+fr78/f2LLGO322W32z1bPIAqIcjfV0H+1ep3NACVwGuXpfz9/RUbG6u0tDRnm8PhUFpamjp37lzsMldeeaW2b98uh8PhbNu2bZuaNGlSbLABAAA1j1e/5yYlJUUzZszQBx98oM2bN+vBBx/UiRMnnHdPJScnu0w4fvDBB3XkyBE9+uij2rZtm+bPn6+JEydq6NCh3hoCAACoYrx6Prdv3746fPiwxo4dq4MHD6pdu3ZasGCBc5Lx3r175ePzv/wVERGhhQsXasSIEWrbtq2aNm2qRx99VE888YS3hgAAAKoYmzHGeLuIypSTk6OQkBBlZ2crODjY2+UAKKPc/NNqNXahJGnThCTm3AA1RFk+v73+5xcAAAA8iXADAAAshXADAAAspcwXqzdv3qxPPvlES5cu1Z49e5Sbm6vQ0FC1b99eSUlJ6t27N98rAwAAvMbtMzdr1qxRYmKi2rdvr2XLlik+Pl7Dhw/Xs88+q3vvvVfGGD399NMKDw/Xiy++6PL3nAAAACqL22duevfurZEjR2ru3LmqW7duif3S09P16quvasqUKXrqqac8USMAAIDb3A4327Ztk5+fX6n9OnfurM6dO+vUqVPnVRgAAEB5uH1Zyp1gI0m5ubll6g8AAOBJ5bpb6rrrrtO+ffuKtK9cuVLt2rU735oAAADKrVzhJiAgQG3bttXs2bMl/fkHL8ePH6+rrrpKN910k0cLBAAAKItyfW/5/PnzNX36dN1///368ssvtXv3bu3Zs0fffPONbrjhBk/XCAAA4LZy/1GWoUOH6tdff9WLL76oWrVqafHixerSpYsnawMAACizcl2W+v3339W7d2+9+eabeuutt3THHXfohhtu0BtvvOHp+gAAAMqkXGdu2rRpo+joaK1du1bR0dEaNGiQZs+erYceekjz58/X/PnzPV0nAACAW8p15mbIkCFasmSJoqOjnW19+/bV+vXrlZ+f77HiAAAAyqpcZ27GjBlTbHuzZs30/fffn1dBAAAA58PtMzd79+4t0wsX9z04AAAAFc3tcNOpUyc98MADWrVqVYl9srOzNWPGDLVp00afffaZRwoEAAAoC7cvS23atEnPP/+8rr/+egUEBCg2Nlbh4eEKCAjQ77//rk2bNum///2vOnTooJdeeokv8wMAAF7h9pmbBg0aaOrUqTpw4IBef/11XXLJJcrKytLPP/8sSbrnnnuUkZGh9PR0gg0AAPAat8/cbNiwQW3atFFgYKD69OmjPn36VGRdAAAA5eL2mZv27dsrKytLknTRRRfpt99+q7CiAAAAysvtcFO3bl3t2rVLkrR79245HI4KKwoAAKC83L4s1bt3byUkJKhJkyay2Wzq2LGjfH19i+27c+dOjxUIAABQFm6Hm7ffflu9evXS9u3b9cgjj2jQoEGqU6dORdYGAABQZmX6huIbb7xRkpSRkaFHH32UcAMAAKqccv35hffee8/TdQAAAHiE2+GmV69ebr/o559/Xq5iAAAAzpfbd0uFhIQ4H8HBwUpLS9Pq1audz2dkZCgtLU0hISEVUigAAIA73D5zc+alqCeeeEJ33HGHUlNTnXdMFRQU6KGHHlJwcLDnqwQAAHCT22duzjRz5kw99thjLreC+/r6KiUlRTNnzvRYcQAAAGVVrnBz+vRpbdmypUj7li1b+HI/AADgVeW6W2rAgAEaOHCgduzYobi4OEnSihUr9MILL2jAgAEeLRAAAKAsyhVuXn75ZTVu3FhTpkzRgQMHJElNmjTRyJEj9X//938eLRAAAKAsyhVufHx89Pjjj+vxxx9XTk6OJDGRGAAAVAnlCje7du3S6dOndckll7iEmp9//ll+fn6KioryVH0AAABlUq4Jxf3799fy5cuLtK9YsUL9+/c/35oAAADKrVzhZu3atbryyiuLtF9xxRVat27d+dYEAABQbuUKNzabTceOHSvSnp2drYKCgvMuCgAAoLzKFW66deumSZMmuQSZgoICTZo0SVdddZXHigMAACirck0ofvHFF9WtWze1aNFCXbt2lSQtXbpU2dnZWrRokUcLBAAAKItynblp1aqVNmzYoL59++rQoUM6duyYkpOTtXXrVrVp08bTNQIAALitXGduJGnHjh3avXu3jhw5orlz56pp06b68MMPFR0dzaUpAADgNeU6c/PZZ58pKSlJQUFBWrt2rfLy8iT9OaF44sSJHi0QAACgLMoVbp577jmlpqZqxowZ8vPzc7ZfeeWVWrNmjceKAwAAKKtyhZutW7eqW7duRdpDQkJ09OjR860JAACg3MoVbho3bqzt27cXaV+2bJkuuuii8y4KAACgvMoVbgYNGqRHH31UK1askM1m0/79+zVr1iw99thjevDBBz1dIwAAgNvKdbfUk08+KYfDoeuuu065ubnq1q2b7Ha7HnvsMT388MOerhEAAMBt5Qo3NptNTz/9tEaOHKnt27fr+PHjatWqlWrXru3p+gAAAMqkXJelCvn7+6tVq1aKi4s7r2Azffp0RUVFKSAgQPHx8Vq5cqVby33yySey2Wzq2bNnudcNAACs5bzCjSfMnj1bKSkpGjdunNasWaOYmBglJSXp0KFD51xu9+7deuyxx5x//gEAAECqAuFm6tSpGjRokAYMGKBWrVopNTVVQUFBmjlzZonLFBQU6J577tEzzzzD3VkAAMBFuf/8gifk5+crIyNDo0aNcrb5+PgoMTFR6enpJS43YcIENWrUSAMHDtTSpUsro1R4iTFGJ08VlN4RNUZuPscDgHPzarjJyspSQUGBwsLCXNrDwsK0ZcuWYpdZtmyZ3n33Xa1bt86tdeTl5Tn/PIQk5eTklLteVC5jjPqkpitjz+/eLgUAUI14/bJUWRw7dkz33XefZsyYoYYNG7q1zKRJkxQSEuJ8REREVHCV8JSTpwoINihRx8h6CvTz9XYZAKogr565adiwoXx9fZWZmenSnpmZqcaNGxfpX/iXyHv06OFsczgckqRatWpp69atat68ucsyo0aNUkpKivPnnJwcAk41tHp0ooL8+SDD/wT6+cpms3m7DABVkFfDjb+/v2JjY5WWlua8ndvhcCgtLU3Dhg0r0v+yyy7Txo0bXdpGjx6tY8eO6dVXXy02tNjtdtnt9gqpH5UnyN9XQf5ePVwBANWE1z8tUlJS1K9fP3Xs2FFxcXGaNm2aTpw4oQEDBkiSkpOT1bRpU02aNEkBAQFq06aNy/J169aVpCLtAACgZvJ6uOnbt68OHz6ssWPH6uDBg2rXrp0WLFjgnGS8d+9e+fhUq6lBAADAi2zGGOPtIipTTk6OQkJClJ2dreDgYG+Xg3PIzT+tVmMXSpI2TUjishQA1GBl+fzmlAgAALAUwg0AALAUwg0AALAUwg0AALAUwg0AALAUwg0AALAUwg0AALAUwg0AALAUwg0AALAUwg0AALAUwg0AALAUwg0AALAUwg0AALAUwg0AALAUwg0AALAUwg0AALAUwg0AALAUwg0AALAUwg0AALAUwg0AALAUwg0AALAUwg0AALAUwg0AALCUWt4uADWLMUYnTxW41Tc3371+AACciXCDSmOMUZ/UdGXs+d3bpQAALIzLUqg0J08VlCvYdIysp0A/3wqoCABgRZy5gVesHp2oIH/3Akugn69sNlsFVwQAsArCDbwiyN9XQf4cfgAAz+OyFAAAsBTCDQAAsBTCDQAAsBTCDQAAsBTCDQAAsBTCDQAAsBTCDQAAsBTCDQAAsBTCDQAAsBTCDQAAsBTCDQAAsBTCDQAAsBTCDQAAsBTCDQAAsBTCDQAAsBTCDQAAsBTCDQAAsBTCDQAAsBTCDQAAsBTCDQAAsBTCDQAAsBTCDQAAsBTCDQAAsJQqEW6mT5+uqKgoBQQEKD4+XitXriyx74wZM9S1a1fVq1dP9erVU2Ji4jn7AwCAmsXr4Wb27NlKSUnRuHHjtGbNGsXExCgpKUmHDh0qtv/ixYt11113adGiRUpPT1dERIRuuOEG7du3r5IrBwAAVZHNGGO8WUB8fLw6deqk119/XZLkcDgUERGhhx9+WE8++WSpyxcUFKhevXp6/fXXlZycXGr/nJwchYSEKDs7W8HBweddf01njNHJUwVu9c3NL1DH536QJG2akKQg/1oVWRoAwELK8vnt1U+X/Px8ZWRkaNSoUc42Hx8fJSYmKj093a3XyM3N1alTp1S/fv1in8/Ly1NeXp7z55ycnPMrGk7GGPVJTVfGnt+9XQoAAE5evSyVlZWlgoIChYWFubSHhYXp4MGDbr3GE088ofDwcCUmJhb7/KRJkxQSEuJ8REREnHfd+NPJUwXlCjYdI+sp0M+3AioCAMDLZ27O1wsvvKBPPvlEixcvVkBAQLF9Ro0apZSUFOfPOTk5BJwKsHp0ooL83QssgX6+stlsFVwRAKCm8mq4adiwoXx9fZWZmenSnpmZqcaNG59z2ZdfflkvvPCCfvjhB7Vt27bEfna7XXa73SP1omRB/r7MoQEAVAlevSzl7++v2NhYpaWlOdscDofS0tLUuXPnEpd76aWX9Oyzz2rBggXq2LFjZZQKAACqCa//qp2SkqJ+/fqpY8eOiouL07Rp03TixAkNGDBAkpScnKymTZtq0qRJkqQXX3xRY8eO1ccff6yoqCjn3JzatWurdu3aXhsHAACoGrwebvr27avDhw9r7NixOnjwoNq1a6cFCxY4Jxnv3btXPj7/O8H05ptvKj8/X3369HF5nXHjxmn8+PGVWToAAKiCvP49N5WN77nxnNz802o1dqEkvrcGAFCxyvL57fVvKAYAAPAkwg0AALAUwg0AALAUwg0AALAUwg0AALAUwg0AALAUwg0AALAUwg0AALAUwg0AALAUwg0AALAUwg0AALAUwg0AALAUwg0AALAUwg0AALAUwg0AALAUwg0AALAUwg0AALAUwg0AALAUwg0AALAUwg0AALAUwg0AALAUwg0AALCUWt4uwEqMMTp5qsDbZVSa3PyaM1YAQPVBuPEQY4z6pKYrY8/v3i4FAIAajctSHnLyVEGNDTYdI+sp0M/X22UAACCJMzcVYvXoRAX515wP+0A/X9lsNm+XAQCAJMJNhQjy91WQP5sWAABv4LIUAACwFMINAACwFMINAACwFMINAACwFMINAACwFMINAACwFMINAACwFMINAACwFMINAACwFMINAACwFMINAACwFMINAACwFMINAACwFMINAACwFMINAACwFMINAACwFMINAACwFMINAACwFMINAACwFMINAACwFMINAACwFMINAACwFMINAACwFMINAACwlCoRbqZPn66oqCgFBAQoPj5eK1euPGf/OXPm6LLLLlNAQIAuv/xyffvtt5VUKQAAqOq8Hm5mz56tlJQUjRs3TmvWrFFMTIySkpJ06NChYvsvX75cd911lwYOHKi1a9eqZ8+e6tmzp3766adKrhwAAFRFNmOM8WYB8fHx6tSpk15//XVJksPhUEREhB5++GE9+eSTRfr37dtXJ06c0DfffONsu+KKK9SuXTulpqaWur6cnByFhIQoOztbwcHBHhtHbv5ptRq7UJK0aUKSgvxreey1AQCo6cry+e3VMzf5+fnKyMhQYmKis83Hx0eJiYlKT08vdpn09HSX/pKUlJRUYv+8vDzl5OS4PAAAgHV5NdxkZWWpoKBAYWFhLu1hYWE6ePBgscscPHiwTP0nTZqkkJAQ5yMiIsIzxQMAgCrJ63NuKtqoUaOUnZ3tfPzyyy8Vsp5AP19tmpCkTROSFOjnWyHrAAAApfPqxJCGDRvK19dXmZmZLu2ZmZlq3Lhxscs0bty4TP3tdrvsdrtnCj4Hm83GPBsAAKoAr5658ff3V2xsrNLS0pxtDodDaWlp6ty5c7HLdO7c2aW/JH3//fcl9gcAADWL1081pKSkqF+/furYsaPi4uI0bdo0nThxQgMGDJAkJScnq2nTppo0aZIk6dFHH1VCQoKmTJmim2++WZ988olWr16tt99+25vDAAAAVYTXw03fvn11+PBhjR07VgcPHlS7du20YMEC56ThvXv3ysfnfyeYunTpoo8//lijR4/WU089pUsuuUTz5s1TmzZtvDUEAABQhXj9e24qW0V9zw0AAKg41eZ7bgAAADyNcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyllrcLqGzGGElSTk6OlysBAADuKvzcLvwcP5caF26OHTsmSYqIiPByJQAAoKyOHTumkJCQc/axGXcikIU4HA7t379fderUkc1mO2ffnJwcRURE6JdfflFwcHAlVehdjNn6Y65p45UYM2O2rpo0ZmOMjh07pvDwcPn4nHtWTY07c+Pj46NmzZqVaZng4GDLHzRnY8zWV9PGKzHmmoIxW1dpZ2wKMaEYAABYCuEGAABYCuHmHOx2u8aNGye73e7tUioNY7a+mjZeiTHXFIwZhWrchGIAAGBtnLkBAACWQrgBAACWQrgBAACWQrgBAACWUuPCzZIlS9SjRw+Fh4fLZrNp3rx5Rfps3rxZt9xyi0JCQnTBBReoU6dO2rt3r/P5P/74Q0OHDlWDBg1Uu3Zt9e7dW5mZmZU4irLxxJivvvpq2Ww2l8eQIUMqcRRlU9qYzx5L4WPy5MnOPkeOHNE999yj4OBg1a1bVwMHDtTx48creSTu88SYo6Kiijz/wgsvVPJI3FfamI8fP65hw4apWbNmCgwMVKtWrZSamurSx2rvZ3fGbLX3c2Zmpvr376/w8HAFBQXpxhtv1M8//+zSpzrtZ0+Mt7rtY0+rceHmxIkTiomJ0fTp04t9fseOHbrqqqt02WWXafHixdqwYYPGjBmjgIAAZ58RI0bo66+/1pw5c/Tjjz9q//796tWrV2UNocw8MWZJGjRokA4cOOB8vPTSS5VRfrmUNuYzx3HgwAHNnDlTNptNvXv3dva555579N///lfff/+9vvnmGy1ZskSDBw+urCGUmSfGLEkTJkxw6ffwww9XRvnlUtqYU1JStGDBAn300UfavHmzhg8frmHDhumrr75y9rHa+9mdMUvWeT8bY9SzZ0/t3LlTX375pdauXavIyEglJibqxIkTzn7VaT97YrxS9drHHmdqMEnmiy++cGnr27evuffee0tc5ujRo8bPz8/MmTPH2bZ582YjyaSnp1dUqR5TnjEbY0xCQoJ59NFHK66wClTcmM926623mmuvvdb586ZNm4wks2rVKmfbd999Z2w2m9m3b19Fleox5RmzMcZERkaaV155peIKq0DFjbl169ZmwoQJLm0dOnQwTz/9tDHGmu/n0sZsjLXez1u3bjWSzE8//eRsKygoMKGhoWbGjBnGmOq9n8szXmOq9z72hBp35uZcHA6H5s+fr0svvVRJSUlq1KiR4uPjXU4JZmRk6NSpU0pMTHS2XXbZZbrwwguVnp7uharPjztjLjRr1iw1bNhQbdq00ahRo5Sbm1v5BVeAzMxMzZ8/XwMHDnS2paenq27duurYsaOzLTExUT4+PlqxYoU3yvSo4sZc6IUXXlCDBg3Uvn17TZ48WadPn/ZChZ7RpUsXffXVV9q3b5+MMVq0aJG2bdumG264QZL13s9S6WMuZJX3c15eniS5nGn28fGR3W7XsmXLJFlrP7sz3kJW2cflUeP+cOa5HDp0SMePH9cLL7yg5557Ti+++KIWLFigXr16adGiRUpISNDBgwfl7++vunXruiwbFhamgwcPeqfw8+DOmCXp7rvvVmRkpMLDw7VhwwY98cQT2rp1qz7//HMvj+D8ffDBB6pTp47LKeqDBw+qUaNGLv1q1aql+vXrV8v9fLbixixJjzzyiDp06KD69etr+fLlGjVqlA4cOKCpU6d6qdLz89prr2nw4MFq1qyZatWqJR8fH82YMUPdunWTJMu9n6XSxyxZ6/1cGFJGjRqlt956SxdccIFeeeUV/frrrzpw4IAka+1nd8YrWWsflwfh5gwOh0OSdOutt2rEiBGSpHbt2mn58uVKTU11ftBbibtjPnOuyeWXX64mTZrouuuu044dO9S8efPKL9yDZs6cqXvuuafIHCMrK2nMKSkpzn+3bdtW/v7+euCBBzRp0qRq+fXur732mv7zn//oq6++UmRkpJYsWaKhQ4cqPDzc5bd4K3FnzFZ6P/v5+enzzz/XwIEDVb9+ffn6+ioxMVHdu3eXseAX8Ls7Xivt4/Ig3JyhYcOGqlWrllq1auXS3rJlS+fpvsaNGys/P19Hjx51+S0gMzNTjRs3rsxyPcKdMRcnPj5ekrR9+/Zq/UZZunSptm7dqtmzZ7u0N27cWIcOHXJpO336tI4cOVIt9/OZShpzceLj43X69Gnt3r1bLVq0qITqPOfkyZN66qmn9MUXX+jmm2+W9GdgW7dunV5++WUlJiZa7v3szpiLU93fz7GxsVq3bp2ys7OVn5+v0NBQxcfHOy8rW20/lzbe4lT3fVxWzLk5g7+/vzp16qStW7e6tG/btk2RkZGS/jyo/Pz8lJaW5nx+69at2rt3rzp37lyp9XqCO2Muzrp16yRJTZo0qcjyKty7776r2NhYxcTEuLR37txZR48eVUZGhrPtX//6lxwOh/M/ieqqpDEXZ926dfLx8Slyia46OHXqlE6dOiUfH9f/5nx9fZ1nLK32fnZnzMWxyvs5JCREoaGh+vnnn7V69Wrdeuutkqy3nwuVNN7iWGUfu6vGnbk5fvy4tm/f7vx5165dWrdunerXr68LL7xQI0eOVN++fdWtWzddc801WrBggb7++mstXrxY0p8H08CBA5WSkqL69esrODhYDz/8sDp37qwrrrjCS6M6t/Md844dO/Txxx/rpptuUoMGDbRhwwaNGDFC3bp1U9u2bb00qnMrbcySlJOTozlz5mjKlClFlm/ZsqVuvPFGDRo0SKmpqTp16pSGDRumO++8U+Hh4ZU2jrI43zGnp6drxYoVuuaaa1SnTh2lp6drxIgRuvfee1WvXr1KG0dZlDbmhIQEjRw5UoGBgYqMjNSPP/6ov//97845RFZ8P5c2Ziu+n+fMmaPQ0FBdeOGF2rhxox599FH17NnTOYm6uu3n8x1vddzHHufdm7Uq36JFi4ykIo9+/fo5+7z77rvm4osvNgEBASYmJsbMmzfP5TVOnjxpHnroIVOvXj0TFBRkbrvtNnPgwIFKHon7znfMe/fuNd26dTP169c3drvdXHzxxWbkyJEmOzvbC6Nxjztjfuutt0xgYKA5evRosa/x22+/mbvuusvUrl3bBAcHmwEDBphjx45V0gjK7nzHnJGRYeLj401ISIgJCAgwLVu2NBMnTjR//PFHJY6ibEob84EDB0z//v1NeHi4CQgIMC1atDBTpkwxDofD+RpWez+XNmYrvp9fffVV06xZM+Pn52cuvPBCM3r0aJOXl+fyGtVpP5/veKvjPvY0mzEWnHEFAABqLObcAAAASyHcAAAASyHcAAAASyHcAAAASyHcAAAASyHcAAAASyHcAAAASyHcAAAASyHcAAAASyHcAAAASyHcAKj2Dh8+rMaNG2vixInOtuXLl8vf39/lL0EDqBn421IALOHbb79Vz549tXz5crVo0ULt2rXTrbfe6vxr2ABqDsINAMsYOnSofvjhB3Xs2FEbN27UqlWrZLfbvV0WgEpGuAFgGSdPnlSbNm30yy+/KCMjQ5dffrm3SwLgBcy5AWAZO3bs0P79++VwOLR7925vlwPASzhzA8AS8vPzFRcXp3bt2qlFixaaNm2aNm7cqEaNGnm7NACVjHADwBJGjhypuXPnav369apdu7YSEhIUEhKib775xtulAahkXJYCUO0tXrxY06ZN04cffqjg4GD5+Pjoww8/1NKlS/Xmm296uzwAlYwzNwAAwFI4cwMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACzl/wET6lxlVneAjQAAAABJRU5ErkJggg==",
"text/plain": [
"
"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# lets increase the y-range slightly:\n",
"plt.ecdf(x)\n",
"plt.ylim(-0.1,1.1)\n",
"plt.xlabel('x')\n",
"plt.ylabel('ecdf(x)')\n",
"plt.title('Epirical cumulated density function')\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The y-range goes from 0 to 1 - or 0% to 100% \n",
"\n",
"Every vertical line-segment is a datapoint \n",
"\n",
"When the plot is \"steep\" there are many datapoints (corresponds to high values in the histogram). \n",
"\n",
"The cumulated plot can be used to understand the \"averaged_inverted_cdf\" used for percentiles. \n",
"\n",
"OBS: we will talk more about distributions - and cumulative distributions - over the next couple of weeks. "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Other plots in Python"
]
},
{
"cell_type": "code",
"execution_count": 58,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAGdCAYAAAA44ojeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAgFUlEQVR4nO3db2yV9f3/8deppYdW2sNOAU9P6CnTqC0qlVZScQRaaYDDUsB2iX9orBnSkQG6diHLcbINE1P8hyamiluAqgUxZFpgJMSh0GoouhZP0KWUFktAaesNpIdToK3p+d7g59nvjJZ54NTz6eH5SK7oda4/fV/e6dPrXKfHEggEAgIAADBIXLQHAAAA+G8ECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjxEd7gKsxODio06dPKzk5WRaLJdrjAACAHyEQCOjcuXNyOp2Ki7vyPZJRGSinT59Wenp6tMcAAABX4dSpU5o8efIV9xmVgZKcnCzp0gWmpKREeRoAAPBj+Hw+paenB3+PX8moDJQf3tZJSUkhUAAAGGV+zOMZPCQLAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwzqj8skAA5jl//ryOHj16zee5cOGCTpw4oSlTpigxMTECk0mZmZlKSkqKyLkA/DQIFAARcfToUeXm5kZ7jCE1NzcrJycn2mMACAOBAiAiMjMz1dzcfM3naWlpUWlpqWpra5WVlRWByS7NBmB0IVAARERSUlJE71JkZWVx1wO4jvGQLAAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADBO2IHS0NCgoqIiOZ1OWSwW1dXVhWzv7u7WY489JqfTqaSkJC1YsEBtbW0h++Tn58tisYQsK1asuKYLAQAAsSPsQOnt7VV2draqq6sv2xYIBLRkyRJ99dVX2rlzpz7//HNlZGSosLBQvb29IfsuX75cnZ2dweX555+/+qsAAAAxJT7cA9xut9xu95Db2tradOjQIX355Ze64447JEmvv/66HA6H3nnnHT3++OPBfZOSkuRwOK5ybAAAEMsi+gxKX1+fJGns2LH/+QFxcbJarfrkk09C9t26dasmTJigO++8Ux6PR+fPn7/ieX0+X8gCAABiV0QDJTMzUy6XSx6PR9999536+/v13HPP6euvv1ZnZ2dwv0ceeUS1tbXav3+/PB6P3n77bZWWlg573qqqKtlstuCSnp4eybEBAIBhwn6L50rGjBmj9957T8uWLZPdbtcNN9ygwsJCud1uBQKB4H7l5eXBf7/rrruUlpamuXPn6vjx47rlllsuO6/H41FlZWVw3efzESkAAMSwiAaKJOXm5srr9aqnp0f9/f2aOHGi8vLydM899wx7TF5eniSpvb19yECxWq2yWq2RHhUAABhqxP4Ois1m08SJE9XW1qampiYtXrx42H29Xq8kKS0tbaTGAQAAo0jYd1D8fr/a29uD6x0dHfJ6vbLb7XK5XNqxY4cmTpwol8ulL774Qk8++aSWLFmiefPmSZKOHz+ubdu2aeHChUpNTdWRI0dUUVGh2bNna9q0aZG7MgAAMGqFHShNTU0qKCgIrv/wbEhZWZlqamrU2dmpyspKdXd3Ky0tTY8++qjWrl0b3D8hIUH79u3TK6+8ot7eXqWnp6ukpERPP/10BC4HAADEAkvg/396dZTw+Xyy2Wzq6elRSkpKtMcBEEGHDx9Wbm6umpublZOTE+1xAERQOL+/+S4eAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGCfsQGloaFBRUZGcTqcsFovq6upCtnd3d+uxxx6T0+lUUlKSFixYoLa2tpB9Ll68qJUrVyo1NVXjxo1TSUmJuru7r+lCAABA7Ag7UHp7e5Wdna3q6urLtgUCAS1ZskRfffWVdu7cqc8//1wZGRkqLCxUb29vcL+Kigrt3r1bO3bsUH19vU6fPq3i4uJruxIAABAz4sM9wO12y+12D7mtra1Nhw4d0pdffqk77rhDkvT666/L4XDonXfe0eOPP66enh5t2rRJ27Zt0/333y9J2rJli7KysnTo0CHde++913A5AAAgFkT0GZS+vj5J0tixY//zA+LiZLVa9cknn0iSmpubNTAwoMLCwuA+mZmZcrlcamxsHPa8Pp8vZAEAALErooHyQ2h4PB5999136u/v13PPPaevv/5anZ2dkqSuri4lJCRo/PjxIcfedNNN6urqGvK8VVVVstlswSU9PT2SYwMAAMNENFDGjBmj9957T8eOHZPdbldSUpL2798vt9utuLir/1Eej0c9PT3B5dSpUxGcGgAAmCbsZ1D+l9zcXHm9XvX09Ki/v18TJ05UXl6e7rnnHkmSw+FQf3+/zp49G3IXpbu7Ww6HY8hzWq1WWa3WSI8KAAAMNWJ/B8Vms2nixIlqa2tTU1OTFi9eLOlSwIwZM0YffvhhcN/W1ladPHlSM2fOHKlxAADAKBL2HRS/36/29vbgekdHh7xer+x2u1wul3bs2KGJEyfK5XLpiy++0JNPPqklS5Zo3rx5ki6Fy7Jly1RZWSm73a6UlBStXr1aM2fO5BM8AABA0lUESlNTkwoKCoLrlZWVkqSysjLV1NSos7NTlZWV6u7uVlpamh599FGtXbs25Bwvv/yy4uLiVFJSor6+Ps2fP1+vvfbaNV4KAACIFZZAIBCI9hDh8vl8stls6unpUUpKSrTHARBBhw8fVm5urpqbm5WTkxPtcQBEUDi/v/kuHgAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGCc+2gMAiK62tjadO3cu2mMEtbS0hPzTFMnJybr11lujPQZw3SBQgOtYW1ubbrvttmiPMaTS0tJoj3CZY8eOESnAT4RAAa5jP9w5qa2tVVZWVpSnueTChQs6ceKEpkyZosTExGiPI+nS3ZzS0lKj7jQBsY5AAaCsrCzl5OREe4ygX/ziF9EeAUCU8ZAsAAAwDoECAACMQ6AAAADjECgAAMA4YQdKQ0ODioqK5HQ6ZbFYVFdXF7Ld7/dr1apVmjx5shITEzV16lRt3LgxZJ/8/HxZLJaQZcWKFdd0IQAAIHaE/Sme3t5eZWdn69e//rWKi4sv215ZWamPPvpItbW1mjJlij744AP99re/ldPp1KJFi4L7LV++XM8880xwPSkp6SovAQAAxJqwA8Xtdsvtdg+7/eDBgyorK1N+fr4kqby8XG+88YY+++yzkEBJSkqSw+EIf2IAABDzIv4Myn333addu3bpm2++USAQ0P79+3Xs2DHNmzcvZL+tW7dqwoQJuvPOO+XxeHT+/PlIjwIAAEapiP+htldffVXl5eWaPHmy4uPjFRcXp7/97W+aPXt2cJ9HHnlEGRkZcjqdOnLkiP7whz+otbVV77333pDn7OvrU19fX3Dd5/NFemwAAGCQEQmUQ4cOadeuXcrIyFBDQ4NWrlwpp9OpwsJCSZfe9vnBXXfdpbS0NM2dO1fHjx/XLbfcctk5q6qqtG7dukiPCgAADBXRt3guXLigp556Shs2bFBRUZGmTZumVatW6cEHH9SLL7447HF5eXmSpPb29iG3ezwe9fT0BJdTp05FcmwAAGCYiN5BGRgY0MDAgOLiQrvnhhtu0ODg4LDHeb1eSVJaWtqQ261Wq6xWa8TmBAAAZgs7UPx+f8idjo6ODnm9XtntdrlcLs2ZM0dr1qxRYmKiMjIyVF9fr7feeksbNmyQJB0/flzbtm3TwoULlZqaqiNHjqiiokKzZ8/WtGnTIndlAABg1Ao7UJqamlRQUBBcr6yslCSVlZWppqZG27dvl8fj0dKlS3XmzBllZGTo2WefDf4htoSEBO3bt0+vvPKKent7lZ6erpKSEj399NMRuiQAADDahR0o+fn5CgQCw253OBzasmXLsNvT09NVX18f7o8FAADXEb6LBwAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHHCDpSGhgYVFRXJ6XTKYrGorq4uZLvf79eqVas0efJkJSYmaurUqdq4cWPIPhcvXtTKlSuVmpqqcePGqaSkRN3d3dd0IQAAIHaEHSi9vb3Kzs5WdXX1kNsrKyu1d+9e1dbWqqWlRb/73e+0atUq7dq1K7hPRUWFdu/erR07dqi+vl6nT59WcXHx1V8FAACIKfHhHuB2u+V2u4fdfvDgQZWVlSk/P1+SVF5erjfeeEOfffaZFi1apJ6eHm3atEnbtm3T/fffL0nasmWLsrKydOjQId17771XdyUAACBmRPwZlPvuu0+7du3SN998o0AgoP379+vYsWOaN2+eJKm5uVkDAwMqLCwMHpOZmSmXy6XGxsYhz9nX1yefzxeyAACA2BXxQHn11Vc1depUTZ48WQkJCVqwYIGqq6s1e/ZsSVJXV5cSEhI0fvz4kONuuukmdXV1DXnOqqoq2Wy24JKenh7psQEAgEFGJFAOHTqkXbt2qbm5WS+99JJWrlypffv2XfU5PR6Penp6gsupU6ciODEAADBN2M+gXMmFCxf01FNP6f3339cvf/lLSdK0adPk9Xr14osvqrCwUA6HQ/39/Tp79mzIXZTu7m45HI4hz2u1WmW1WiM5KgAAMFhE76AMDAxoYGBAcXGhp73hhhs0ODgoScrNzdWYMWP04YcfBre3trbq5MmTmjlzZiTHAQAAo1TYd1D8fr/a29uD6x0dHfJ6vbLb7XK5XJozZ47WrFmjxMREZWRkqL6+Xm+99ZY2bNggSbLZbFq2bJkqKytlt9uVkpKi1atXa+bMmXyCBwAASLqKQGlqalJBQUFwvbKyUpJUVlammpoabd++XR6PR0uXLtWZM2eUkZGhZ599VitWrAge8/LLLysuLk4lJSXq6+vT/Pnz9dprr0XgcgAAQCwIO1Dy8/MVCASG3e5wOLRly5YrnmPs2LGqrq4e9o+9AQCA6xvfxQMAAIwT0U/xABh9HOMsSjx7TDrN/68MJ/HsMTnGWaI9BnBdIVCA69xvchOU1fAbqSHak5grS5f+OwH46RAowHXujeZ+PfinGmVlZkZ7FGO1HD2qN156RIuiPQhwHSFQgOtclz+gC+Nvk5x3R3sUY13oGlSXf/gPBwCIPN50BgAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGCTtQGhoaVFRUJKfTKYvForq6upDtFotlyOWFF14I7jNlypTLtq9fv/6aLwYAAMSGsAOlt7dX2dnZqq6uHnJ7Z2dnyLJ582ZZLBaVlJSE7PfMM8+E7Ld69eqruwIAABBz4sM9wO12y+12D7vd4XCErO/cuVMFBQW6+eabQ15PTk6+bF8AAABphJ9B6e7u1p49e7Rs2bLLtq1fv16pqamaPn26XnjhBX3//ffDnqevr08+ny9kAQAAsSvsOyjhePPNN5WcnKzi4uKQ15944gnl5OTIbrfr4MGD8ng86uzs1IYNG4Y8T1VVldatWzeSowIAAIOMaKBs3rxZS5cu1dixY0Ner6ysDP77tGnTlJCQoN/85jeqqqqS1Wq97DwejyfkGJ/Pp/T09JEbHAAARNWIBcrHH3+s1tZWvfvuu/9z37y8PH3//fc6ceKEbr/99su2W63WIcMFAADEphF7BmXTpk3Kzc1Vdnb2/9zX6/UqLi5OkyZNGqlxAADAKBL2HRS/36/29vbgekdHh7xer+x2u1wul6RLb8Hs2LFDL7300mXHNzY26tNPP1VBQYGSk5PV2NioiooKlZaW6mc/+9k1XAoAAIgVYQdKU1OTCgoKgus/PBtSVlammpoaSdL27dsVCAT08MMPX3a81WrV9u3b9Ze//EV9fX36+c9/roqKipBnTAAAwPUt7EDJz89XIBC44j7l5eUqLy8fcltOTo4OHToU7o8FAADXEb6LBwAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHHCDpSGhgYVFRXJ6XTKYrGorq4uZLvFYhlyeeGFF4L7nDlzRkuXLlVKSorGjx+vZcuWye/3X/PFAACA2BB2oPT29io7O1vV1dVDbu/s7AxZNm/eLIvFopKSkuA+S5cu1b///W/985//1D/+8Q81NDSovLz86q8CAADElPhwD3C73XK73cNudzgcIes7d+5UQUGBbr75ZklSS0uL9u7dq3/961+65557JEmvvvqqFi5cqBdffFFOpzPckQAAQIwZ0WdQuru7tWfPHi1btiz4WmNjo8aPHx+ME0kqLCxUXFycPv300yHP09fXJ5/PF7IAAIDYNaKB8uabbyo5OVnFxcXB17q6ujRp0qSQ/eLj42W329XV1TXkeaqqqmSz2YJLenr6SI4NAACibEQDZfPmzVq6dKnGjh17TefxeDzq6ekJLqdOnYrQhAAAwERhP4PyY3388cdqbW3Vu+++G/K6w+HQt99+G/La999/rzNnzlz2/MoPrFarrFbrSI0KAAAMM2J3UDZt2qTc3FxlZ2eHvD5z5kydPXtWzc3Nwdc++ugjDQ4OKi8vb6TGAQAAo0jYd1D8fr/a29uD6x0dHfJ6vbLb7XK5XJIkn8+nHTt26KWXXrrs+KysLC1YsEDLly/Xxo0bNTAwoFWrVumhhx7iEzwAAEDSVdxBaWpq0vTp0zV9+nRJUmVlpaZPn64//elPwX22b9+uQCCghx9+eMhzbN26VZmZmZo7d64WLlyoWbNm6a9//etVXgIAAIg1Yd9Byc/PVyAQuOI+5eXlV/zDa3a7Xdu2bQv3RwMAgOsE38UDAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIwTH+0BAETP+fPnJUmHDx+O8iT/ceHCBZ04cUJTpkxRYmJitMeRJLW0tER7BOC6Q6AA17GjR49KkpYvXx7lSUaH5OTkaI8AXDcIFOA6tmTJEklSZmamkpKSojvM/9PS0qLS0lLV1tYqKysr2uMEJScn69Zbb432GMB1g0ABrmMTJkzQ448/Hu0xhpSVlaWcnJxojwEgSnhIFgAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGCfsQGloaFBRUZGcTqcsFovq6uou26elpUWLFi2SzWbTjTfeqBkzZujkyZPB7fn5+bJYLCHLihUrrulCAABA7Ag7UHp7e5Wdna3q6uohtx8/flyzZs1SZmamDhw4oCNHjmjt2rUaO3ZsyH7Lly9XZ2dncHn++eev7goAAEDMiQ/3ALfbLbfbPez2P/7xj1q4cGFIcNxyyy2X7ZeUlCSHwxHujwcAANeBiD6DMjg4qD179ui2227T/PnzNWnSJOXl5Q35NtDWrVs1YcIE3XnnnfJ4PDp//vyw5+3r65PP5wtZAABA7IpooHz77bfy+/1av369FixYoA8++EAPPPCAiouLVV9fH9zvkUceUW1trfbv3y+Px6O3335bpaWlw563qqpKNpstuKSnp0dybAAAYJiw3+K5ksHBQUnS4sWLVVFRIUm6++67dfDgQW3cuFFz5syRJJWXlwePueuuu5SWlqa5c+fq+PHjQ74d5PF4VFlZGVz3+XxECgAAMSyid1AmTJig+Ph4TZ06NeT1rKyskE/x/Le8vDxJUnt7+5DbrVarUlJSQhYAABC7IhooCQkJmjFjhlpbW0NeP3bsmDIyMoY9zuv1SpLS0tIiOQ4AABilwn6Lx+/3h9zp6OjokNfrld1ul8vl0po1a/Tggw9q9uzZKigo0N69e7V7924dOHBA0qWPIW/btk0LFy5Uamqqjhw5ooqKCs2ePVvTpk2L2IUBAIDRK+xAaWpqUkFBQXD9h2dDysrKVFNTowceeEAbN25UVVWVnnjiCd1+++36+9//rlmzZkm6dJdl3759euWVV9Tb26v09HSVlJTo6aefjtAlAQCA0c4SCAQC0R4iXD6fTzabTT09PTyPAsSYw4cPKzc3V83NzcrJyYn2OAAiKJzf33wXDwAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOPHRHgBAbDh//ryOHj16zedpaWkJ+WckZGZmKikpKWLnAzDyCBQAEXH06FHl5uZG7HylpaURO1dzc7NycnIidj4AI49AARARmZmZam5uvubzXLhwQSdOnNCUKVOUmJgYgckuzQZgdLEEAoFAtIcIl8/nk81mU09Pj1JSUqI9DgAA+BHC+f3NQ7IAAMA4BAoAADBO2IHS0NCgoqIiOZ1OWSwW1dXVXbZPS0uLFi1aJJvNphtvvFEzZszQyZMng9svXryolStXKjU1VePGjVNJSYm6u7uv6UIAAEDsCDtQent7lZ2drerq6iG3Hz9+XLNmzVJmZqYOHDigI0eOaO3atRo7dmxwn4qKCu3evVs7duxQfX29Tp8+reLi4qu/CgAAEFOu6SFZi8Wi999/X0uWLAm+9tBDD2nMmDF6++23hzymp6dHEydO1LZt2/SrX/1K0qWPJ2ZlZamxsVH33nvv//y5PCQLAMDoE7WHZAcHB7Vnzx7ddtttmj9/viZNmqS8vLyQt4Gam5s1MDCgwsLC4GuZmZlyuVxqbGyM5DgAAGCUimigfPvtt/L7/Vq/fr0WLFigDz74QA888ICKi4tVX18vSerq6lJCQoLGjx8fcuxNN92krq6uIc/b19cnn88XsgAAgNgV0T/UNjg4KElavHixKioqJEl33323Dh48qI0bN2rOnDlXdd6qqiqtW7cuYnMCAACzRfQOyoQJExQfH6+pU6eGvJ6VlRX8FI/D4VB/f7/Onj0bsk93d7ccDseQ5/V4POrp6Qkup06diuTYAADAMBENlISEBM2YMUOtra0hrx87dkwZGRmSpNzcXI0ZM0YffvhhcHtra6tOnjypmTNnDnleq9WqlJSUkAUAAMSusN/i8fv9am9vD653dHTI6/XKbrfL5XJpzZo1evDBBzV79mwVFBRo79692r17tw4cOCBJstlsWrZsmSorK2W325WSkqLVq1dr5syZP+oTPAAAIPaF/THjAwcOqKCg4LLXy8rKVFNTI0navHmzqqqq9PXXX+v222/XunXrtHjx4uC+Fy9e1O9//3u988476uvr0/z58/Xaa68N+xbPf+NjxgAAjD7h/P7mywIBAMBPIpzf3xH9FM9P5Yem4uPGAACMHj/83v4x90ZGZaCcO3dOkpSenh7lSQAAQLjOnTsnm812xX1G5Vs8g4ODOn36tJKTk2WxWKI9DoAI8vl8Sk9P16lTp3gLF4gxgUBA586dk9PpVFzclT9IPCoDBUDs4hkzAFKE/w4KAABAJBAoAADAOAQKAKNYrVb9+c9/ltVqjfYoAKKIZ1AAAIBxuIMCAACMQ6AAAADjECgAAMA4BAoAADAOgQLACA0NDSoqKpLT6ZTFYlFdXV20RwIQRQQKACP09vYqOztb1dXV0R4FgAFG5ZcFAog9brdbbrc72mMAMAR3UAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcfgUDwAj+P1+tbe3B9c7Ojrk9Xplt9vlcrmiOBmAaODbjAEY4cCBAyooKLjs9bKyMtXU1Pz0AwGIKgIFAAAYh2dQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxvk/zIlc6W4NuQkAAAAASUVORK5CYII=",
"text/plain": [
"
"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# make a boxplot\n",
"plt.boxplot(x)\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now the *values* are on the **y-axis**"
]
},
{
"cell_type": "code",
"execution_count": 61,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAGzCAYAAAAFROyYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAA9hAAAPYQGoP6dpAAA1q0lEQVR4nO3de1xVVf7/8fdB5aZcBkWRBOyigpkk6JiOY5KkoqGlTRd18m4X7SLfn9+iMrOmoaYym0KtGZVKUccZxzKni5pKpVZafLW+iGCalgg1Kggq2LB/f+yvh46CevQgC3w9H4/9kL3X2mt/to9H8Xbttc9xWJZlCQAAwCBedV0AAADAqQgoAADAOAQUAABgHAIKAAAwDgEFAAAYh4ACAACMQ0ABAADGIaAAAADjEFAAAIBxCCgAzsmePXvkcDiUkZFxwWOtX79eDodDf//73y+8sIsoIyNDDodDe/bsqetSgAaPgALUMyd/Sf5ya9mypRISEvTee+/VdXmoQWZmpmbNmlXXZQD1RuO6LgDA+Xnqqad0+eWXy7IsFRYWKiMjQwMHDtTKlSt10003efx6UVFROnbsmJo0aeLxsS8FmZmZ+vrrr/XQQw/VdSlAvUBAAeqppKQkde3a1bk/btw4tWrVSosXL66VgOJwOOTr6+vxcQGgOjziARqI4OBg+fn5qXFj1393vPDCC+rZs6eaN28uPz8/xcfHV7v2Y/Xq1erVq5eCg4PVrFkzdejQQY8++qizvaY1KDt27NBtt92m0NBQ+fn5qUOHDnrsscfOqeb//Oc/evTRRxUWFqamTZtq8ODB2rdv32n9li1bpvj4ePn5+alFixYaOXKkfvjhB2f79OnT5eXlpbVr17qcN3HiRHl7e+t//ud/zliHw+HQ5MmTtWjRInXo0EG+vr6Kj49XVlbWOd3H7NmzdfXVV8vHx0fh4eGaNGmSDh8+7Gzv06ePVq1ape+++875WK5t27bnNDZwqWIGBainiouL9dNPP8myLBUVFemVV15RaWmpRo4c6dLv5Zdf1uDBgzVixAhVVFRoyZIl+t3vfqd3331XgwYNkiR98803uummm9S5c2c99dRT8vHxUX5+vj799NMz1rBt2zb99re/VZMmTTRx4kS1bdtWu3bt0sqVK/XMM8+c9R6eeeYZORwOPfzwwyoqKtKsWbOUmJio7Oxs+fn5SbLX3IwZM0bdunVTWlqaCgsL9fLLL+vTTz/VV199peDgYD3++ONauXKlxo0bp+3btysgIEAffPCB/vKXv+jpp59WbGzsWWvZsGGDli5dqgceeEA+Pj6aPXu2BgwYoM8//1ydOnWq8bwnn3xSM2bMUGJiou69917l5uZqzpw5+uKLL/Tpp5+qSZMmeuyxx1RcXKzvv/9eL730kiSpWbNmZ60JuKRZAOqVBQsWWJJO23x8fKyMjIzT+h89etRlv6KiwurUqZN1ww03OI+99NJLliTrxx9/rPG6u3fvtiRZCxYscB7r3bu3FRAQYH333XcufSsrK894D+vWrbMkWZdddplVUlLiPP63v/3NkmS9/PLLzlpbtmxpderUyTp27Jiz37vvvmtJsp544gnnse3bt1ve3t7W+PHjrUOHDlmXXXaZ1bVrV+vEiRNnrMWyLOff4ZYtW5zHvvvuO8vX19e65ZZbnMdO/t3v3r3bsizLKioqsry9va1+/fpZ//nPf5z9Xn31VUuSNX/+fOexQYMGWVFRUWetBYCNRzxAPZWenq7Vq1dr9erVWrhwoRISEjR+/HgtX77cpd/JmQhJOnTokIqLi/Xb3/5WX375pfN4cHCwJOntt99WZWXlOV3/xx9/VFZWlsaOHavIyEiXNofDcU5j3HXXXQoICHDu33rrrWrdurX+9a9/SZK2bNmioqIi3XfffS7rXwYNGqTo6GitWrXKeaxTp06aMWOG/vrXv6p///766aef9MYbb5z2yKsmPXr0UHx8vHM/MjJSQ4YM0QcffKD//Oc/1Z6zZs0aVVRU6KGHHpKXV9X/TidMmKDAwECX+gC4h4AC1FO//vWvlZiYqMTERI0YMUKrVq1Sx44dNXnyZFVUVDj7vfvuu7ruuuvk6+urkJAQhYaGas6cOSouLnb2uf322/Wb3/xG48ePV6tWrXTHHXfob3/72xnDyrfffitJZ3z8cTbt2rVz2Xc4HLrqqqucnzPy3XffSZI6dOhw2rnR0dHO9pOmTp2q2NhYff7555o+fbo6dux43rVIUvv27XX06FH9+OOP1Z5TU33e3t664oorTqsPwLkjoAANhJeXlxISElRQUKC8vDxJ0scff6zBgwfL19dXs2fP1r/+9S+tXr1aw4cPl2VZznP9/PyUlZWlNWvW6Pe//722bdum22+/XTfeeGONswcm+vbbb533vn379jquBsCFIKAADcjPP/8sSSotLZUk/eMf/5Cvr68++OADjR07VklJSUpMTKz2XC8vL/Xt21czZ87U//7v/+qZZ57RRx99pHXr1lXb/4orrpAkff311+dd78kwcZJlWcrPz3e+4RIVFSVJys3NPe3c3NxcZ7skVVZWavTo0QoMDNSjjz6qxYsXn/a4y51aJGnnzp3y9/dXaGhotefUVF9FRYV2797tUt+5PvYCYCOgAA3EiRMn9OGHH8rb21sxMTGSpEaNGsnhcLjMguzZs0crVqxwOffgwYOnjXfttddKksrLy6u9XmhoqHr37q358+dr7969Lm2/nJ05kzfffFNHjhxx7v/9739XQUGBkpKSJEldu3ZVy5YtNXfuXJc63nvvPeXk5DjfQpKkmTNnauPGjXr99df19NNPq2fPnrr33nv1008/nVMtmzZtclmXs2/fPr399tvq16+fGjVqVO05iYmJ8vb21p///GeXe543b56Ki4td6mvatKnLYzUAZ8ZrxkA99d5772nHjh2SpKKiImVmZiovL0+PPPKIAgMDJdmLSWfOnKkBAwZo+PDhKioqUnp6uq666ipt27bNOdZTTz2lrKwsDRo0SFFRUSoqKtLs2bPVpk0b9erVq8Ya/vznP6tXr16Ki4vTxIkTdfnll2vPnj1atWqVsrOzz3oPISEh6tWrl8aMGaPCwkLNmjVLV111lSZMmCBJatKkiZ577jmNGTNG119/ve68807na8Zt27bVlClTJEk5OTmaNm2aRo8ereTkZEn268nXXnut7rvvPv3tb387ay2dOnVS//79XV4zlqQZM2bUeE5oaKhSU1M1Y8YMDRgwQIMHD1Zubq5mz56tbt26ubzyHR8fr6VLlyolJUXdunVTs2bNnLUCqEbdvkQEwF3VvWbs6+trXXvttdacOXNOe8V33rx5Vrt27SwfHx8rOjraWrBggTV9+nTrl//5r1271hoyZIgVHh5ueXt7W+Hh4dadd95p7dy509mnuteMLcuyvv76a+uWW26xgoODLV9fX6tDhw7WtGnTzngPJ18zXrx4sZWammq1bNnS8vPzswYNGnTaK8uWZVlLly61unTpYvn4+FghISHWiBEjrO+//96yLMv6+eefrW7dullt2rSxDh8+7HLeyy+/bEmyli5desZ6JFmTJk2yFi5c6Py76tKli7Vu3TqXfqe+ZnzSq6++akVHR1tNmjSxWrVqZd17773WoUOHXPqUlpZaw4cPt4KDgy1JvHIMnIXDss5xLhYAGiiHw6FJkybp1VdfretSAPwf1qAAAADjEFAAAIBxCCgAAMA4vMUD4JLHUjzAPMygAAAA4xBQAACAcerlI57Kykrt379fAQEBfHw0AAD1hGVZOnLkiMLDw12+Abw69TKg7N+/XxEREXVdBgAAOA/79u1TmzZtztinXgaUgIAASfYNnvxIbwAAYLaSkhJFREQ4f4+fSb0MKCcf6wQGBhJQAACoZ85leQaLZAEAgHEIKAAAwDgEFAAAYBwCCgA0IG3bSrNm1XUVwIUjoABALRo9WnI4pHvuOb1t0iS7bfRoz13viy+kiRM9Nx5QVwgoAFDLIiKkJUukY8eqjh0/LmVmSpGRnr1WaKjk7+/ZMYG6QEABgFoWF2eHlOXLq44tX26Hky5dqo69/77Uq5cUHCw1by7ddJO0a1dV+5tvSs2aSXl5Vcfuu0+KjpaOHrX3T33E43BIr71mj+XvL8XESJs2Sfn5Up8+UtOmUs+ertcZPVq6+WbXe3joIbv/SX36SA88IP33f0shIVJYmPTkk+7+zQA1I6AAwEUwdqy0YEHV/vz50pgxrn3KyqSUFGnLFmntWsnLS7rlFqmy0m6/6y5p4EBpxAjp55+lVaukv/5VWrTozLMmTz9tn5udbYeZ4cOlu++WUlPta1mWNHmy+/f0xht2wPnsM+lPf5Keekpavdr9cYDq1MsPagOA+mbkSDsQfPedvf/pp/Zjn/Xrq/oMG+Z6zvz59iOb//1fqVMn+9hrr0mdO9uzF8uX27MW8fFnvvaYMdJtt9k/P/yw1KOHNG2a1L+/fezBB08PS+eic2dp+nT753btpFdftYPVjTe6PxZwKgIKAFwEoaHSoEFSRoY9YzFokNSihWufvDzpiSfsGYmffqqaOdm7tyqg/OpX0rx5drjo2VN65JGzX7tz56qfW7Wy/7zmGtdjx49LJSWSOx/O/ctxJal1a6mo6NzPB86EgAIAF8nYsVWPUtLTT29PTpaioqS//EUKD7cDSqdOUkWFa7+sLKlRI6mgwH4sdLavNWnSpOrnk58wXt2xk4HIy8sOUb904sSZxz05zskxgAvFGhQAuEgGDLDDxokTVY9XTvr3v6XcXOnxx6W+fe3FrIcOnT7Gxo3Sc89JK1faC2bPZ+3I2YSG2uHnl7KzPX8d4EyYQQHgEUePHtWOHTsueJxjx45pz549atu2rfz8/DxQmRQdHS1/A969bdRIysmp+vmXfvUr+82d11+3H5Xs3Xv645sjR6Tf/95ef5KUJLVpI3XrZs+83Hqr5+q84Qbp+eftt4Z69JAWLpS+/tr1jSOgthFQAHjEjh07FH+21Zp1ZOvWrYqLi6vrMiTVvMbDy8teNPvAA/ZjnQ4dpD//2fXV3gcftN+a+eMf7f1rrrF/vvtuO0hcdplnauzf315E+9//ba9NGTvWfgto+3bPjA+cC4dlnfqk0XwlJSUKCgpScXGxAt1Z0QWg1nhqBiUnJ0cjR47UwoULFRMT44HKzJlBAS517vz+ZgYFgEf4+/t7dJYiJibGmFkPABcfi2QBAIBxCCgAAMA4BBQAAGAcAgoAADAOAQUAABiHgAIAAIxDQAEAAMYhoAAAAOMQUAAAgHEIKAAAwDgEFAAAYBwCCgAAMA4BBQAAGIeAAgAAjENAAQAAxiGgAAAA4xBQAACAcQgoAADAOAQUAABgHAIKAAAwDgEFAAAYx+2AkpWVpeTkZIWHh8vhcGjFihUu7YWFhRo9erTCw8Pl7++vAQMGKC8vz6VPnz595HA4XLZ77rnngm4EAAA0HG4HlLKyMsXGxio9Pf20NsuydPPNN+vbb7/V22+/ra+++kpRUVFKTExUWVmZS98JEyaooKDAuf3pT386/7sAAAANSmN3T0hKSlJSUlK1bXl5edq8ebO+/vprXX311ZKkOXPmKCwsTIsXL9b48eOdff39/RUWFnaeZQMAgIbMo2tQysvLJUm+vr5VF/Dyko+Pjz755BOXvosWLVKLFi3UqVMnpaam6ujRo2cct6SkxGUDAAANl0cDSnR0tCIjI5WamqpDhw6poqJCzz33nL7//nsVFBQ4+w0fPlwLFy7UunXrlJqaqrfeeksjR46scdy0tDQFBQU5t4iICE+WDQAADOP2I54zadKkiZYvX65x48YpJCREjRo1UmJiopKSkmRZlrPfxIkTnT9fc801at26tfr27atdu3bpyiuvPG3c1NRUpaSkOPdLSkoIKQAANGAeDSiSFB8fr+zsbBUXF6uiokKhoaHq3r27unbtWuM53bt3lyTl5+dXG1B8fHzk4+Pj6VIBAIChau1zUIKCghQaGqq8vDxt2bJFQ4YMqbFvdna2JKl169a1VQ4AAKhH3J5BKS0tVX5+vnN/9+7dys7OVkhIiCIjI7Vs2TKFhoYqMjJS27dv14MPPqibb75Z/fr1kyTt2rVLmZmZGjhwoJo3b65t27ZpypQp6t27tzp37uy5OwMAAPWW2wFly5YtSkhIcO6fXBsyatQoZWRkqKCgQCkpKSosLFTr1q111113adq0ac7+3t7eWrNmjWbNmqWysjJFRERo2LBhevzxxz1wOwAAoCFwWL9cvVpPlJSUKCgoSMXFxQoMDKzrcgB40Jdffqn4+Hht3bpVcXFxdV0OAA9y5/c338UDAACMQ0ABAADGIaAAAADjEFAAAIBxCCgAAMA4BBQAAGAcAgoAADAOAQUAABiHgAIAAIxDQAEAAMYhoAAAAOMQUAAAgHEIKAAAwDgEFAAAYBwCCgAAMA4BBQAAGIeAAgAAjENAAQAAxiGgAAAA4xBQAACAcQgoAADAOAQUAABgHAIKAAAwDgEFAAAYh4ACAACMQ0ABAADGIaAAAADjEFAAAIBxCCgAAMA4BBQAAGAcAgoAADAOAQUAABiHgAIAAIxDQAEAAMZxO6BkZWUpOTlZ4eHhcjgcWrFihUt7YWGhRo8erfDwcPn7+2vAgAHKy8tz6XP8+HFNmjRJzZs3V7NmzTRs2DAVFhZe0I0AAICGw+2AUlZWptjYWKWnp5/WZlmWbr75Zn377bd6++239dVXXykqKkqJiYkqKytz9psyZYpWrlypZcuWacOGDdq/f7+GDh16YXcCAAAajMbunpCUlKSkpKRq2/Ly8rR582Z9/fXXuvrqqyVJc+bMUVhYmBYvXqzx48eruLhY8+bNU2Zmpm644QZJ0oIFCxQTE6PNmzfruuuuu4DbAQAADYFH16CUl5dLknx9fasu4OUlHx8fffLJJ5KkrVu36sSJE0pMTHT2iY6OVmRkpDZt2lTjuCUlJS4bAABouDwaUE4GjdTUVB06dEgVFRV67rnn9P3336ugoECSdODAAXl7eys4ONjl3FatWunAgQPVjpuWlqagoCDnFhER4cmyAQCAYTwaUJo0aaLly5dr586dCgkJkb+/v9atW6ekpCR5eZ3/pVJTU1VcXOzc9u3b58GqAQCAadxeg3I28fHxys7OVnFxsSoqKhQaGqru3bura9eukqSwsDBVVFTo8OHDLrMohYWFCgsLq3ZMHx8f+fj4eLpUAABgqFr7HJSgoCCFhoYqLy9PW7Zs0ZAhQyTZAaZJkyZau3ats29ubq727t2rHj161FY5AACgHnF7BqW0tFT5+fnO/d27dys7O1shISGKjIzUsmXLFBoaqsjISG3fvl0PPvigbr75ZvXr10+SHVzGjRunlJQUhYSEKDAwUPfff7969OjBGzwAAEDSeQSULVu2KCEhwbmfkpIiSRo1apQyMjJUUFCglJQUFRYWqnXr1rrrrrs0bdo0lzFeeukleXl5adiwYSovL1f//v01e/bsC7wVAADQUDgsy7Lqugh3lZSUKCgoSMXFxQoMDKzrcgB40Jdffqn4+Hht3bpVcXFxdV0OAA9y5/c338UDAACMQ0ABAADGIaAAAADjEFAAAIBxCCgAAMA4BBQAAGAcAgoAADAOAQUAABiHgAIAAIxDQAEAAMYhoAAAAOMQUAAAgHEIKAAAwDgEFAAAYBwCCgAAMA4BBQAAGIeAAgAAjENAAQAAxiGgAMBFsG+fNHasFB4ueXtLUVHSgw9K//53VZ8nn5Sio6WmTaVf/UpKTJQ++6zOSgbqFAEFAGrZt99KXbtKeXnS4sVSfr40d660dq3Uo4d08KDdr3176dVXpe3bpU8+kdq2lfr1k378sU7LB+pE47ouAAAaukmT7FmTDz+U/PzsY5GRUpcu0pVXSo89Js2ZIw0f7nrezJnSvHnStm1S374Xv26gLjGDAgC16OBB6YMPpPvuqwonJ4WFSSNGSEuXSpbl2lZRIb3+uhQUJMXGXrx6AVMQUACgFuXl2eEjJqb69pgY6dChqsc4774rNWsm+fpKL70krV4ttWhx8eoFTEFAAYCL4NQZklN5e9t/JiRI2dnSxo3SgAHSbbdJRUW1Xh5gHAIKANSiq66SHA4pJ6f69pwcKTRUCg6295s2tc+57jp7/UnjxvafwKWGgAIAtah5c+nGG6XZs6Vjx1zbDhyQFi2SRo+u+fzKSqm8vFZLBIzEWzzAJS4vL09Hjhyp6zKccv5vqiGnpimHOhIQEKB27dqd17mvvir17Cn17y/94Q/S5ZdL33wjTZ1qv1r8xBNSWZn0zDPS4MFS69bSTz9J6enSDz9Iv/udh28GqAcIKMAlLC8vT+3bt6/rMqo1cuTIui7hNDt37jyvkNKunfTFF/YHsZ1cU2JZ0tCh0ltvSf7+0vHj0o4d0htv2OGkeXOpWzfp44+lq6/2/L0ApiOgAJewkzMnCxcuVExNr5lcZMeOHdOePXvUtm1b+Z36Xm4dycnJ0ciRIy9opqltWykjo2p/+nT7c062bbPXm/j6SsuXX3CpQINBQAGgmJgYxcXF1XUZTr/5zW/quoRaN2OGHVo2b5Z+/WvJixWBgAsCCgDUkTFj6roCwFxkdgAAYBwCCgAAMA4BBQAAGIeAAgAAjON2QMnKylJycrLCw8PlcDi0YsUKl/bS0lJNnjxZbdq0kZ+fnzp27Ki5c+e69OnTp48cDofLds8991zQjQAAgIbD7bd4ysrKFBsbq7Fjx2ro0KGntaekpOijjz7SwoUL1bZtW3344Ye67777FB4ersGDBzv7TZgwQU899ZRz39/f/zxvAQAANDRuB5SkpCQlJSXV2L5x40aNGjVKffr0kSRNnDhRr732mj7//HOXgOLv76+wsDD3KwYAAA2ex9eg9OzZU++8845++OEHWZaldevWaefOnerXr59Lv0WLFqlFixbq1KmTUlNTdfTo0RrHLC8vV0lJicsGAAAaLo9/UNsrr7yiiRMnqk2bNmrcuLG8vLz0l7/8Rb1793b2GT58uKKiohQeHq5t27bp4YcfVm5urpbX8DnPaWlpmjFjhqdLBQAAhqqVgLJ582a98847ioqKUlZWliZNmqTw8HAlJiZKsh/7nHTNNdeodevW6tu3r3bt2qUrr7zytDFTU1OVkpLi3C8pKVFERISnSwcAAIbwaEA5duyYHn30Uf3zn//UoEGDJEmdO3dWdna2XnjhBWdAOVX37t0lSfn5+dUGFB8fH/n4+HiyVAAAYDCPrkE5ceKETpw4Ia9TvvWqUaNGqqysrPG87OxsSVLr1q09WQ4AAKin3J5BKS0tVX5+vnN/9+7dys7OVkhIiCIjI3X99ddr6tSp8vPzU1RUlDZs2KA333xTM2fOlCTt2rVLmZmZGjhwoJo3b65t27ZpypQp6t27tzp37uy5OwMAAPWW2wFly5YtSkhIcO6fXBsyatQoZWRkaMmSJUpNTdWIESN08OBBRUVF6ZlnnnF+EJu3t7fWrFmjWbNmqaysTBERERo2bJgef/xxD90SAACo79wOKH369JFlWTW2h4WFacGCBTW2R0REaMOGDe5eFgAAXEL4Lh4AAGAcAgoAADAOAQUAABiHgAIAAIxDQAEAAMYhoAAAAOMQUAAAgHEIKAAAwDgEFAAAYBwCCgAAMA4BBQAAGIeAAgAAjENAAQAAxiGgAAAA4xBQAACAcQgoAADAOAQUAABgHAIKAAAwDgEFAAAYh4ACAACMQ0ABAADGIaAAAADjEFAAAIBxCCgAAMA4BBQAAGAcAgoAADAOAQUAABiHgAIAAIxDQAEAAMYhoAAAAOMQUAAAgHEIKAAAwDgEFAAAYBwCCgAAMI7bASUrK0vJyckKDw+Xw+HQihUrXNpLS0s1efJktWnTRn5+furYsaPmzp3r0uf48eOaNGmSmjdvrmbNmmnYsGEqLCy8oBsBAAANh9sBpaysTLGxsUpPT6+2PSUlRe+//74WLlyonJwcPfTQQ5o8ebLeeecdZ58pU6Zo5cqVWrZsmTZs2KD9+/dr6NCh538XAACgQWns7glJSUlKSkqqsX3jxo0aNWqU+vTpI0maOHGiXnvtNX3++ecaPHiwiouLNW/ePGVmZuqGG26QJC1YsEAxMTHavHmzrrvuuvO7EwAA0GB4fA1Kz5499c477+iHH36QZVlat26ddu7cqX79+kmStm7dqhMnTigxMdF5TnR0tCIjI7Vp06ZqxywvL1dJSYnLBgCQ1q+XHA7p8GF7PyNDCg6uu3oAT/F4QHnllVfUsWNHtWnTRt7e3howYIDS09PVu3dvSdKBAwfk7e2t4FP+C2rVqpUOHDhQ7ZhpaWkKCgpybhEREZ4uGwBqxejRdoC4557T2yZNsttGj/bc9W6/Xdq503PjAXWlVgLK5s2b9c4772jr1q168cUXNWnSJK1Zs+a8x0xNTVVxcbFz27dvnwcrBoDaFREhLVkiHTtWdez4cSkzU4qM9Oy1/Pykli09OyZQFzwaUI4dO6ZHH31UM2fOVHJysjp37qzJkyfr9ttv1wsvvCBJCgsLU0VFhQ6fnI/8P4WFhQoLC6t2XB8fHwUGBrpsAFBfxMXZIWX58qpjy5fb4aRLl6pjlZVSWpp0+eV20IiNlf7+d9ex/vUvqX17uz0hQdqzx7X91Ec8u3ZJQ4ZIrVpJzZpJ3bpJp/57sW1b6Y9/lMaOlQIC7Lpef/3C7xu4EB4NKCdOnNCJEyfk5eU6bKNGjVRZWSlJio+PV5MmTbR27Vpne25urvbu3asePXp4shwAMMbYsdKCBVX78+dLY8a49klLk958U5o7V/rmG2nKFGnkSGnDBrt93z5p6FApOVnKzpbGj5ceeeTM1y0tlQYOlNaulb76ShowwD5/717Xfi++KHXtave57z7p3nul3NwLvm3gvLn9Fk9paany8/Od+7t371Z2drZCQkIUGRmp66+/XlOnTpWfn5+ioqK0YcMGvfnmm5o5c6YkKSgoSOPGjVNKSopCQkIUGBio+++/Xz169OANHgAN1siRUmqq9N139v6nn9qPfdavt/fLy+1ZjDVrpJP/VrviCumTT6TXXpOuv16aM0e68ko7TEhShw7S9u3Sc8/VfN3YWHs76emnpX/+U3rnHWny5KrjAwfawUSSHn5Yeuklad06+xpAXXA7oGzZskUJCQnO/ZSUFEnSqFGjlJGRoSVLlig1NVUjRozQwYMHFRUVpWeeeUb3/GKF2EsvvSQvLy8NGzZM5eXl6t+/v2bPnu2B2wEAM4WGSoMG2Y9gLMv+uUWLqvb8fOnoUenGG13Pq6ioegyUkyN17+7afraJ59JS6cknpVWrpIIC6eef7bUwp86gdO5c9bPDIYWFSUVF7twh4FluB5Q+ffrIsqwa28PCwrTgl/OY1fD19VV6enqNH/YGAA3R2LFVsxan/u+vtNT+c9Uq6bLLXNt8fM7/mv/v/0mrV0svvCBddZW9duXWW+3g80tNmrjuOxz2mhigrrgdUAAA52fAADsYOBxS//6ubR072kFk7177cU51YmLsRzO/tHnzma/56af2a8y33GLvl5aevrAWMBEBBbjEhTVzyO/wTmk/3x1aE7/DOxXWzHHB4zRqZD+mOfnzLwUE2LMdU6bYMxe9eknFxXbACAyURo2yP0vlxRelqVPtBbJbt9qPjM6kXTv7jaHkZDsYTZvGzAjqBwIKcIm7O95bMVl3S1l1XYm5YmT/PXnCmT4l4emn7bUqaWnSt9/arwvHxUmPPmq3R0ZK//iHHWJeeUX69a+rXg+uycyZdnvPnvaal4cflvgwbtQHDutMC0oMVVJSoqCgIBUXF/OZKMAF+PLLLzXo+q766O1MxURH13U5xsrZsUM3DBmuVRu2KC4urq7LAeotd35/M4MCXOIOlFo6FtxeCr+2rksx1rEDlTpQWu/+LQfUazx0BgAAxiGgAAAA4xBQAACAcQgoAADAOAQUAABgHAIKAAAwDgEFAAAYh4ACAACMQ0ABAADGIaAAAADjEFAAAIBxCCgAAMA4BBQAAGAcAgoAADAOAQUAABiHgAIAAIxDQAEAAMYhoAAAAOMQUAAAgHEIKAAAwDgEFAAAYBwCCgAAMA4BBQAAGIeAAgAAjENAAQAAxiGgAAAA4xBQAACAcQgoAADAOAQUAABgHLcDSlZWlpKTkxUeHi6Hw6EVK1a4tDscjmq3559/3tmnbdu2p7U/++yzF3wzAACgYXA7oJSVlSk2Nlbp6enVthcUFLhs8+fPl8Ph0LBhw1z6PfXUUy797r///vO7AwAA0OA0dveEpKQkJSUl1dgeFhbmsv/2228rISFBV1xxhcvxgICA0/oCAABItbwGpbCwUKtWrdK4ceNOa3v22WfVvHlzdenSRc8//7x+/vnnGscpLy9XSUmJywYAABout2dQ3PHGG28oICBAQ4cOdTn+wAMPKC4uTiEhIdq4caNSU1NVUFCgmTNnVjtOWlqaZsyYUZulAgAAg9RqQJk/f75GjBghX19fl+MpKSnOnzt37ixvb2/dfffdSktLk4+Pz2njpKamupxTUlKiiIiI2iscAADUqVoLKB9//LFyc3O1dOnSs/bt3r27fv75Z+3Zs0cdOnQ4rd3Hx6fa4AIAABqmWluDMm/ePMXHxys2NvasfbOzs+Xl5aWWLVvWVjkAAKAecXsGpbS0VPn5+c793bt3Kzs7WyEhIYqMjJRkP4JZtmyZXnzxxdPO37Rpkz777DMlJCQoICBAmzZt0pQpUzRy5Ej96le/uoBbAQAADYXbAWXLli1KSEhw7p9cGzJq1ChlZGRIkpYsWSLLsnTnnXeedr6Pj4+WLFmiJ598UuXl5br88ss1ZcoUlzUmAADg0uZ2QOnTp48syzpjn4kTJ2rixInVtsXFxWnz5s3uXhYAAFxC+C4eAABgHAIKAAAwDgEFAAAYh4ACAACMQ0ABAADGIaAAAADjEFAAAIBxCCgAAMA4BBQAAGAcAgoAADAOAQUAABiHgAIAAIxDQAEAAMYhoAAAAOMQUAAAgHEIKAAAwDgEFAAAYBwCCgAAMA4BBQAAGIeAAgAAjENAAQAAxiGgAAAA4xBQAACAcQgoAADAOAQUAABgHAIKAAAwDgEFAAAYh4ACAACMQ0ABAADGIaAAAADjEFAAAIBxCCgAAMA4BBQAAGAcAgoAADAOAQUAABjH7YCSlZWl5ORkhYeHy+FwaMWKFS7tDoej2u3555939jl48KBGjBihwMBABQcHa9y4cSotLb3gmwEAAA2D2wGlrKxMsbGxSk9Pr7a9oKDAZZs/f74cDoeGDRvm7DNixAh98803Wr16td59911lZWVp4sSJ538XAACgQWns7glJSUlKSkqqsT0sLMxl/+2331ZCQoKuuOIKSVJOTo7ef/99ffHFF+ratask6ZVXXtHAgQP1wgsvKDw83N2SAABAA1Ora1AKCwu1atUqjRs3znls06ZNCg4OdoYTSUpMTJSXl5c+++yzascpLy9XSUmJywYAABquWg0ob7zxhgICAjR06FDnsQMHDqhly5Yu/Ro3bqyQkBAdOHCg2nHS0tIUFBTk3CIiImqzbAAAUMdqNaDMnz9fI0aMkK+v7wWNk5qaquLiYue2b98+D1UIAABM5PYalHP18ccfKzc3V0uXLnU5HhYWpqKiIpdjP//8sw4ePHja+pWTfHx85OPjU1ulAgAAw9TaDMq8efMUHx+v2NhYl+M9evTQ4cOHtXXrVuexjz76SJWVlerevXttlQMAAOoRt2dQSktLlZ+f79zfvXu3srOzFRISosjISElSSUmJli1bphdffPG082NiYjRgwABNmDBBc+fO1YkTJzR58mTdcccdvMEDAAAknccMypYtW9SlSxd16dJFkpSSkqIuXbroiSeecPZZsmSJLMvSnXfeWe0YixYtUnR0tPr27auBAweqV69eev3118/zFgAAQEPj9gxKnz59ZFnWGftMnDjxjB+8FhISoszMTHcvDQAALhF8Fw8AADAOAQUAABiHgAIAAIxDQAEAAMYhoAAAAOMQUAAAgHEIKAAAwDgEFAAAYBwCCgAAMA4BBQAugn37pLFjpfBwydtbioqSHnxQ+ve/q/osXy716yc1by45HFJ2dp2VC9Q5AgoA1LJvv5W6dpXy8qTFi6X8fGnuXGntWqlHD+ngQbtfWZnUq5f03HN1Wy9gAre/iwcA4J5Jk+xZkw8/lPz87GORkVKXLtKVV0qPPSbNmSP9/vd22549dVYqYAxmUACgFh08KH3wgXTffVXh5KSwMGnECGnpUuks38EKXHIIKABQi/Ly7PARE1N9e0yMdOiQ9OOPF7cuwHQEFAC4CM42Q+LtfXHqAOoLAgoA1KKrrrLfyMnJqb49J0cKDZWCgy9qWYDxCCgAUIuaN5duvFGaPVs6dsy17cABadEiafToOikNMBpv8QCXsKNHj0qSvvzyyzqupMqxY8e0Z88etW3bVn6nriqtIzk1TX+co1dflXr2lPr3l/7wB+nyy6VvvpGmTpXat5eeeMLud/CgtHevtH+/vZ+ba/8ZFmZvwKWEgAJcwnbs2CFJmjBhQh1XUj8EBASc13nt2klffCE9+aR0221SUZG9JmXoUOmttyR/f7vfO+9IY8ZUnXfHHfaf06fb5wKXEodl1b+X20pKShQUFKTi4mIFBgbWdTlAvfXTTz9pxYoVio6Olv/J35J1LCcnRyNHjtTChQsVU9OrL3UgICBA7dq189h406dLM2dKq1dL113nsWEBo7nz+5sZFOAS1qJFC40fP76uy6hWTEyM4uLi6rqMWjNjhtS2rbR5s/TrX0terAgEXBBQAKCO/PJxDgBXZHYAAGAcAgoAADAOAQUAABiHgAIAAIxDQAEAAMYhoAAAAOMQUAAAgHEIKAAAwDgEFAAAYBwCCgAAMA4BBQAAGIeAAgAAjON2QMnKylJycrLCw8PlcDi0YsWK0/rk5ORo8ODBCgoKUtOmTdWtWzft3bvX2d6nTx85HA6X7Z577rmgGwEAAA2H2wGlrKxMsbGxSk9Pr7Z9165d6tWrl6Kjo7V+/Xpt27ZN06ZNk6+vr0u/CRMmqKCgwLn96U9/Or87AAAADU5jd09ISkpSUlJSje2PPfaYBg4c6BI4rrzyytP6+fv7KywszN3LAwCAS4BH16BUVlZq1apVat++vfr376+WLVuqe/fu1T4GWrRokVq0aKFOnTopNTVVR48erXHc8vJylZSUuGwAAKDh8mhAKSoqUmlpqZ599lkNGDBAH374oW655RYNHTpUGzZscPYbPny4Fi5cqHXr1ik1NVVvvfWWRo4cWeO4aWlpCgoKcm4RERGeLBsAABjG7Uc8Z1JZWSlJGjJkiKZMmSJJuvbaa7Vx40bNnTtX119/vSRp4sSJznOuueYatW7dWn379tWuXbuqfRyUmpqqlJQU535JSQkhBQCABsyjMygtWrRQ48aN1bFjR5fjMTExLm/xnKp79+6SpPz8/GrbfXx8FBgY6LIBAICGy6MBxdvbW926dVNubq7L8Z07dyoqKqrG87KzsyVJrVu39mQ5AACgnnL7EU9paanLTMfu3buVnZ2tkJAQRUZGaurUqbr99tvVu3dvJSQk6P3339fKlSu1fv16SfZryJmZmRo4cKCaN2+ubdu2acqUKerdu7c6d+7ssRsDAAD1l9sBZcuWLUpISHDun1wbMmrUKGVkZOiWW27R3LlzlZaWpgceeEAdOnTQP/7xD/Xq1UuSPcuyZs0azZo1S2VlZYqIiNCwYcP0+OOPe+iWAABAfeewLMuq6yLcVVJSoqCgIBUXF7MeBWhgvvzyS8XHx2vr1q2Ki4ur63IAeJA7v7/5Lh4AAGAcAgoAADAOAQUAABiHgAIAAIxDQAEAAMYhoAAAAOMQUAAAgHEIKAAAwDgEFAAAYBwCCgAAMA4BBQAAGIeAAgAAjENAAQAAxiGgAAAA4xBQAACAcQgoAADAOAQUAABgHAIKAAAwDgEFAAAYh4ACAIbo00d66KFz779nj+RwSNnZtVMPUJcIKABQi0aPtkPEPfec3jZpkt02erS9v3y59PTT5z52RIRUUCB16uSJSgGzEFAAoJZFREhLlkjHjlUdO35cysyUIiOrjoWESAEB5z5uo0ZSWJjUuLHnagVMQUABgFoWF2eHlOXLq44tX26Hky5dqo6d+oinbVvpj3+Uxo61g0tkpPT661Xtpz7iWb/e3v/gA3tcPz/phhukoiLpvfekmBgpMFAaPlw6etT1OrNmudZ87bXSk09W7Tsc0muvSTfdJPn722Nt2iTl59t1N20q9ewp7dp1nn9JwCkIKABwEYwdKy1YULU/f740ZszZz3vxRalrV+mrr6T77pPuvVfKzT3zOU8+Kb36qrRxo7Rvn3TbbXYAycyUVq2SPvxQeuUV9+/h6aelu+6yA1F0tB107r5bSk2VtmyRLEuaPNn9cYHqEFAA4CIYOVL65BPpu+/s7dNP7WNnM3CgHUyuukp6+GGpRQtp3bozn/OHP0i/+Y09izJunLRhgzRnjr3/299Kt9569jGqM2aMHXbat7dr2bNHGjFC6t/fnlF58EF7FgfwBJ5cAsBFEBoqDRokZWTYMw2DBtlh42w6d6762eGw15wUFZ37Oa1a2Y9krrjC9djnn7tVfrXjStI117geO35cKimxHyUBF4KAAgAXydixVY9A0tPP7ZwmTVz3HQ6psvLcz3E4zj6Gl5cdmn7pxImzj1vTsbPVB5wLAgoAXCQDBkgVFfYv8v7967qaKqGh9uvKJ5WUSLt31109gERAAeAhR48e1Y4dOy54nJycHJc/PSE6Olr+/v4eG+98NWoknbytRo3qtpZfuuEG+9FTcrIUHCw98YRZ9eHSREAB4BE7duxQfHy8x8YbeS4rSM/R1q1bFRcX57HxLoSJazNSU+0Zk5tukoKC7Ld1mEFBXXNY1qlPHs1XUlKioKAgFRcXK9DE/9qBS5CnZlCOHTumPXv2qG3btvLz8/NAZebMoACXOnd+fxNQAADAReHO728+BwUAABiHgAIAAIxDQAEAAMZxO6BkZWUpOTlZ4eHhcjgcWrFixWl9cnJyNHjwYAUFBalp06bq1q2b9u7d62w/fvy4Jk2apObNm6tZs2YaNmyYCgsLL+hGAABAw+F2QCkrK1NsbKzSa/gYxF27dqlXr16Kjo7W+vXrtW3bNk2bNk2+vr7OPlOmTNHKlSu1bNkybdiwQfv379fQoUPP/y4AAECDckFv8TgcDv3zn//UzTff7Dx2xx13qEmTJnrrrbeqPae4uFihoaHKzMzUrbfeKsn+/ISYmBht2rRJ11133Vmvy1s8AADUP3X2Fk9lZaVWrVql9u3bq3///mrZsqW6d+/u8hho69atOnHihBITE53HoqOjFRkZqU2bNlU7bnl5uUpKSlw2AADQcHk0oBQVFam0tFTPPvusBgwYoA8//FC33HKLhg4dqg0bNkiSDhw4IG9vbwUHB7uc26pVKx04cKDacdPS0hQUFOTcIiIiPFk2AAAwjMdnUCRpyJAhmjJliq699lo98sgjuummmzR37tzzHjc1NVXFxcXObd++fZ4qGQAAGMij38XTokULNW7cWB07dnQ5HhMTo08++USSFBYWpoqKCh0+fNhlFqWwsFBhYWHVjuvj4yMfHx9PlgoAAAzm0RkUb29vdevWTbm5uS7Hd+7cqaioKElSfHy8mjRporVr1zrbc3NztXfvXvXo0cOT5QAAgHrK7RmU0tJS5efnO/d3796t7OxshYSEKDIyUlOnTtXtt9+u3r17KyEhQe+//75Wrlyp9evXS5KCgoI0btw4paSkKCQkRIGBgbr//vvVo0ePc3qDBwAANHxuv2a8fv16JSQknHZ81KhRysjIkCTNnz9faWlp+v7779WhQwfNmDFDQ4YMcfY9fvy4/uu//kuLFy9WeXm5+vfvr9mzZ9f4iOdUvGYMAED90+C/zbi4uFjBwcHat28fAQUAgHqipKREEREROnz4sIKCgs7Y16OLZC+WI0eOSBKvGwMAUA8dOXLkrAGlXs6gVFZWav/+/QoICJDD4ajrcgB40Ml/YTFDCjQ8lmXpyJEjCg8Pl5fXmd/TqZcBBUDDxRozAJKHXzMGAADwBAIKAAAwDgEFgFF8fHw0ffp0Pj0auMSxBgUAABiHGRQAAGAcAgoAADAOAQUAABiHgAIAAIxDQAEAAMYhoAAwQlZWlpKTkxUeHi6Hw6EVK1bUdUkA6hABBYARysrKFBsbq/T09LouBYAB6uW3GQNoeJKSkpSUlFTXZQAwBDMoAADAOAQUAABgHAIKAAAwDgEFAAAYh4ACAACMw1s8AIxQWlqq/Px85/7u3buVnZ2tkJAQRUZG1mFlAOqCw7Isq66LAID169crISHhtOOjRo1SRkbGxS8IQJ0ioAAAAOOwBgUAABiHgAIAAIxDQAEAAMYhoAAAAOMQUAAAgHEIKAAAwDgEFAAAYBwCCgAAMA4BBQAAGIeAAgAAjENAAQAAxvn/evioV6ETXzwAAAAASUVORK5CYII=",
"text/plain": [
"
"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# The DataFrame has a direct method for making a boxplot:\n",
"data.boxplot()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Reading data from an external file\n",
"\n",
"It is very important to learn how to read data from other files. In practice one will never type all the data into Python by hand!"
]
},
{
"cell_type": "code",
"execution_count": 68,
"metadata": {},
"outputs": [],
"source": [
"csv_data= pd.read_csv(\"studentheights.csv\", sep=';')"
]
},
{
"cell_type": "code",
"execution_count": 69,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n"
]
}
],
"source": [
"print(type(csv_data))"
]
},
{
"cell_type": "code",
"execution_count": 70,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
"
\n",
"
\n",
"
Height
\n",
"
Gender
\n",
"
\n",
" \n",
" \n",
"
\n",
"
0
\n",
"
152
\n",
"
male
\n",
"
\n",
"
\n",
"
1
\n",
"
171
\n",
"
male
\n",
"
\n",
"
\n",
"
2
\n",
"
173
\n",
"
male
\n",
"
\n",
"
\n",
"
3
\n",
"
173
\n",
"
male
\n",
"
\n",
"
\n",
"
4
\n",
"
178
\n",
"
male
\n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" Height Gender\n",
"0 152 male\n",
"1 171 male\n",
"2 173 male\n",
"3 173 male\n",
"4 178 male"
]
},
"execution_count": 70,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"csv_data.head()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Notice that this DataFrame is differently structured compared to the one from above (which had columns: \"males\" and \"females\").\n",
"\n",
"If we wnt to do a boxplot by gender, we need to include the \"by=..\" argument:"
]
},
{
"cell_type": "code",
"execution_count": 73,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
""
]
},
"execution_count": 73,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAjgAAAHNCAYAAAATwgHBAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAA9hAAAPYQGoP6dpAABBdUlEQVR4nO3deVyU5f7/8fewyCogpgKpSGJi4UqllIq4Y5qIZmWLnqN5TrmUy6n0tNkpPaW2HLO9pPJYfTUzWzStwCW10tQ0l8Q0LRFXIBZxYK7fHx3m1wQqCArcvJ6PBw+5r/u6r/ncM8zM23u1GWOMAAAALMStqgsAAACobAQcAABgOQQcAABgOQQcAABgOQQcAABgOQQcAABgOQQcAABgOQQcAABgOQQcAABgOQQcoJqy2Wx69NFHq7oMy0tNTZXNZlNqaupZ+z366KOy2Ww6duzYxSmsGirrcwVUBwQc1DrJycmy2WwuPw0bNlR8fLyWLVtW1eVV2I4dO/Too49q//79VV0KKuCjjz7SgAED1KhRI9WpU0fBwcHq2rWrZs+erezs7KouD6j2PKq6AKCqPPbYY4qIiJAxRhkZGUpOTla/fv300UcfqX///lVd3nnbsWOHpk2bpm7duqlZs2ZVXQ7KyeFwaOTIkUpOTlbr1q119913q0mTJvrtt9+0fv16Pfjgg/r000/1xRdfVHWpQLVGwEGtlZCQoKuuuso5PXLkSDVq1EjvvPNOjQ44F1NhYaEcDofq1KlT1aVYxlNPPaXk5GRNmDBBs2fPls1mc8675557lJ6errfeeqsKK6w8ubm58vPzq+oyYFHsogL+JygoSD4+PvLwcM39ubm5mjRpkpo0aSIvLy+1bNlSs2bNkjFGkpSfn6+oqChFRUUpPz/fudyJEycUGhqqa6+9VkVFRZKkESNGyN/fXz/99JP69OkjPz8/hYWF6bHHHnOOdzabN29WQkKCAgIC5O/vrx49emjDhg3O+cnJybrxxhslSfHx8c5dcOc6ZmLhwoW64oor5O3trejoaH3wwQcaMWKEyxag/fv3y2azadasWXr22WfVvHlzeXl5aceOHZKkL7/8Ul26dJGfn5+CgoI0cOBA7dy50+Vx/jxmseLjW/7IZrNp7Nix+u9//6uWLVvK29tbMTExWr16dYnlf/31V/31r39Vo0aN5OXlpSuvvFJvvPFGiX6//PKLEhMT5efnp4YNG2rChAkqKCg463PzZ8eOHdPQoUMVEBCg+vXr65577tGpU6ec8+Pi4tS2bdtSl23ZsqX69OlzxrHz8vL05JNP6sorr9TMmTNLPCeSFBoaqvvvv79E+/z58xUTEyMfHx8FBwfr5ptv1sGDB136dOvWTdHR0dqxY4fi4+Pl6+urSy+9VE899VSJ8crzXH399dfq27evAgMD5evrq7i4OH311VcufYpf4x07dmjYsGGqV6+eOnfufMbnAqgotuCg1srKytKxY8dkjNGRI0c0Z84c5eTk6LbbbnP2McbohhtuUEpKikaOHKl27drps88+0z/+8Q/9+uuveuaZZ+Tj46M333xT1113nf75z3/q6aefliSNGTNGWVlZSk5Olru7u3PMoqIi9e3bV506ddJTTz2l5cuX65FHHlFhYaEee+yxM9b7ww8/qEuXLgoICNB9990nT09Pvfzyy+rWrZtWrVqljh07qmvXrho/frz+85//aOrUqWrVqpUkOf8tzSeffKKbbrpJrVu31owZM3Ty5EmNHDlSl156aan9582bp1OnTmn06NHy8vJScHCwPv/8cyUkJOiyyy7To48+qvz8fM2ZM0fXXXedvvvuu/PeVbZq1Sq99957Gj9+vLy8vPTCCy+ob9+++uabbxQdHS1JysjIUKdOnZyBqEGDBlq2bJlGjhyp7Oxs3XvvvZJ+D6I9evTQgQMHNH78eIWFhentt9/Wl19+Wa6ahg4dqmbNmmnGjBnasGGD/vOf/+jkyZPOrSq333677rzzTm3fvt1ZoyR9++23+vHHH/Xggw+ecey1a9cqMzNTkydPdvmbOZcnnnhCDz30kIYOHapRo0bp6NGjmjNnjrp27arNmzcrKCjI2ffkyZPq27evkpKSNHToUC1atEj333+/WrdurYSEhHI/V19++aUSEhIUExOjRx55RG5ubpo3b566d++uNWvW6JprrnHpf+ONN6pFixaaPn16mUI9cN4MUMvMmzfPSCrx4+XlZZKTk136LlmyxEgyjz/+uEv7kCFDjM1mM2lpac62KVOmGDc3N7N69WqzcOFCI8k8++yzLssNHz7cSDLjxo1ztjkcDnP99debOnXqmKNHjzrbJZlHHnnEOZ2YmGjq1Klj9u7d62w7dOiQqVu3runatauzrfixU1JSyvR8tG7d2jRu3Nj89ttvzrbU1FQjyYSHhzvb9u3bZySZgIAAc+TIEZcx2rVrZxo2bGiOHz/ubNu6datxc3Mzd9xxh8v6/3HMYo888oj588dR8euyceNGZ9vPP/9svL29zaBBg5xtI0eONKGhoebYsWMuy998880mMDDQ5OXlGWOMefbZZ40k83//93/OPrm5uSYyMrJMz1dxjTfccINL+913320kma1btxpjjMnMzDTe3t7m/vvvd+k3fvx44+fnZ3Jycs74GM8995yRZJYsWeLSXlhYaI4ePery43A4jDHG7N+/37i7u5snnnjCZZlt27YZDw8Pl/a4uDgjybz11lvOtoKCAhMSEmIGDx7sbCvrc+VwOEyLFi1Mnz59nPUYY0xeXp6JiIgwvXr1KvH83XLLLWdcf6AysYsKtdbcuXO1cuVKrVy5UvPnz1d8fLxGjRqlxYsXO/t8+umncnd31/jx412WnTRpkowxLmddPfroo7ryyis1fPhw3X333YqLiyuxXLGxY8c6fy/e8nD69Gl9/vnnpfYvKirSihUrlJiYqMsuu8zZHhoaqmHDhmnt2rXndWbNoUOHtG3bNt1xxx3y9/d3tsfFxal169alLjN48GA1aNDAOZ2enq4tW7ZoxIgRCg4Odra3adNGvXr10qefflruuorFxsYqJibGOd20aVMNHDhQn332mYqKimSM0fvvv68BAwbIGKNjx445f/r06aOsrCx99913kn5/LUNDQzVkyBDneL6+vho9enS5ahozZozL9Lhx45zjS1JgYKAGDhyod955x7mFoqioSO+9955zl8+ZFL+Gf3wtJGnbtm1q0KCBy8/x48clSYsXL5bD4dDQoUNd1j8kJEQtWrRQSkqKy1j+/v4uWynr1Kmja665Rj/99JOzrazP1ZYtW7Rnzx4NGzZMx48fdz52bm6uevToodWrV8vhcLgs8/e///2M6w9UJnZRoda65pprXA4yvuWWW9S+fXuNHTtW/fv3V506dfTzzz8rLCxMdevWdVm2eJfPzz//7GyrU6eO3njjDV199dXy9vbWvHnzSj2Gws3NzSWkSNLll18uSWc8tfvo0aPKy8tTy5YtS8xr1aqVHA6HDh48qCuvvLJsK/8/xfVHRkaWmBcZGekMB38UERFR6hhnqu2zzz4774NJW7RoUaLt8ssvV15eno4ePSo3NzdlZmbqlVde0SuvvFLqGEeOHHHWGRkZWeI1Ka3u8tTUvHlzubm5ubx2d9xxh9577z2tWbNGXbt21eeff66MjAzdfvvtZx27+O8sJyfHpT0yMlIrV66UJL311lt6++23nfP27NkjY0ypz5UkeXp6ukw3bty4xHNQr149ff/9987psj5Xe/bskSQNHz78jOuUlZWlevXqOaf//PcDXCgEHOB/3NzcFB8fr+eee0579uwpd1iQpM8++0ySdOrUKe3Zs8eSH+Y+Pj7nvWxpgU+S8yDs8ireOnDbbbed8Uu2TZs25zV2WZW2Tn369FGjRo00f/58de3aVfPnz1dISIh69ux51rGioqIkSdu3b9fAgQOd7f7+/s5l165d67KMw+GQzWbTsmXLSj1u589bg850bI85j+Nhip//mTNnql27dqX2+fPjV+TvBygPAg7wB4WFhZL+//+gw8PD9fnnn+u3335z2Yqza9cu5/xi33//vR577DH95S9/0ZYtWzRq1Cht27ZNgYGBLo/hcDj0008/ObfaSNKPP/4oSWc8GLdBgwby9fXV7t27S8zbtWuX3Nzc1KRJE0lnDhGlKa4/LS2txLzS2s42xplqu+SSS5xbb+rVq6fMzMwS/f64JeyPircQ/NGPP/4oX19f526yunXrqqio6JzhITw8XNu3b5cxxuU5Kq3us/lzcE1LS5PD4XB57dzd3TVs2DAlJyfrySef1JIlS3TnnXee88DhLl26KDAwUO+++66mTJkiN7dzH0XQvHlzGWMUERHh8jdVEWV9rpo3by5JCggIOOfzD1xsHIMD/I/dbteKFStUp04d5y6ofv36qaioSM8//7xL32eeeUY2m8151ondbteIESMUFham5557TsnJycrIyNCECRNKfaw/jmeM0fPPPy9PT0/16NGj1P7u7u7q3bu3PvzwQ5ddIRkZGVqwYIE6d+6sgIAASXKGidKCxJ+FhYUpOjpab731lstukVWrVmnbtm3nXF76/Tigdu3a6c0333R5zO3bt2vFihXq16+fs6158+bKyspy2R2Snp6uDz74oNSx169f77Kb7ODBg/rwww/Vu3dvubu7y93dXYMHD9b777+v7du3l1j+6NGjzt/79eunQ4cOadGiRc62vLy8M+7aOpO5c+e6TM+ZM0eSnH8LxW6//XadPHlSf/vb30qcnXcmvr6+uu+++7R9+3Y98MADpW5V+XNbUlKS3N3dNW3atBLzjDHOY3XKo6zPVUxMjJo3b65Zs2aV2K0muT7/wMXGFhzUWsuWLXNuiTly5IgWLFigPXv26IEHHnCGhQEDBig+Pl7//Oc/tX//frVt21YrVqzQhx9+qHvvvdf5P9jHH39cW7Zs0RdffKG6deuqTZs2evjhh/Xggw9qyJAhLl/y3t7eWr58uYYPH66OHTtq2bJl+uSTTzR16lSXg3f/7PHHH9fKlSvVuXNn3X333fLw8NDLL7+sgoICl+uYtGvXTu7u7nryySeVlZUlLy8vde/eXQ0bNix13OnTp2vgwIG67rrr9Je//EUnT57U888/r+jo6FK/tEozc+ZMJSQkKDY2ViNHjnSeJh4YGOhyP62bb75Z999/vwYNGqTx48crLy9PL774oi6//PJSj/eJjo5Wnz59XE4Tl6Rp06Y5+/z73/9WSkqKOnbsqDvvvFNXXHGFTpw4oe+++06ff/65Tpw4IUm688479fzzz+uOO+7Qpk2bFBoaqrffflu+vr5lWsdi+/bt0w033KC+fftq/fr1mj9/voYNG1bi2jft27dXdHS0Fi5cqFatWqlDhw5lGv+BBx7Qzp07NXPmTK1YsUKDBw9W48aNdfLkSX333XdauHChGjZsKG9vb0m/h8bHH39cU6ZM0f79+5WYmKi6detq3759+uCDDzR69GhNnjy5XOtY1ufKzc1Nr732mhISEnTllVfqL3/5iy699FL9+uuvSklJUUBAgD766KNyPTZQaari1C2gKpV2mri3t7dp166defHFF11OdzXGmN9++81MmDDBhIWFGU9PT9OiRQszc+ZMZ79NmzYZDw8Pl1O/jfn91N6rr77ahIWFmZMnTxpjfj9N2s/Pz+zdu9f07t3b+Pr6mkaNGplHHnnEFBUVuSyvP50mbowx3333nenTp4/x9/c3vr6+Jj4+3qxbt67EOr766qvmsssuM+7u7mU6Bfrdd981UVFRxsvLy0RHR5ulS5eawYMHm6ioKGef4tPEZ86cWeoYn3/+ubnuuuuMj4+PCQgIMAMGDDA7duwo0W/FihUmOjra1KlTx7Rs2dLMnz//jKeJjxkzxsyfP9+0aNHCeHl5mfbt25e6LhkZGWbMmDGmSZMmxtPT04SEhJgePXqYV155xaXfzz//bG644Qbj6+trLrnkEnPPPfeY5cuXl+s08R07dpghQ4aYunXrmnr16pmxY8ea/Pz8Upd56qmnjCQzffr0s45dmg8++MD069fPNGjQwHh4eJigoCDTuXNnM3PmTJOZmVmi//vvv286d+5s/Pz8jJ+fn4mKijJjxowxu3fvdvaJi4szV155ZYllSzt9vzzP1ebNm01SUpKpX7++8fLyMuHh4Wbo0KHmiy++cPYpfv7+eCkE4EKyGcOVloCLZcSIEVq0aFGZt4xUpXbt2qlBgwbOs3cuNpvNpjFjxpTYPViTPPfcc5owYYL279+vpk2bVnU5QK3CMThALWe3250HVxdLTU3V1q1b1a1bt6opygKMMXr99dcVFxdHuAGqAMfgALXcr7/+qp49e+q2225TWFiYdu3apZdeekkhISHV5qJsI0aMUGpq6hmvE3SuZS/mVrPc3FwtXbpUKSkp2rZtmz788MOL8rgAXLEFB6jl6tWrp5iYGL322msaN26ckpOTdf3112vt2rWqX79+ucZKTk6WzWbTxo0bS51ffLPH6igvL0+PPvroOW9Mei5Hjx7VsGHDtHDhQk2dOlU33HBD5RQIoFzYggNcRMnJyUpOTq7qMlwEBgbqvffeq+oySvjj4YGvvvpqiUv+V7a8vDzn2VkV2TXXrFkzbiIJVAMEHADV3p9vNwAA58IuKgBVav78+YqJiZGPj4+Cg4N188036+DBgy59RowYUeIqz8ePH9ftt9+ugIAABQUFafjw4dq6datsNlupW8l+/fVXJSYmyt/fXw0aNNDkyZOdt4jYv3+/8xpE06ZNk81mk81mc7mGD4CahS04ACpdVlaWjh07VqLdbre7TD/xxBN66KGHNHToUI0aNUpHjx7VnDlz1LVrV23evFlBQUGlju9wODRgwAB98803uuuuuxQVFaUPP/zwjPejKioqUp8+fdSxY0fNmjVLn3/+uWbPnq3mzZvrrrvuUoMGDfTiiy/qrrvu0qBBg5SUlCTpwt/HCsAFVKVX4QFgKaVdRPHPP8UXmtu/f79xd3c3TzzxhMsY27ZtMx4eHi7tf74Q3fvvv28kmWeffdbZVlRUZLp3724kmXnz5rksK8k89thjLo/Tvn17ExMT45w+evRoqRdXBFAzsQUHQKWbO3duqTd+nDRpknO30OLFi+VwODR06FCXrT0hISFq0aKFUlJSNHXq1FLHX758uTw9PXXnnXc629zc3DRmzBh9+eWXpS7z51Peu3Tporfffrvc6wagZiDgAKh011xzja666qoS7fXq1XOGmT179sgYoxYtWpQ6xtkOLP75558VGhpa4t5IkZGRpfb39vYucZ+vevXq6eTJk2ddDwA1FwEHQJVwOByy2WxatmyZ3N3dS8z39/evtMcqbXwA1kbAAVAlmjdvLmOMIiIiSt2ddTbh4eFKSUlRXl6ey1actLS0867HZrOd97IAqh9OEwdQJZKSkuTu7q5p06aVuDCeMUbHjx8/47J9+vSR3W7Xq6++6mxzOByaO3fueddTHJQyMzPPewwA1QdbcABUiebNm+vxxx/XlClTtH//fiUmJqpu3brat2+fPvjgA40ePVqTJ08uddnExERdc801mjRpktLS0hQVFaWlS5fqxIkTks5va4yPj4+uuOIKvffee7r88ssVHBys6OjoantrCQBnxxYcAFXmgQce0Pvvvy83NzdNmzZNkydP1tKlS9W7d++z3sPJ3d1dn3zyiW666Sa9+eab+uc//6mwsDDnFhxvb+/zque1117TpZdeqgkTJuiWW27RokWLzmscAFXPZv68bRgAaqglS5Zo0KBBWrt2ra677rqqLgdAFSLgAKiR8vPz5ePj45wuKipS7969tXHjRh0+fNhlHoDah2NwANRI48aNU35+vmJjY1VQUKDFixdr3bp1mj59OuEGAFtwANRMCxYs0OzZs5WWlqZTp04pMjJSd911l8aOHVvVpQGoBgg4AADAcjiLCgAAWA4BBwAAWE6NPMjY4XDo0KFDqlu3LpdXBwCgljDG6LffflNYWJjc3M6+jaZGBpxDhw6pSZMmVV0GAACoAgcPHlTjxo3P2qdGBpy6detK+n0FAwICqrgaXGx2u10rVqxQ79695enpWdXlALiIeP/XbtnZ2WrSpIkzB5xNjQw4xbulAgICCDi1kN1ul6+vrwICAviAA2oZ3v+Qyna/OQ4yBgAAlkPAAQAAlkPAAQAAlkPAAQAAlkPAAQAAlkPAAQAAlkPAAQAAlkPAAQAAlkPAAQAAlkPAAQAAlkPAAQAAlkPAAQAAllMjb7YJALCevLw87dq166x9cvILtG7bXtW7ZKP8fbzOOWZUVJR8fX0rq0TUIAQcAEC1sGvXLsXExJSp71NlHHPTpk3q0KHD+ReFGouAAwCoFqKiorRp06az9tmdnqmJC7fp6Rtbq2VoUJnGRO1EwAEAVAu+vr7n3Nri9vNxea3JV6votmoXXv8iVYaaiIOMAQCA5RBwAACA5RBwAACA5RBwAACA5RBwAACA5RBwAACA5RBwAACA5RBwAACA5RBwAACA5RBwAACA5RBwAACA5RBwAACA5RBwAACA5RBwAACA5RBwAACA5RBwAACA5RBwAACA5RBwAACA5RBwAACA5RBwAACA5RBwAACA5RBwAACA5RBwAACA5RBwAACA5RBwAACA5RBwAACA5RBwAACA5RBwAACA5RBwAACA5RBwAACA5RBwAACA5RBwAACA5RBwAACA5RBwAACA5RBwAACA5RBwAACA5RBwAACA5RBwAACA5RBwAACA5RBwAACA5RBwAACA5RBwAACA5RBwAACA5RBwAACA5ZQ74KxevVoDBgxQWFiYbDablixZ4jI/IyNDI0aMUFhYmHx9fdW3b1/t2bPHpc+pU6c0ZswY1a9fX/7+/ho8eLAyMjIqtCIAAADFyh1wcnNz1bZtW82dO7fEPGOMEhMT9dNPP+nDDz/U5s2bFR4erp49eyo3N9fZb8KECfroo4+0cOFCrVq1SocOHVJSUlLF1gQAAOB/PMq7QEJCghISEkqdt2fPHm3YsEHbt2/XlVdeKUl68cUXFRISonfeeUejRo1SVlaWXn/9dS1YsEDdu3eXJM2bN0+tWrXShg0b1KlTpwqsDgAAwHkEnLMpKCiQJHl7ezvb3Nzc5OXlpbVr12rUqFHatGmT7Ha7evbs6ewTFRWlpk2bav369aUGnIKCAufYkpSdnS1JstvtstvtlbkKqAGKX3Nee6D2KSwsdP7LZ0DtU57XvFIDTnFQmTJlil5++WX5+fnpmWee0S+//KL09HRJ0uHDh1WnTh0FBQW5LNuoUSMdPny41HFnzJihadOmlWhfsWKFfH19K3MVUIOsXLmyqksAcJEdzJEkD23YsEG/bq/qanCx5eXllblvpQYcT09PLV68WCNHjlRwcLDc3d3Vs2dPJSQkyBhz3uNOmTJFEydOdE5nZ2erSZMm6t27twICAiqjdNQgdrtdK1euVK9eveTp6VnV5QC4iLYeOCFt26hOnTqpbdPgqi4HF1nxHpyyqNSAI0kxMTHasmWLsrKydPr0aTVo0EAdO3bUVVddJUkKCQnR6dOnlZmZ6bIVJyMjQyEhIaWO6eXlJS8vrxLtnp6efMHVYrz+QO3j4eHh/Jf3f+1Tntf8gl0HJzAwUA0aNNCePXu0ceNGDRw4UNLvAcjT01NffPGFs+/u3bt14MABxcbGXqhyAABALVLuLTg5OTlKS0tzTu/bt09btmxRcHCwmjZtqoULF6pBgwZq2rSptm3bpnvuuUeJiYnq3bu3pN+Dz8iRIzVx4kQFBwcrICBA48aNU2xsLGdQAQCASlHugLNx40bFx8c7p4uPjRk+fLiSk5OVnp6uiRMnKiMjQ6Ghobrjjjv00EMPuYzxzDPPyM3NTYMHD1ZBQYH69OmjF154oYKrAgAA8DubqcjRv1UkOztbgYGBysrK4iDjWshut+vTTz9Vv3792AcP1DJbfj6uxBc3aMldndQuvH5Vl4OLrDzf/9yLCgAAWA4BBwAAWA4BBwAAWA4BBwAAWA4BBwAAWA4BBwAAWA4BBwAAWA4BBwAAWA4BBwAAWA4BBwAAWA4BBwAAWA4BBwAAWA4BBwAAWA4BBwAAWA4BBwAAWA4BBwAAWA4BBwAAWI5HVRcAALC+fcdylVtQWOFx9h7Ndf7r4VHxrzA/Lw9FXOJX4XFQ/RBwAAAX1L5juYqflVqpY05atK3SxkqZ3I2QY0EEHADABVW85ebZm9opsqF/xcbKL9DHqevVv1us/Hy8KjRW2pEc3fvelkrZsoTqh4ADALgoIhv6K/rSwAqNYbfbdbiB1CG8njw9PSupMlgRBxkDAADLIeAAAADLIeAAAADLIeAAAADLIeAAAADLIeAAAADLIeAAAADL4To4AIALzuaRrX3Zu+XmXbEL/RUWFupQ4SHtPLGzwrdq2JedI5tHdoXGQPVFwAEAXHCeQV9r6jfTK228F5a/UCnjeAb1kNSvUsZC9ULAAQBccPbMjpp9/TA1r+CtGgoLC/XV2q90XefrKrwFZ++RHI3/794KjYHqi4ADALjgTGGAIgJa6or6Fb9Vwz6PfWoV3KrCt2pwnMqSKTxaoTFQfXGQMQAAsBwCDgAAsBwCDgAAsBwCDgAAsBwCDgAAsBwCDgAAsBwCDgAAsBwCDgAAsBwCDgAAsBwCDgAAsBwCDgAAsBwCDgAAsBwCDgAAsBwCDgAAsBwCDgAAsBwCDgAAsBwCDgAAsBwCDgAAsBwCDgAAsBwCDgAAsBwCDgAAsBwCDgAAsBwCDgAAsBwCDgAAsBwCDgAAsBwCDgAAsBwCDgAAsBwCDgAAsBwCDgAAsBwCDgAAsJxyB5zVq1drwIABCgsLk81m05IlS1zm5+TkaOzYsWrcuLF8fHx0xRVX6KWXXnLpc+rUKY0ZM0b169eXv7+/Bg8erIyMjAqtCAAAQLFyB5zc3Fy1bdtWc+fOLXX+xIkTtXz5cs2fP187d+7Uvffeq7Fjx2rp0qXOPhMmTNBHH32khQsXatWqVTp06JCSkpLOfy0AAAD+wKO8CyQkJCghIeGM89etW6fhw4erW7dukqTRo0fr5Zdf1jfffKMbbrhBWVlZev3117VgwQJ1795dkjRv3jy1atVKGzZsUKdOnc5vTQAAAP6n3AHnXK699lotXbpUf/3rXxUWFqbU1FT9+OOPeuaZZyRJmzZtkt1uV8+ePZ3LREVFqWnTplq/fn2pAaegoEAFBQXO6ezsbEmS3W6X3W6v7FVANVf8mvPaAzVDYWGh89+Kvm8r8/1fmXXh4ijP61TpAWfOnDkaPXq0GjduLA8PD7m5uenVV19V165dJUmHDx9WnTp1FBQU5LJco0aNdPjw4VLHnDFjhqZNm1aifcWKFfL19a3sVUANsXLlyqouAUAZHMyRJA+tXbtWP/tXzpiV8f6/EHXhwsrLyytz3wsScDZs2KClS5cqPDxcq1ev1pgxYxQWFuay1aY8pkyZookTJzqns7Oz1aRJE/Xu3VsBAQGVVTpqCLvdrpUrV6pXr17y9PSs6nIAnMMPh7I1a9sGde7cWVeGVewzuzLf/5VZFy6O4j04ZVGpASc/P19Tp07VBx98oOuvv16S1KZNG23ZskWzZs1Sz549FRISotOnTyszM9NlK05GRoZCQkJKHdfLy0teXl4l2j09PfmCq8V4/YGawW5skqRdGbny8KjY105ufoE2HpVCDuXIz6fk90J57D9xSpLk4eHBZ0kNUZ7XqVIDTvExMW5uridnubu7y+FwSJJiYmLk6empL774QoMHD5Yk7d69WwcOHFBsbGxllgMAqAb2HsmRJD2weFsljeiht9O+raSxJD+vSt+ZgWqg3K9qTk6O0tLSnNP79u3Tli1bFBwcrKZNmyouLk7/+Mc/5OPjo/DwcK1atUpvvfWWnn76aUlSYGCgRo4cqYkTJyo4OFgBAQEaN26cYmNjOYMKACyo95W/b51v3tBfPp7uFRprd3qWJi3aptlDWqtlaGCFa/Pz8lDEJX4VHgfVT7kDzsaNGxUfH++cLj42Zvjw4UpOTta7776rKVOm6NZbb9WJEycUHh6uJ554Qn//+9+dyzzzzDNyc3PT4MGDVVBQoD59+uiFF16ohNUBAFQ3wX51dPM1TStlrOIzn5o38FP0pRUPOLCucgecbt26yRhzxvkhISGaN2/eWcfw9vbW3Llzz3ixQAAAgIrgXlQAAMByCDgAAMByCDgAAMByCDgAAMByCDgAAMByCDgAAMByuHwjqpW8vDzt2rXrrH1y8gu0btte1btko/zLcKn2qKgobsoKALUMAQfVyq5duxQTE1Omvk+VccxNmzapQ4cO518UAKDGIeCgWomKitKmTZvO2md3eqYmLtymp29srZahQWUaEwBQuxBwUK34+vqec2uL28/H5bUmX62i26pdeP2LVBkAoCbhIGMAAGA5BBwAAGA5BBwAAGA5BBwAAGA5BBwAAGA5BBwAAGA5BBwAAGA5BBwAAGA5BBwAAGA5BBwAAGA5BBwAAGA5BBwAAGA5BBwAAGA5BBwAAGA5BBwAAGA5BBwAAGA5BBwAAGA5BBwAAGA5HlVdAGqPfcdylVtQWOFx9h7Ndf7r4VHxP2E/Lw9FXOJX4XEAANUHAQcXxb5juYqflVqpY05atK3SxkqZ3I2QAwAWQsDBRVG85ebZm9opsqF/xcbKL9DHqevVv1us/Hy8KjRW2pEc3fvelkrZsgQAqD4IOLioIhv6K/rSwAqNYbfbdbiB1CG8njw9PSupMgCAlXCQMQAAsBwCDgAAsBwCDgAAsBwCDgAAsBwCDgAAsBwCDgAAsBwCDgAAsBwCDgAAsBwCDgAAsBwCDgAAsBwCDgAAsBzuRYWLxuaRrX3Zu+XmXbGbbRYWFupQ4SHtPLFTHh4V+xPel50jm0d2hcYAAFQ/BBxcNJ5BX2vqN9MrbbwXlr9QKeN4BvWQ1K9SxgIAVA8EHFw09syOmn39MDVvWPEtOF+t/UrXdb6uwltw9h7J0fj/7q3QGACA6oeAg4vGFAYoIqClrqgfWKFx7Ha79nnsU6vgVvL09KzQWI5TWTKFRys0BgCg+uEgYwAAYDkEHAAAYDkEHAAAYDkEHAAAYDkEHAAAYDkEHAAAYDkEHAAAYDkEHAAAYDkEHAAAYDkEHAAAYDncqgEXRb69SJK0/desCo+Vm1+gjUelkJ9Pys/Hq0JjpR3JqXA9ACpHXl6edu3addY+u9MzVXA4TTu3+8hxPOicY0ZFRcnX17eSKkRNQsDBRbH3f0HigcXbKmlED72d9m0ljSX5efFWAKrarl27FBMTU6a+w94s25ibNm1Shw4dKlAVaio+1XFR9L4yRJLUvKG/fDzdKzTW7vQsTVq0TbOHtFbL0IrduFP6PdxEXOJX4XEAVExUVJQ2bdp01j45+QX6JGW9ro+PlX8ZtuBGRUVVVnmoYQg4uCiC/ero5muaVspYhYWFkqTmDfwUfWnFAw6A6sHX1/ecW1vsdrtOHjui2Guukqen50WqDDURBxkDAADLKXfAWb16tQYMGKCwsDDZbDYtWbLEZb7NZiv1Z+bMmc4+J06c0K233qqAgAAFBQVp5MiRysnhYE8AAFA5yh1wcnNz1bZtW82dO7fU+enp6S4/b7zxhmw2mwYPHuzsc+utt+qHH37QypUr9fHHH2v16tUaPXr0+a8FAADAH5T7GJyEhAQlJCSccX5ISIjL9Icffqj4+HhddtllkqSdO3dq+fLl+vbbb3XVVVdJkubMmaN+/fpp1qxZCgsLKzFmQUGBCgoKnNPZ2dmSft8Xa7fby7sKqOGKj8EpLCzk9QdqmeL3PO/92qk8r/sFPcg4IyNDn3zyid588/+fz7d+/XoFBQU5w40k9ezZU25ubvr66681aNCgEuPMmDFD06ZNK9G+YsUKrm9QCx3MkSQPbdiwQb9ur+pqAFSFlStXVnUJqAJ5eXll7ntBA86bb76punXrKikpydl2+PBhNWzY0LUIDw8FBwfr8OHDpY4zZcoUTZw40TmdnZ2tJk2aqHfv3goICLgwxaPa2nrghLRtozp16qS2TYOruhwAF5HdbtfKlSvVq1cvzqKqhYr34JTFBQ04b7zxhm699VZ5e3tXaBwvLy95eZW83oGnpyd/4LWQh4eH819ef6B24vO/dirPa37BAs6aNWu0e/duvffeey7tISEhOnLkiEtbYWGhTpw4UeL4HQAAgPNxwa6D8/rrrysmJkZt27Z1aY+NjVVmZqbL1Sq//PJLORwOdezY8UKVAwAAapFyb8HJyclRWlqac3rfvn3asmWLgoOD1bTp71eqzc7O1sKFCzV79uwSy7dq1Up9+/bVnXfeqZdeekl2u11jx47VzTffXOoZVAAAAOVV7i04GzduVPv27dW+fXtJ0sSJE9W+fXs9/PDDzj7vvvuujDG65ZZbSh3jv//9r6KiotSjRw/169dPnTt31iuvvHKeqwAAAOCq3FtwunXrJmPMWfuMHj36rBfuCw4O1oIFC8r70AAAAGXCvagAAIDlEHAAAIDlEHAAAIDlEHAAAIDlEHAAAIDlEHAAAIDlEHAAAIDlEHAAAIDlEHAAAIDlEHAAAIDlEHAAAIDlEHAAAIDlEHAAAIDlEHAAAIDlEHAAAIDlEHAAAIDlEHAAAIDlEHAAAIDlEHAAAIDlEHAAAIDlEHAAAIDleFR1AcAf5eXladeuXWftszs9UwWH07Rzu48cx4POOWZUVJR8fX0rqUIAQE1AwEG1smvXLsXExJSp77A3yzbmpk2b1KFDhwpUBQCoaQg4qFaioqK0adOms/bJyS/QJynrdX18rPx9vMo0JgCgdiHgoFrx9fU959YWu92uk8eOKPaaq+Tp6XmRKgMA1CQcZAwAACyHgAMAACyHgAMAACyHgAMAACyHgAMAACyHgAMAACyHgAMAACyHgAMAACyHgAMAACyHgAMAACyHgAMAACyHgAMAACyHgAMAACyHgAMAACyHgAMAACyHgAMAACyHgAMAACyHgAMAACyHgAMAACyHgAMAACyHgAMAACyHgAMAACyHgAMAACyHgAMAACyHgAMAACyHgAMAACyHgAMAACyHgAMAACyHgAMAACyHgAMAACyHgAMAACyHgAMAACyHgAMAACyHgAMAACyHgAMAACyHgAMAACyn3AFn9erVGjBggMLCwmSz2bRkyZISfXbu3KkbbrhBgYGB8vPz09VXX60DBw445586dUpjxoxR/fr15e/vr8GDBysjI6NCKwIAAFCs3AEnNzdXbdu21dy5c0udv3fvXnXu3FlRUVFKTU3V999/r4ceekje3t7OPhMmTNBHH32khQsXatWqVTp06JCSkpLOfy0AAAD+wKO8CyQkJCghIeGM8//5z3+qX79+euqpp5xtzZs3d/6elZWl119/XQsWLFD37t0lSfPmzVOrVq20YcMGderUqbwlAQAAuCh3wDkbh8OhTz75RPfdd5/69OmjzZs3KyIiQlOmTFFiYqIkadOmTbLb7erZs6dzuaioKDVt2lTr168vNeAUFBSooKDAOZ2dnS1JstvtstvtlbkKqAGKX3Nee6D24f1fu5Xnda/UgHPkyBHl5OTo3//+tx5//HE9+eSTWr58uZKSkpSSkqK4uDgdPnxYderUUVBQkMuyjRo10uHDh0sdd8aMGZo2bVqJ9hUrVsjX17cyVwE1yMqVK6u6BABVhPd/7ZSXl1fmvpW+BUeSBg4cqAkTJkiS2rVrp3Xr1umll15SXFzceY07ZcoUTZw40TmdnZ2tJk2aqHfv3goICKh44ahR7Ha7Vq5cqV69esnT07OqywFwEfH+r92K9+CURaUGnEsuuUQeHh664oorXNpbtWqltWvXSpJCQkJ0+vRpZWZmumzFycjIUEhISKnjenl5ycvLq0S7p6cnf+C1TFFRkdatW6fVq1fLz89P8fHxcnd3r+qyAFxkfP7XTuV5zSv1Ojh16tTR1Vdfrd27d7u0//jjjwoPD5ckxcTEyNPTU1988YVz/u7du3XgwAHFxsZWZjmwmMWLFysyMlK9evXS008/rV69eikyMlKLFy+u6tIAANVMubfg5OTkKC0tzTm9b98+bdmyRcHBwWratKn+8Y9/6KabblLXrl0VHx+v5cuX66OPPlJqaqokKTAwUCNHjtTEiRMVHBysgIAAjRs3TrGxsZxBhTNavHixhgwZov79++vtt9/WL7/8osaNG+upp57SkCFDtGjRIi41AAD4/0w5paSkGEklfoYPH+7s8/rrr5vIyEjj7e1t2rZta5YsWeIyRn5+vrn77rtNvXr1jK+vrxk0aJBJT08vcw1ZWVlGksnKyipv+aiBCgsLTbNmzcyAAQNMUVGROX36tFmyZIk5ffq0KSoqMgMGDDARERGmsLCwqksFcIH98f2P2qc83/82Y4ypwnx1XrKzsxUYGKisrCwOMq4FUlNTFR8f77yMgN1u16effqp+/frJ09NT69ev17XXXquUlBR169atqssFcAH9+f2P2qU83//ciwrVXnp6uiQpOjq61PnF7cX9AAAg4KDaCw0NlSRt37691PnF7cX9AAAg4KDa69Kli5o1a6bp06c7r7VUzOFwaMaMGYqIiFCXLl2qqEIAQHVDwEG15+7urtmzZ+vjjz9WYmKiNmzYoPz8fG3YsEGJiYn6+OOPNWvWLK6HAwBwqtQL/QEXSlJSkhYtWqRJkyapa9euzvaIiAhOEQcAlEDAQY2RlJSkgQMHKiUlRcuWLVNCQgJXMgYAlIqAgxrF3d1dcXFxys3NVVxcHOEGAFAqjsEBAACWQ8ABAACWQ8ABAACWQ8ABAACWQ8ABAACWQ8ABAACWQ8ABAACWQ8ABAACWQ8ABAACWQ8ABAACWQ8ABAACWQ8ABAACWQ8ABAACWQ8ABAACWQ8ABAACWQ8ABAACWQ8ABAACWQ8ABAACWQ8ABAACWQ8ABAACWQ8ABAACWQ8ABAACWQ8ABAACWQ8ABAACWQ8ABAACWQ8ABAACWQ8ABAACWQ8ABAACWQ8ABAACWQ8ABAACWQ8ABAACWQ8ABAACWQ8ABAACWQ8ABAACWQ8ABAACWQ8ABAACWQ8ABAACWQ8ABAACWQ8ABAACWQ8ABANQIRUVFWrVqlVavXq1Vq1apqKioqktCNUbAAQBUe4sXL1ZkZKR69eqlp59+Wr169VJkZKQWL15c1aWhmiLgAACqtcWLF2vIkCFq3bq11qxZo3feeUdr1qxR69atNWTIEEIOSkXAAQBUW0VFRZo0aZL69++vJUuWqGPHjvLx8VHHjh21ZMkS9e/fX5MnT2Z3FUog4AAAqq01a9Zo//79mjp1qtzcXL+y3NzcNGXKFO3bt09r1qypogpRXRFwAADVVnp6uiQpOjq61PnF7cX9gGIEHABAtRUaGipJ2r59e6nzi9uL+wHFCDgAgGqrS5cuatasmaZPny6Hw+Eyz+FwaMaMGYqIiFCXLl2qqEJUVwQcAEC15e7urtmzZ+vjjz9WYmKiNmzYoPz8fG3YsEGJiYn6+OOPNWvWLLm7u1d1qahmPKq6AAAAziYpKUmLFi3SpEmT1LVrV2d7RESEFi1apKSkpCqsDtUVAQcAUO0lJSVp4MCBSklJ0bJly5SQkKD4+Hi23OCMCDgAgBrB3d1dcXFxys3NVVxcHOEGZ8UxOAAAwHIIOAAAwHIIOAAAwHIIOAAAwHLKHXBWr16tAQMGKCwsTDabTUuWLHGZP2LECNlsNpefvn37uvQ5ceKEbr31VgUEBCgoKEgjR45UTk5OhVYEAACgWLkDTm5urtq2bau5c+eesU/fvn2Vnp7u/HnnnXdc5t9666364YcftHLlSn388cdavXq1Ro8eXf7qAQAASlHu08QTEhKUkJBw1j5eXl4KCQkpdd7OnTu1fPlyffvtt7rqqqskSXPmzFG/fv00a9YshYWFlbckAAAAFxfkOjipqalq2LCh6tWrp+7du+vxxx9X/fr1JUnr169XUFCQM9xIUs+ePeXm5qavv/5agwYNKjFeQUGBCgoKnNPZ2dmSJLvdLrvdfiFWAdVY8WvOaw/UPrz/a7fyvO6VHnD69u2rpKQkRUREaO/evZo6daoSEhK0fv16ubu76/Dhw2rYsKFrER4eCg4O1uHDh0sdc8aMGZo2bVqJ9hUrVsjX17eyVwE1xMqVK6u6BABVhPd/7ZSXl1fmvpUecG6++Wbn761bt1abNm3UvHlzpaamqkePHuc15pQpUzRx4kTndFZWlpo2barY2FjVrVu3wjWjZrHb7UpJSVF8fLw8PT2ruhwAFxHv/9rtt99+kyQZY87Z94LfquGyyy7TJZdcorS0NPXo0UMhISE6cuSIS5/CwkKdOHHijMfteHl5ycvLyzldvIsqIiLiwhUOAACqpd9++02BgYFn7XPBA84vv/yi48ePKzQ0VJIUGxurzMxMbdq0STExMZKkL7/8Ug6HQx07dizTmGFhYTp48KDq1q0rm812wWpH9ZSdna0mTZro4MGDCggIqOpyAFxEvP9rN2OMfvvttzKdkFTugJOTk6O0tDTn9L59+7RlyxYFBwcrODhY06ZN0+DBgxUSEqK9e/fqvvvuU2RkpPr06SNJatWqlfr27as777xTL730kux2u8aOHaubb765zGdQubm5qXHjxuUtHRYTEBDABxxQS/H+r73OteWmmM2UZUfWH6Smpio+Pr5E+/Dhw/Xiiy8qMTFRmzdvVmZmpsLCwtS7d2/961//UqNGjZx9T5w4obFjx+qjjz6Sm5ubBg8erP/85z/y9/cvTymopbKzsxUYGKisrCw+4IBahvc/yqrcAQeoanzAAbUX73+UFfeiQo3j5eWlRx55xOXAcwC1A+9/lBVbcAAAgOWwBQcAAFgOAQcAAFgOAQcAAFgOAQcXlDFGo0ePVnBwsGw2m7Zs2VIldezfv79KHx/AhTVixAglJiZWdRmoRi74lYxRuy1fvlzJyclKTU113rYDAIALjYCDC2rv3r0KDQ3VtddeW9WlAABqEXZR4YIZMWKExo0bpwMHDshms6lZs2ZyOByaMWOGIiIi5OPjo7Zt22rRokXOZVJTU2Wz2fTZZ5+pffv28vHxUffu3XXkyBEtW7ZMrVq1UkBAgIYNG6a8vDzncsuXL1fnzp0VFBSk+vXrq3///tq7d+9Z69u+fbsSEhLk7++vRo0a6fbbb9exY8cu2PMB4HfdunXTuHHjdO+996pevXpq1KiRXn31VeXm5uovf/mL6tatq8jISC1btkySVFRUpJEjRzo/N1q2bKnnnnvurI9xrs8aWB8BBxfMc889p8cee0yNGzdWenq6vv32W82YMUNvvfWWXnrpJf3www+aMGGCbrvtNq1atcpl2UcffVTPP/+81q1bp4MHD2ro0KF69tlntWDBAn3yySdasWKF5syZ4+yfm5uriRMnauPGjfriiy/k5uamQYMGyeFwlFpbZmamunfvrvbt22vjxo1avny5MjIyNHTo0Av6nAD43ZtvvqlLLrlE33zzjcaNG6e77rpLN954o6699lp999136t27t26//Xbl5eXJ4XCocePGWrhwoXbs2KGHH35YU6dO1f/93/+dcfyyftbAwgxwAT3zzDMmPDzcGGPMqVOnjK+vr1m3bp1Ln5EjR5pbbrnFGGNMSkqKkWQ+//xz5/wZM2YYSWbv3r3Otr/97W+mT58+Z3zco0ePGklm27Ztxhhj9u3bZySZzZs3G2OM+de//mV69+7tsszBgweNJLN79+7zXl8A5xYXF2c6d+7snC4sLDR+fn7m9ttvd7alp6cbSWb9+vWljjFmzBgzePBg5/Tw4cPNwIEDjTFl+6yB9XEMDi6atLQ05eXlqVevXi7tp0+fVvv27V3a2rRp4/y9UaNG8vX11WWXXebS9s033zin9+zZo4cfflhff/21jh075txyc+DAAUVHR5eoZevWrUpJSSn1Bq979+7V5Zdffn4rCaBM/vged3d3V/369dW6dWtnW/ENmo8cOSJJmjt3rt544w0dOHBA+fn5On36tNq1a1fq2OX5rIF1EXBw0eTk5EiSPvnkE1166aUu8/58XxlPT0/n7zabzWW6uO2Pu58GDBig8PBwvfrqqwoLC5PD4VB0dLROnz59xloGDBigJ598ssS80NDQ8q0YgHIr7T395/e99PuxNO+++64mT56s2bNnKzY2VnXr1tXMmTP19ddflzp2eT5rYF0EHFw0V1xxhby8vHTgwAHFxcVV2rjHjx/X7t279eqrr6pLly6SpLVr1551mQ4dOuj9999Xs2bN5OHB2wCozr766itde+21uvvuu51tZzuJ4EJ91qBm4ZMdF03dunU1efJkTZgwQQ6HQ507d1ZWVpa++uorBQQEaPjw4ec1br169VS/fn298sorCg0N1YEDB/TAAw+cdZkxY8bo1Vdf1S233KL77rtPwcHBSktL07vvvqvXXntN7u7u51ULgMrXokULvfXWW/rss88UERGht99+W99++60iIiJK7X+hPmtQsxBwcFH961//UoMGDTRjxgz99NNPCgoKUocOHTR16tTzHtPNzU3vvvuuxo8fr+joaLVs2VL/+c9/1K1btzMuExYWpq+++kr333+/evfurYKCAoWHh6tv375yc+PkQqA6+dvf/qbNmzfrpptuks1m0y233KK7777beRp5aS7EZw1qFpsxxlR1EQAAAJWJ/6oCAADLIeAAAADLIeAAAADLIeAAAADLIeAAAADLIeAAAADLIeAAAADLIeAAAADLIeAAOG/dunWTzWaTzWbTli1bqrocSVJqaqpsNpsyMzMrPFbxugUFBVV4LAAXFwEHQIXceeedSk9PV3R0tLPt/fffV/fu3VWvXj35+PioZcuW+utf/6rNmzdXYaXll56ermeffbaqywBwHgg4ACrE19dXISEhzruy33///brpppvUrl07LV26VLt379aCBQt02WWXacqUKVVcbdmcPn1akhQSEqLAwMAqrgbA+SDgAKg0GzZs0FNPPaWnn35aTz/9tLp06aKmTZsqJiZGDz74YImbI3744Yfq0KGDvL29ddlll2natGkqLCx0zrfZbHrttdc0aNAg+fr6qkWLFlq6dKnLGJ9++qkuv/xy+fj4KD4+Xvv37y9R19q1a9WlSxf5+PioSZMmGj9+vHJzc53zmzVrpn/961+64447FBAQoNGjR1fuEwPgoiPgAKg077zzjvz9/XX33XeXOt9mszl/X7Nmje644w7dc8892rFjh15++WUlJyfriSeecFlm2rRpGjp0qL7//nv169dPt956q06cOCFJOnjwoJKSkjRgwABt2bJFo0aN0gMPPOCy/N69e9W3b18NHjxY33//vd577z2tXbtWY8eOdek3a9YstW3bVps3b9ZDDz1UGU8HgKpkAOA8xcXFmXvuucc53bdvX9OmTRuXPrNnzzZ+fn7On8zMTGOMMT169DDTp0936fv222+b0NBQ57Qk8+CDDzqnc3JyjCSzbNkyY4wxU6ZMMVdccYXLGPfff7+RZE6ePGmMMWbkyJFm9OjRLn3WrFlj3NzcTH5+vjHGmPDwcJOYmFjqOs6bN88EBgae45kAUN14VHG+AmBxf/3rX3XDDTfo66+/1m233SZjjCRp69at+uqrr1y22BQVFenUqVPKy8uTr6+vJKlNmzbO+X5+fgoICNCRI0ckSTt37lTHjh1dHi82NtZleuvWrfr+++/13//+19lmjJHD4dC+ffvUqlUrSdJVV11ViWsNoKoRcABUmhYtWmjt2rWy2+3y9PSUJAUFBSkoKEi//PKLS9+cnBxNmzZNSUlJJcbx9vZ2/l48TjGbzSaHw1HmmnJycvS3v/1N48ePLzGvadOmzt/9/PzKPCaA6o+AA6DS3HLLLZozZ45eeOEF3XPPPWft26FDB+3evVuRkZHn/XitWrUqcdDxhg0bSjzOjh07KvQ4AGoeAg6AShMbG6tJkyZp0qRJ+vnnn5WUlKQmTZooPT1dr7/+umw2m9zcfj+34eGHH1b//v3VtGlTDRkyRG5ubtq6dau2b9+uxx9/vEyP9/e//12zZ8/WP/7xD40aNUqbNm1ScnKyS5/7779fnTp10tixYzVq1Cj5+flpx44dWrlypZ5//vnKfgoAVBOcRQWgUs2aNUsLFizQ5s2b1b9/f7Vo0UI33nijHA6H1q9fr4CAAElSnz599PHHH2vFihW6+uqr1alTJz3zzDMKDw8v82M1bdpU77//vpYsWaK2bdvqpZde0vTp0136tGnTRqtWrdKPP/6oLl26qH379nr44YcVFhZWqesNoHqxmeIj/gCgnLp166Z27dpZ+mq/ycnJuvfeeyvl1g8ALh4CDoDz1q1bN61bt0516tTR+vXr1bp166ouqVL5+/ursLBQ3t7eBByghiHgADhvv/76q/Lz8yX9vruoTp06VVxR5UpLS5Mkubu7KyIiooqrAVAeBBwAAGA5HGQMAAAsh4ADAAAsh4ADAAAsh4ADAAAsh4ADAAAsh4ADAAAsh4ADAAAsh4ADAAAs5/8B5wErZncEuEwAAAAASUVORK5CYII=",
"text/plain": [
"