{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# IntroStat Week 1 Python\n", "\n", "Welcome to the first lecture in IntroStat\n", "\n", "During the lectures we will present both slides and notebooks. \n", "\n", "This is the notebook used in the lecture in week 1.\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### First steps using python code" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# Addition\n", "2+3" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# Define a variable\n", "x = 3" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# print out the value of the variable\n", "print(x)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "print(type(x))" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# try changing x to 3.8 and see what happens to the type" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Notice how jupyter notebooks work in two **modes**: **command** mode and **edit** mode.
\n", "\n", "To enter command mode press **esc**
\n", "\n", "To enter edit mode press **enter**
\n", "\n", "(you can also use the mouse/clicking for most tasks)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# define a variable of the data-type \"list\", which can contain several values\n", "x = [1,4,6,2] " ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "print(x)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "print(type(x))" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# lists can contain many different types of data\n", "x = [1,4,'hello',0.232] \n", "x" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# what happens if we multiply a list by a number?\n", "print(x*5)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# what if we had chosen a non-integer number?\n", "print(x*1.2)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "In conclusion: lists do not behave as vectors.
\n", "For example multiplication does not operate elementwise.
\n", "We want to work with a variable type that behave more like a vector (or matrix)." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Using Numpy for vectors (ndarrays)" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [], "source": [ "### import the NUMPY package for vectors (ndarray data type for multidimentional arrays), math functions, etc.\n", "import numpy as np" ] }, { "cell_type": "code", "execution_count": 56, "metadata": {}, "outputs": [], "source": [ "# store data of student height in variable x (which is now an array, not a list)\n", "x = np.array([168, 161, 167, 179, 184, 166, 198, 187, 191, 179])" ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[168 161 167 179 184 166 198 187 191 179]\n" ] } ], "source": [ "print(x)" ] }, { "cell_type": "code", "execution_count": 17, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n" ] } ], "source": [ "print(type(x))" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# type is 'numpy.ndarray' - stands for n-dimensional array (1D = vector, 2D = matrix, etc.)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Calculate the mean" ] }, { "cell_type": "code", "execution_count": 18, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "178.0" ] }, "execution_count": 18, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# calculate mean of x (average height of students)\n", "np.mean(x)" ] }, { "cell_type": "code", "execution_count": 19, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "178.0" ] }, "execution_count": 19, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# \"mean()\" can also be called as a method\n", "x.mean()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Have a look in the online documentation: https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html\n", "\n", "The datatype \"ndarray\" (also called a numpy array) has many methods." ] }, { "cell_type": "code", "execution_count": 20, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "161" ] }, "execution_count": 20, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# lets try some other \"methods\"\n", "x.min()" ] }, { "cell_type": "code", "execution_count": 21, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "198" ] }, "execution_count": 21, "metadata": {}, "output_type": "execute_result" } ], "source": [ "x.max()" ] }, { "cell_type": "code", "execution_count": 22, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "149.11111111111111" ] }, "execution_count": 22, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# what about variance? \n", "# OBS: need to remember ddof = 1 if you want to calculate the \"sample variance\"\n", "x.var(ddof=1)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "ddof?? look in documentation for explanation: https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html\n" ] }, { "cell_type": "code", "execution_count": 23, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "12.211106056009468" ] }, "execution_count": 23, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# standard deviation (also remember ddof=1 for \"sample standard deviation\")\n", "x.std(ddof=1)" ] }, { "cell_type": "code", "execution_count": 24, "metadata": {}, "outputs": [ { "ename": "AttributeError", "evalue": "'numpy.ndarray' object has no attribute 'median'", "output_type": "error", "traceback": [ "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[1;31mAttributeError\u001b[0m Traceback (most recent call last)", "Cell \u001b[1;32mIn[24], line 2\u001b[0m\n\u001b[0;32m 1\u001b[0m \u001b[38;5;66;03m# what about the median?\u001b[39;00m\n\u001b[1;32m----> 2\u001b[0m x\u001b[38;5;241m.\u001b[39mmedian()\n", "\u001b[1;31mAttributeError\u001b[0m: 'numpy.ndarray' object has no attribute 'median'" ] } ], "source": [ "# what about the median?\n", "x.median()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "no method called median? \n", "\n", "OK, then we call the median() function directly from numpy" ] }, { "cell_type": "code", "execution_count": 25, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "179.0" ] }, "execution_count": 25, "metadata": {}, "output_type": "execute_result" } ], "source": [ "np.median(x)" ] }, { "cell_type": "code", "execution_count": 27, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([163.5, 166.5, 179. , 189. , 194.5])" ] }, "execution_count": 27, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# we can also get other percentiles (50th percentile is the same as the median)\n", "np.percentile(x, [10,20,50,80,90], method='averaged_inverted_cdf')" ] }, { "cell_type": "code", "execution_count": 57, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[161 166 167 168 179 179 184 187 191 198]\n" ] } ], "source": [ "# compare with sorted data\n", "x.sort()\n", "print(x)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Notice the method=\"averaged inverted cdf\"
\n", "\n", "There are many different ways to define percentiles!\n", "\n", "See the documentaion: https://numpy.org/doc/stable/reference/generated/numpy.percentile.html#numpy.percentile\n", "\n", "In this course (and in the book) we use the 'averaged_inverted_cdf' method." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Now lets make some plots" ] }, { "cell_type": "code", "execution_count": 31, "metadata": {}, "outputs": [], "source": [ "# import the matplotlib.pyplot package \n", "import matplotlib.pyplot as plt" ] }, { "cell_type": "code", "execution_count": 32, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[161 166 167 168 179 179 184 187 191 198]\n" ] } ], "source": [ "print(x)" ] }, { "cell_type": "code", "execution_count": 33, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAGdCAYAAADAAnMpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAgS0lEQVR4nO3de3BU9d3H8c+GywY0CQTIDUJgiuUiEC4iLHa42GikjCXVcSjVCTIRqyUWSAfbWKsDdhpaiuhYakCl1FoGShVQUGwabqXEC0hGQI2CShCzQatkSSoLkvP84cPqloRkc/uym/dr5sx0z56z+/v1cJp3z55kXY7jOAIAADASZT0AAADQvhEjAADAFDECAABMESMAAMAUMQIAAEwRIwAAwBQxAgAATBEjAADAVEfrATRGbW2tPv74Y8XExMjlclkPBwAANILjODp16pRSUlIUFVX/9Y+wiJGPP/5Yqamp1sMAAABNcOzYMfXp06fe58MiRmJiYiR9NZnY2Fjj0QAAgMbw+XxKTU0N/ByvT1jEyPmPZmJjY4kRAADCTEO3WHADKwAAMEWMAAAAU8QIAAAwRYwAAABTxAgAADBFjAAAAFPECAAAMEWMAAAAU8QIAAAwRYwAAABTIcXI448/ruHDhwf+LLvH49FLL7100X3Wr1+vQYMGKTo6WsOGDdOLL77YrAEDAIDIElKM9OnTR4sXL9a+ffu0d+9eXXvttZo2bZoOHTpU5/Z79uzRjBkzlJOTo/379ysrK0tZWVk6ePBgiwweAACEP5fjOE5zXiA+Pl5LlixRTk7OBc9Nnz5dNTU12rx5c2DduHHjNGLECBUWFjb6PXw+n+Li4lRVVcUX5QEAECYa+/O7yfeMnDt3TmvXrlVNTY08Hk+d25SUlCgjIyNoXWZmpkpKSi762n6/Xz6fL2gBAACRqWOoOxw4cEAej0enT5/W5Zdfrg0bNmjIkCF1buv1epWYmBi0LjExUV6v96LvUVBQoIULF4Y6tHaj3y+2WA8hZB8unmo9BADAJSrkKyMDBw5UaWmpXn31Vd19992aOXOm3nrrrRYdVH5+vqqqqgLLsWPHWvT1AQDApSPkKyOdO3fWgAEDJEmjR4/W66+/rkcffVQrVqy4YNukpCRVVlYGrausrFRSUtJF38Ptdsvtdoc6NAAAEIaa/XdGamtr5ff763zO4/GouLg4aF1RUVG995gAAID2J6QrI/n5+ZoyZYr69u2rU6dOac2aNdqxY4defvllSVJ2drZ69+6tgoICSdLcuXM1ceJELV26VFOnTtXatWu1d+9erVy5suVnAgAAwlJIMXLixAllZ2eroqJCcXFxGj58uF5++WVdd911kqTy8nJFRX19sWX8+PFas2aN7r//ft1333264oortHHjRg0dOrRlZwEAAMJWs//OSFvg74wE47dpAADhoNX/zggAAEBLIEYAAIApYgQAAJgiRgAAgCliBAAAmCJGAACAKWIEAACYIkYAAIApYgQAAJgiRgAAgCliBAAAmCJGAACAKWIEAACYIkYAAIApYgQAAJgiRgAAgCliBAAAmCJGAACAKWIEAACYIkYAAIApYgQAAJgiRgAAgCliBAAAmCJGAACAKWIEAACYIkYAAIApYgQAAJgiRgAAgCliBAAAmCJGAACAKWIEAACYIkYAAIApYgQAAJgiRgAAgCliBAAAmCJGAACAKWIEAACYIkYAAIApYgQAAJgiRgAAgCliBAAAmCJGAACAKWIEAACYIkYAAIApYgQAAJgiRgAAgCliBAAAmCJGAACAqZBipKCgQGPGjFFMTIwSEhKUlZWlsrKyi+6zevVquVyuoCU6OrpZgwYAAJEjpBjZuXOn5syZo1deeUVFRUU6e/asrr/+etXU1Fx0v9jYWFVUVASWo0ePNmvQAAAgcnQMZeOtW7cGPV69erUSEhK0b98+TZgwod79XC6XkpKSmjZCAAAQ0Zp1z0hVVZUkKT4+/qLbVVdXKy0tTampqZo2bZoOHTp00e39fr98Pl/QAgAAIlOTY6S2tlbz5s3TNddco6FDh9a73cCBA7Vq1Spt2rRJzzzzjGprazV+/Hh99NFH9e5TUFCguLi4wJKamtrUYQIAgEucy3Ecpyk73n333XrppZe0e/du9enTp9H7nT17VoMHD9aMGTP00EMP1bmN3++X3+8PPPb5fEpNTVVVVZViY2ObMtyI0u8XW6yHELIPF0+1HgIAoI35fD7FxcU1+PM7pHtGzsvNzdXmzZu1a9eukEJEkjp16qSRI0fq8OHD9W7jdrvldrubMjQAABBmQvqYxnEc5ebmasOGDdq2bZv69+8f8hueO3dOBw4cUHJycsj7AgCAyBPSlZE5c+ZozZo12rRpk2JiYuT1eiVJcXFx6tKliyQpOztbvXv3VkFBgSRp0aJFGjdunAYMGKCTJ09qyZIlOnr0qO64444WngoAAAhHIcXI448/LkmaNGlS0Po//elPuv322yVJ5eXlior6+oLL559/rtmzZ8vr9ap79+4aPXq09uzZoyFDhjRv5AAAICI0+QbWttTYG2DaC25gBQCEg8b+/Oa7aQAAgCliBAAAmCJGAACAKWIEAACYIkYAAIApYgQAAJgiRgAAgCliBAAAmCJGAACAKWIEAACYIkYAAIApYgQAAJgiRgAAgCliBAAAmCJGAACAKWIEAACYIkYAAIApYgQAAJgiRgAAgCliBAAAmCJGAACAKWIEAACYIkYAAIApYgQAAJgiRgAAgCliBAAAmCJGAACAKWIEAACYIkYAAIApYgQAAJgiRgAAgCliBAAAmCJGAACAKWIEAACYIkYAAIApYgQAAJgiRgAAgCliBAAAmCJGAACAKWIEAACYIkYAAIApYgQAAJgiRgAAgCliBAAAmCJGAACAKWIEAACYIkYAAICpkGKkoKBAY8aMUUxMjBISEpSVlaWysrIG91u/fr0GDRqk6OhoDRs2TC+++GKTBwwAACJLSDGyc+dOzZkzR6+88oqKiop09uxZXX/99aqpqal3nz179mjGjBnKycnR/v37lZWVpaysLB08eLDZgwcAAOHP5TiO09SdP/nkEyUkJGjnzp2aMGFCndtMnz5dNTU12rx5c2DduHHjNGLECBUWFjbqfXw+n+Li4lRVVaXY2NimDjdi9PvFFushhOzDxVOthwAAaGON/fndrHtGqqqqJEnx8fH1blNSUqKMjIygdZmZmSopKWnOWwMAgAjRsak71tbWat68ebrmmms0dOjQerfzer1KTEwMWpeYmCiv11vvPn6/X36/P/DY5/M1dZgAAOAS1+QYmTNnjg4ePKjdu3e35HgkfXWj7MKFC1v8dYH2gI/xAISbJn1Mk5ubq82bN2v79u3q06fPRbdNSkpSZWVl0LrKykolJSXVu09+fr6qqqoCy7Fjx5oyTAAAEAZCihHHcZSbm6sNGzZo27Zt6t+/f4P7eDweFRcXB60rKiqSx+Opdx+3263Y2NigBQAARKaQPqaZM2eO1qxZo02bNikmJiZw30dcXJy6dOkiScrOzlbv3r1VUFAgSZo7d64mTpyopUuXaurUqVq7dq327t2rlStXtvBUAABAOArpysjjjz+uqqoqTZo0ScnJyYFl3bp1gW3Ky8tVUVEReDx+/HitWbNGK1euVHp6uv7+979r48aNF73pFQAAtB8hXRlpzJ8k2bFjxwXrbrnlFt1yyy2hvBUAAGgn+G4aAABgihgBAACmiBEAAGCKGAEAAKaIEQAAYIoYAQAApogRAABgihgBAACmiBEAAGCKGAEAAKaIEQAAYIoYAQAApogRAABgihgBAACmiBEAAGCKGAEAAKaIEQAAYIoYAQAApogRAABgihgBAACmiBEAAGCKGAEAAKaIEQAAYIoYAQAApogRAABgihgBAACmiBEAAGCKGAEAAKaIEQAAYIoYAQAApogRAABgihgBAACmiBEAAGCKGAEAAKaIEQAAYIoYAQAApogRAABgihgBAACmiBEAAGCKGAEAAKaIEQAAYIoYAQAApogRAABgihgBAACmiBEAAGCKGAEAAKaIEQAAYIoYAQAApkKOkV27dunGG29USkqKXC6XNm7ceNHtd+zYIZfLdcHi9XqbOmYAABBBQo6Rmpoapaena/ny5SHtV1ZWpoqKisCSkJAQ6lsDAIAI1DHUHaZMmaIpU6aE/EYJCQnq1q1byPsBAIDI1mb3jIwYMULJycm67rrr9O9///ui2/r9fvl8vqAFAABEplaPkeTkZBUWFurZZ5/Vs88+q9TUVE2aNElvvPFGvfsUFBQoLi4usKSmprb2MAEAgJGQP6YJ1cCBAzVw4MDA4/Hjx+vIkSNatmyZ/vKXv9S5T35+vvLy8gKPfT4fQQIAQIRq9Ripy9VXX63du3fX+7zb7Zbb7W7DEQEAACsmf2ektLRUycnJFm8NAAAuMSFfGamurtbhw4cDjz/44AOVlpYqPj5effv2VX5+vo4fP66nn35akvTII4+of//+uvLKK3X69Gk9+eST2rZtm/7xj3+03CwAAEDYCjlG9u7dq8mTJwcen7+3Y+bMmVq9erUqKipUXl4eeP7MmTP62c9+puPHj6tr164aPny4/vnPfwa9BgAAaL9CjpFJkybJcZx6n1+9enXQ43vvvVf33ntvyAMDAADtA99NAwAATBEjAADAFDECAABMESMAAMAUMQIAAEwRIwAAwBQxAgAATBEjAADAFDECAABMESMAAMAUMQIAAEwRIwAAwBQxAgAATBEjAADAFDECAABMESMAAMAUMQIAAEwRIwAAwBQxAgAATBEjAADAFDECAABMESMAAMAUMQIAAEwRIwAAwBQxAgAATBEjAADAFDECAABMESMAAMAUMQIAAEwRIwAAwBQxAgAATBEjAADAFDECAABMESMAAMAUMQIAAEwRIwAAwBQxAgAATBEjAADAFDECAABMESMAAMAUMQIAAEwRIwAAwBQxAgAATBEjAADAFDECAABMESMAAMAUMQIAAEwRIwAAwFTIMbJr1y7deOONSklJkcvl0saNGxvcZ8eOHRo1apTcbrcGDBig1atXN2GoAAAgEoUcIzU1NUpPT9fy5csbtf0HH3ygqVOnavLkySotLdW8efN0xx136OWXXw55sAAAIPJ0DHWHKVOmaMqUKY3evrCwUP3799fSpUslSYMHD9bu3bu1bNkyZWZmhvr2AAAgwrT6PSMlJSXKyMgIWpeZmamSkpJ69/H7/fL5fEELAACITCFfGQmV1+tVYmJi0LrExET5fD598cUX6tKlywX7FBQUaOHCha09NElSv19saZP3ARBZ+N8ORJIPF081ff9L8rdp8vPzVVVVFViOHTtmPSQAANBKWv3KSFJSkiorK4PWVVZWKjY2ts6rIpLkdrvldrtbe2gAAOAS0OpXRjwej4qLi4PWFRUVyePxtPZbAwCAMBByjFRXV6u0tFSlpaWSvvrV3dLSUpWXl0v66iOW7OzswPZ33XWX3n//fd17771655139Mc//lF/+9vfNH/+/JaZAQAACGshx8jevXs1cuRIjRw5UpKUl5enkSNH6oEHHpAkVVRUBMJEkvr3768tW7aoqKhI6enpWrp0qZ588kl+rRcAAEhqwj0jkyZNkuM49T5f119XnTRpkvbv3x/qWwEAgHbgkvxtGgAA0H4QIwAAwBQxAgAATBEjAADAFDECAABMESMAAMAUMQIAAEwRIwAAwBQxAgAATBEjAADAFDECAABMESMAAMAUMQIAAEwRIwAAwBQxAgAATBEjAADAFDECAABMESMAAMAUMQIAAEwRIwAAwBQxAgAATBEjAADAFDECAABMESMAAMAUMQIAAEwRIwAAwBQxAgAATBEjAADAFDECAABMESMAAMAUMQIAAEwRIwAAwBQxAgAATBEjAADAFDECAABMESMAAMAUMQIAAEwRIwAAwBQxAgAATBEjAADAFDECAABMESMAAMAUMQIAAEwRIwAAwBQxAgAATBEjAADAFDECAABMNSlGli9frn79+ik6Olpjx47Va6+9Vu+2q1evlsvlClqio6ObPGAAABBZQo6RdevWKS8vTw8++KDeeOMNpaenKzMzUydOnKh3n9jYWFVUVASWo0ePNmvQAAAgcoQcIw8//LBmz56tWbNmaciQISosLFTXrl21atWqevdxuVxKSkoKLImJic0aNAAAiBwhxciZM2e0b98+ZWRkfP0CUVHKyMhQSUlJvftVV1crLS1NqampmjZtmg4dOtT0EQMAgIgSUox8+umnOnfu3AVXNhITE+X1euvcZ+DAgVq1apU2bdqkZ555RrW1tRo/frw++uijet/H7/fL5/MFLQAAIDK1+m/TeDweZWdna8SIEZo4caKee+459erVSytWrKh3n4KCAsXFxQWW1NTU1h4mAAAwElKM9OzZUx06dFBlZWXQ+srKSiUlJTXqNTp16qSRI0fq8OHD9W6Tn5+vqqqqwHLs2LFQhgkAAMJISDHSuXNnjR49WsXFxYF1tbW1Ki4ulsfjadRrnDt3TgcOHFBycnK927jdbsXGxgYtAAAgMnUMdYe8vDzNnDlTV111la6++mo98sgjqqmp0axZsyRJ2dnZ6t27twoKCiRJixYt0rhx4zRgwACdPHlSS5Ys0dGjR3XHHXe07EwAAEBYCjlGpk+frk8++UQPPPCAvF6vRowYoa1btwZuai0vL1dU1NcXXD7//HPNnj1bXq9X3bt31+jRo7Vnzx4NGTKk5WYBAADCVsgxIkm5ubnKzc2t87kdO3YEPV62bJmWLVvWlLcBAADtAN9NAwAATBEjAADAFDECAABMESMAAMAUMQIAAEwRIwAAwBQxAgAATBEjAADAFDECAABMESMAAMAUMQIAAEwRIwAAwBQxAgAATBEjAADAFDECAABMESMAAMAUMQIAAEwRIwAAwBQxAgAATBEjAADAFDECAABMESMAAMAUMQIAAEwRIwAAwBQxAgAATBEjAADAFDECAABMESMAAMAUMQIAAEwRIwAAwBQxAgAATBEjAADAFDECAABMESMAAMAUMQIAAEwRIwAAwBQxAgAATBEjAADAFDECAABMESMAAMAUMQIAAEwRIwAAwBQxAgAATBEjAADAFDECAABMESMAAMAUMQIAAEwRIwAAwFSTYmT58uXq16+foqOjNXbsWL322msX3X79+vUaNGiQoqOjNWzYML344otNGiwAAIg8IcfIunXrlJeXpwcffFBvvPGG0tPTlZmZqRMnTtS5/Z49ezRjxgzl5ORo//79ysrKUlZWlg4ePNjswQMAgPAXcow8/PDDmj17tmbNmqUhQ4aosLBQXbt21apVq+rc/tFHH9UNN9ygBQsWaPDgwXrooYc0atQo/eEPf2j24AEAQPjrGMrGZ86c0b59+5Sfnx9YFxUVpYyMDJWUlNS5T0lJifLy8oLWZWZmauPGjfW+j9/vl9/vDzyuqqqSJPl8vlCG2yi1/v+2+GviQq1x7FC3cPw3HY7/PsLxv2egPq11Dp5/XcdxLrpdSDHy6aef6ty5c0pMTAxan5iYqHfeeafOfbxeb53be73eet+noKBACxcuvGB9ampqKMPFJSTuEesR4FLGvw/AVmufg6dOnVJcXFy9z4cUI20lPz8/6GpKbW2tPvvsM/Xo0UMul6ve/Xw+n1JTU3Xs2DHFxsa2xVDNMWfmHKmYM3OOVO1pzo7j6NSpU0pJSbnodiHFSM+ePdWhQwdVVlYGra+srFRSUlKd+yQlJYW0vSS53W653e6gdd26dWv0OGNjYyP+AP8v5tw+MOf2gTm3D+1lzhe7InJeSDewdu7cWaNHj1ZxcXFgXW1trYqLi+XxeOrcx+PxBG0vSUVFRfVuDwAA2peQP6bJy8vTzJkzddVVV+nqq6/WI488opqaGs2aNUuSlJ2drd69e6ugoECSNHfuXE2cOFFLly7V1KlTtXbtWu3du1crV65s2ZkAAICwFHKMTJ8+XZ988okeeOABeb1ejRgxQlu3bg3cpFpeXq6oqK8vuIwfP15r1qzR/fffr/vuu09XXHGFNm7cqKFDh7bcLP6f2+3Wgw8+eMFHPJGMObcPzLl9YM7tQ3ucc0NcTkO/bwMAANCK+G4aAABgihgBAACmiBEAAGCKGAEAAKYu+RjZtWuXbrzxRqWkpMjlctX5nTZvv/22vv/97ysuLk6XXXaZxowZo/Ly8sDzp0+f1pw5c9SjRw9dfvnluvnmmy/4Q2yXkpaY86RJk+RyuYKWu+66qw1nEZqG5vy/czm/LFmyJLDNZ599pltvvVWxsbHq1q2bcnJyVF1d3cYzabyWmHO/fv0ueH7x4sVtPJPGa2jO1dXVys3NVZ8+fdSlS5fAl3F+U6Sdz42Zc6Sdz5WVlbr99tuVkpKirl276oYbbtB7770XtE2kHefGzDncjnNLuuRjpKamRunp6Vq+fHmdzx85ckTf+c53NGjQIO3YsUNvvvmmfvWrXyk6Ojqwzfz58/XCCy9o/fr12rlzpz7++GPddNNNbTWFkLXEnCVp9uzZqqioCCy/+93v2mL4TdLQnL85j4qKCq1atUoul0s333xzYJtbb71Vhw4dUlFRkTZv3qxdu3bpzjvvbKsphKwl5ixJixYtCtrunnvuaYvhN0lDc87Ly9PWrVv1zDPP6O2339a8efOUm5ur559/PrBNpJ3PjZmzFDnns+M4ysrK0vvvv69NmzZp//79SktLU0ZGhmpqagLbRdJxbuycpfA6zi3KCSOSnA0bNgStmz59unPbbbfVu8/JkyedTp06OevXrw+se/vttx1JTklJSWsNtcU0Zc6O4zgTJ0505s6d23oDa0V1zfl/TZs2zbn22msDj9966y1HkvP6668H1r300kuOy+Vyjh8/3lpDbTFNmbPjOE5aWpqzbNmy1htYK6przldeeaWzaNGioHWjRo1yfvnLXzqOE5nnc0NzdpzIOp/LysocSc7BgwcD686dO+f06tXLeeKJJxzHibzj3Jg5O054H+fmuuSvjFxMbW2ttmzZom9/+9vKzMxUQkKCxo4dG3R5bN++fTp79qwyMjIC6wYNGqS+ffuqpKTEYNTN05g5n/fXv/5VPXv21NChQ5Wfn6///jcyvvK8srJSW7ZsUU5OTmBdSUmJunXrpquuuiqwLiMjQ1FRUXr11Vcthtmi6przeYsXL1aPHj00cuRILVmyRF9++aXBCFvG+PHj9fzzz+v48eNyHEfbt2/Xu+++q+uvv15S5J3PUsNzPi9Szme/3y9JQVdyo6Ki5Ha7tXv3bkmRd5wbM+fzIuU4h+qS/Nbexjpx4oSqq6u1ePFi/frXv9Zvf/tbbd26VTfddJO2b9+uiRMnyuv1qnPnzhd80V5iYqK8Xq/NwJuhMXOWpB/96EdKS0tTSkqK3nzzTf385z9XWVmZnnvuOeMZNN+f//xnxcTEBF2y9Xq9SkhICNquY8eOio+PD8vj/L/qmrMk/fSnP9WoUaMUHx+vPXv2KD8/XxUVFXr44YeNRto8jz32mO6880716dNHHTt2VFRUlJ544glNmDBBkiLufJYanrMUWefz+ajIz8/XihUrdNlll2nZsmX66KOPVFFRISnyjnNj5ixF1nEOVVjHSG1trSRp2rRpmj9/viRpxIgR2rNnjwoLCwM/mCNJY+f8zXslhg0bpuTkZH33u9/VkSNH9K1vfavtB96CVq1apVtvvfWCe2QiWX1zzsvLC/zn4cOHq3Pnzvrxj3+sgoKCsPxT04899pheeeUVPf/880pLS9OuXbs0Z84cpaSkBP2/5EjSmDlH0vncqVMnPffcc8rJyVF8fLw6dOigjIwMTZkyRU6E/kHwxs45ko5zqMI6Rnr27KmOHTtqyJAhQesHDx4cuPSVlJSkM2fO6OTJk0GVXVlZqaSkpLYcbotozJzrMnbsWEnS4cOHw/of9b/+9S+VlZVp3bp1QeuTkpJ04sSJoHVffvmlPvvss7A8zt9U35zrMnbsWH355Zf68MMPNXDgwDYYXcv54osvdN9992nDhg2aOnWqpK8Cq7S0VL///e+VkZERcedzY+Zcl3A/n0ePHq3S0lJVVVXpzJkz6tWrl8aOHRv4mDXSjrPU8JzrEu7HORRhfc9I586dNWbMGJWVlQWtf/fdd5WWlibpq38AnTp1UnFxceD5srIylZeXy+PxtOl4W0Jj5lyX0tJSSVJycnJrDq/VPfXUUxo9erTS09OD1ns8Hp08eVL79u0LrNu2bZtqa2sDJ3S4qm/OdSktLVVUVNQFH1mFg7Nnz+rs2bNBX7QpSR06dAhcEYy087kxc65LpJzPcXFx6tWrl9577z3t3btX06ZNkxR5x/mb6ptzXSLlODfGJX9lpLq6WocPHw48/uCDD1RaWqr4+Hj17dtXCxYs0PTp0zVhwgRNnjxZW7du1QsvvKAdO3ZI+urA5+TkKC8vT/Hx8YqNjdU999wjj8ejcePGGc3q4po75yNHjmjNmjX63ve+px49eujNN9/U/PnzNWHCBA0fPtxoVhfX0Jwlyefzaf369Vq6dOkF+w8ePFg33HCDZs+ercLCQp09e1a5ubn64Q9/qJSUlDabRyiaO+eSkhK9+uqrmjx5smJiYlRSUqL58+frtttuU/fu3dtsHqFoaM4TJ07UggUL1KVLF6WlpWnnzp16+umnA/fAROL53NCcI/F8Xr9+vXr16qW+ffvqwIEDmjt3rrKysgI37UbicW5ozuF4nFuU7S/zNGz79u2OpAuWmTNnBrZ56qmnnAEDBjjR0dFOenq6s3HjxqDX+OKLL5yf/OQnTvfu3Z2uXbs6P/jBD5yKioo2nknjNXfO5eXlzoQJE5z4+HjH7XY7AwYMcBYsWOBUVVUZzKZxGjPnFStWOF26dHFOnjxZ52v85z//cWbMmOFcfvnlTmxsrDNr1izn1KlTbTSD0DV3zvv27XPGjh3rxMXFOdHR0c7gwYOd3/zmN87p06fbcBahaWjOFRUVzu233+6kpKQ40dHRzsCBA52lS5c6tbW1gdeItPO5oTlH4vn86KOPOn369HE6derk9O3b17n//vsdv98f9BqRdpwbmnM4HueW5HKcCL1jCAAAhIWwvmcEAACEP2IEAACYIkYAAIApYgQAAJgiRgAAgCliBAAAmCJGAACAKWIEAACYIkYAAIApYgQAAJgiRgAAgCliBAAAmPo/4aSKOqMHfFgAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Create a histogram\n", "plt.hist(x)\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": 34, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAHHCAYAAABXx+fLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAA9hAAAPYQGoP6dpAAA7DElEQVR4nO3de1iUdf7/8RcHAUVBEQUxlFZNPAV5Ilx/HooNyl0lC81KhTWtNtKk2FYztazQWhRLV9bKysrVZdeltowi8lBfSRM0tfJYCqkc1BQlA4X790eXs00MCgiMzP18XNd9JZ/7c9/zfs8w+uo+zDgZhmEIAADARJztXQAAAEBjIwABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABJhAUFKTY2Fh7l4Gr1LBhwzRs2DB7lwE0KgIQ0MS8/vrrcnJy0rZt22yuHzZsmHr37n3Fj7Nu3TrNnTv3ivfT1AUFBcnJycnmEhUVZe/yANSRq70LANDw9u7dK2fn2v3/zrp167R06VJCkKTQ0FA9+uijVcYDAgLsUA2A+kAAAkzA3d3d3iXUWmlpqTw9Pe1dhiSpY8eOuvfee+1dBoB6xCkwwAR+fQ3Q+fPn9dRTT6lbt27y8PBQ27ZtNXjwYGVmZkqSYmNjtXTpUkmyOuVzUWlpqR599FEFBgbK3d1d3bt311//+lcZhmH1uOfOndPUqVPl6+urVq1aaeTIkTpy5IicnJysjizNnTtXTk5O+vrrr3X33XerTZs2Gjx4sCRp586dio2N1W9+8xt5eHjI399ff/zjH3XixAmrx7q4j3379unee++Vt7e32rVrpyeffFKGYSg/P1+jRo2Sl5eX/P39lZycXG/Pb1FRkdq1a6dhw4ZZPQcHDhyQp6enxo4daxn79NNPFRMTo06dOsnd3V2BgYGaPn26zp07Z7XP2NhYtWzZUnl5efr973+vli1bqmPHjpbXZdeuXbrpppvk6empzp07a9WqVVbbXzxVumnTJt1///1q27atvLy8NGHCBP3www+X7amsrExz5sxR165dLXX++c9/VllZ2ZU8VcBVgyNAQBN1+vRpHT9+vMr4+fPnL7vt3LlzlZSUpPvuu08DBw5USUmJtm3bptzcXP3ud7/T/fffr6NHjyozM1Nvvvmm1baGYWjkyJFav369Jk2apNDQUH344YdKTEzUkSNHtGjRIsvc2NhY/fOf/9T48eN14403auPGjRoxYkS1dcXExKhbt2567rnnLEEiMzNT3377reLi4uTv76+vvvpKy5cv11dffaXPP//cKphJ0tixY9WjRw/Nnz9f77//vp555hn5+Pjo73//u2666SYtWLBAb7/9th577DENGDBAQ4YMuezzdf78eZvPtaenp5o3b6727dtr2bJliomJ0UsvvaSpU6eqsrJSsbGxatWqlf72t79ZtklLS9OPP/6oBx98UG3bttXWrVv10ksv6fvvv1daWprV/isqKnTrrbdqyJAhev755/X2228rPj5enp6eeuKJJ3TPPfdo9OjRSk1N1YQJExQeHq5rr73Wah/x8fFq3bq15s6dq71792rZsmU6fPiwNmzYUOW5u6iyslIjR47UZ599pilTpqhHjx7atWuXFi1apH379ik9Pf2yzxlw1TMANCmvvfaaIemSS69evay26dy5szFx4kTLzyEhIcaIESMu+TgPPfSQYeuviPT0dEOS8cwzz1iN33nnnYaTk5Nx4MABwzAMIycnx5BkPPLII1bzYmNjDUnGnDlzLGNz5swxJBnjxo2r8ng//vhjlbF//OMfhiRj06ZNVfYxZcoUy9iFCxeMa665xnBycjLmz59vGf/hhx+M5s2bWz0n1encuXO1z3NSUpLV3HHjxhktWrQw9u3bZ7zwwguGJCM9Pf2y/SQlJRlOTk7G4cOHLWMTJ040JBnPPfdclbqdnJyM1atXW8b37NlT5Tm9+HvSr18/o7y83DL+/PPPG5KMd955xzI2dOhQY+jQoZaf33zzTcPZ2dn49NNPrepMTU01JBn/93//d5lnDbj6cQoMaKKWLl2qzMzMKsv1119/2W1bt26tr776Svv376/1465bt04uLi6aOnWq1fijjz4qwzD0wQcfSJIyMjIkSX/605+s5j388MPV7vuBBx6oMta8eXPLn3/66ScdP35cN954oyQpNze3yvz77rvP8mcXFxf1799fhmFo0qRJlvHWrVure/fu+vbbb6ut5ZfCwsJsPtfjxo2zmrdkyRJ5e3vrzjvv1JNPPqnx48dr1KhR1fZTWlqq48ePa9CgQTIMQ9u3b79kPxfr9vT01JgxYyzj3bt3V+vWrW32M2XKFDVr1szy84MPPihXV1etW7eu2n7T0tLUo0cPBQcH6/jx45blpptukiStX7++2m2BpoJTYEATNXDgQPXv37/KeJs2bWyervmlp59+WqNGjdJ1112n3r17KyoqSuPHj69ReDp8+LACAgLUqlUrq/EePXpY1l/8r7Ozc5VTMl27dq1237+eK0knT57UU089pdWrV6uoqMhq3enTp6vM79Spk9XP3t7e8vDwkK+vb5XxX19HVB1fX19FRERcdp6Pj49efPFFxcTEyM/PTy+++GKVOXl5eZo9e7befffdKtfi/LofDw8PtWvXrkrd11xzTZXTV97e3jav7enWrZvVzy1btlSHDh106NChavvYv3+/vvnmmyqPfdGvXwegKSIAASY0ZMgQHTx4UO+8844++ugjvfLKK1q0aJFSU1Otjjg0tl8eHblozJgx2rx5sxITExUaGqqWLVuqsrJSUVFRqqysrDLfxcWlRmOSqly0XR8+/PBDSdIPP/yg77//Xq1bt7asq6io0O9+9zudPHlSjz/+uIKDg+Xp6akjR44oNja2Sj/V1d3Q/VRWVqpPnz5auHChzfWBgYH18jiAPRGAAJPy8fFRXFyc4uLidPbsWQ0ZMkRz5861BKDqLpDt3LmzPv74Y505c8bqKNCePXss6y/+t7KyUt99953VUYgDBw7UuMYffvhBWVlZeuqppzR79mzLeF1O3TWGjIwMvfLKK/rzn/+st99+WxMnTtSWLVvk6vrzX7W7du3Svn379MYbb2jChAmW7S7efdcQ9u/fr+HDh1t+Pnv2rI4dO6bbbrut2m26dOmiL7/8UjfffHO1vwdAU8c1QIAJ/frUT8uWLdW1a1erW5wvfgbPqVOnrObedtttqqio0JIlS6zGFy1aJCcnJ916662SpMjISEmyugNKkl566aUa13nxSMevj2ykpKTUeB+N5dSpU5a76p577jm98sorys3N1XPPPWeZY6sfwzC0ePHiBqtr+fLlVncGLlu2TBcuXLC8TraMGTNGR44c0csvv1xl3blz51RaWtogtQKNiSNAgAn17NlTw4YNU79+/eTj46Nt27bpX//6l+Lj4y1z+vXrJ0maOnWqIiMj5eLiorvuukt/+MMfNHz4cD3xxBM6dOiQQkJC9NFHH+mdd97RI488oi5duli2v+OOO5SSkqITJ05YboPft2+fpOqPMP2Sl5eX5Rbw8+fPq2PHjvroo4/03XffNcCzUr0jR47orbfeqjLesmVLRUdHS5KmTZumEydO6OOPP5aLi4uioqJ033336ZlnntGoUaMUEhKi4OBgdenSRY899piOHDkiLy8v/fvf/67R5/LUVXl5uW6++WaNGTNGe/fu1d/+9jcNHjxYI0eOrHab8ePH65///KceeOABrV+/Xr/97W9VUVGhPXv26J///Kc+/PBDm9efAU2K/W5AA1AXF29v/uKLL2yuHzp06GVvg3/mmWeMgQMHGq1btzaaN29uBAcHG88++6zV7dIXLlwwHn74YaNdu3aGk5OT1S3xZ86cMaZPn24EBAQYzZo1M7p162a88MILRmVlpdXjlpaWGg899JDh4+NjtGzZ0oiOjjb27t1rSLK6Lf3iLezFxcVV+vn++++N22+/3WjdurXh7e1txMTEGEePHq32Vvpf72PixImGp6dnjZ4nWy51G3znzp0NwzCMd955x5BkJCcnW21bUlJidO7c2QgJCbE8t19//bURERFhtGzZ0vD19TUmT55sfPnll4Yk47XXXqtz3Z07d7b6aIOLvycbN240pkyZYrRp08Zo2bKlcc899xgnTpyoss9f3gZvGIZRXl5uLFiwwOjVq5fh7u5utGnTxujXr5/x1FNPGadPn77s8wZc7ZwMowGuAgSAauzYsUM33HCD3nrrLd1zzz32Lsdhvf7664qLi9MXX3zB0RrABq4BAtBgfv31DtLP1+84OzvX6BOYAaChcA0QgAbz/PPPKycnR8OHD5erq6s++OADffDBB5oyZQq3UgOwKwIQgAYzaNAgZWZmat68eTp79qw6deqkuXPn6oknnrB3aQBMjmuAAACA6XANEAAAMB0CEAAAMB2uAbKhsrJSR48eVatWrfgYeAAAmgjDMHTmzBkFBATI2fnSx3gIQDYcPXqUO1QAAGii8vPzdc0111xyDgHIhotf8Jifny8vLy87VwMAAGqipKREgYGBVl/UXB0CkA0XT3t5eXkRgAAAaGJqcvkKF0EDAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTcbV3AXA8xcXFKikpsXcZDcbLy0vt2rWzdxkAgCtAAEK9Ki4u1oN3362yEyfsXUqDcW/bVstWrSIEAUATRgBCvSopKVHZiRN61N1dgc2b27ucepd/7pyST5xQSUkJAQgAmjACEBpEYPPm6uLpae8yGkZZmb0rAABcIS6CBgAApkMAAgAApkMAAgAApkMAAgAApkMAAgAApkMAAgAApkMAAgAApkMAAgAApkMAAgAApkMAAgAApkMAAgAApkMAAgAApkMAAgAApkMAAgAApkMAAgAApkMAAgAApkMAAgAApkMAAgAApkMAAgAApmP3ALR06VIFBQXJw8NDYWFh2rp16yXnp6WlKTg4WB4eHurTp4/WrVtXZc4333yjkSNHytvbW56enhowYIDy8vIaqgUAANDE2DUArVmzRgkJCZozZ45yc3MVEhKiyMhIFRUV2Zy/efNmjRs3TpMmTdL27dsVHR2t6Oho7d692zLn4MGDGjx4sIKDg7Vhwwbt3LlTTz75pDw8PBqrLQAAcJVzMgzDsNeDh4WFacCAAVqyZIkkqbKyUoGBgXr44Yf1l7/8pcr8sWPHqrS0VO+9955l7MYbb1RoaKhSU1MlSXfddZeaNWumN998s851lZSUyNvbW6dPn5aXl1ed92NGBw8e1CMxMUpp3VpdPD3tXU69O1haqkdOnVJKWpq6dOli73IAAL9Qm3+/7XYEqLy8XDk5OYqIiPhfMc7OioiIUHZ2ts1tsrOzreZLUmRkpGV+ZWWl3n//fV133XWKjIxU+/btFRYWpvT09EvWUlZWppKSEqsFAAA4LrsFoOPHj6uiokJ+fn5W435+fiooKLC5TUFBwSXnFxUV6ezZs5o/f76ioqL00Ucf6fbbb9fo0aO1cePGamtJSkqSt7e3ZQkMDLzC7gAAwNXM7hdB16fKykpJ0qhRozR9+nSFhobqL3/5i37/+99bTpHZMmPGDJ0+fdqy5OfnN1bJAADADlzt9cC+vr5ycXFRYWGh1XhhYaH8/f1tbuPv73/J+b6+vnJ1dVXPnj2t5vTo0UOfffZZtbW4u7vL3d29Lm0AAIAmyG5HgNzc3NSvXz9lZWVZxiorK5WVlaXw8HCb24SHh1vNl6TMzEzLfDc3Nw0YMEB79+61mrNv3z517ty5njsAAABNld2OAElSQkKCJk6cqP79+2vgwIFKSUlRaWmp4uLiJEkTJkxQx44dlZSUJEmaNm2ahg4dquTkZI0YMUKrV6/Wtm3btHz5css+ExMTNXbsWA0ZMkTDhw9XRkaG/vvf/2rDhg32aBEAAFyF7BqAxo4dq+LiYs2ePVsFBQUKDQ1VRkaG5ULnvLw8OTv/7yDVoEGDtGrVKs2aNUszZ85Ut27dlJ6ert69e1vm3H777UpNTVVSUpKmTp2q7t2769///rcGDx7c6P0BAICrk10/B+hqxecA1R2fAwQAsJcm8TlAAAAA9kIAAgAApkMAAgAApkMAAgAApkMAAgAApkMAAgAApkMAAgAApkMAAgAApkMAAgAApkMAAgAApkMAAgAApkMAAgAApkMAAgAApkMAAgAApkMAAgAApkMAAgAApkMAAgAApkMAAgAApkMAAgAApkMAAgAApkMAAgAApkMAAgAApkMAAgAApkMAAgAApkMAAgAApkMAAgAApkMAAgAApkMAAgAApkMAAgAApkMAAgAApkMAAgAApkMAAgAApkMAAgAApkMAAgAApkMAAgAApkMAAgAApkMAAgAApkMAAgAApkMAAgAApkMAAgAApkMAAgAApkMAAgAApkMAAgAApnNVBKClS5cqKChIHh4eCgsL09atWy85Py0tTcHBwfLw8FCfPn20bt06q/WxsbFycnKyWqKiohqyBQAA0ITYPQCtWbNGCQkJmjNnjnJzcxUSEqLIyEgVFRXZnL9582aNGzdOkyZN0vbt2xUdHa3o6Gjt3r3bal5UVJSOHTtmWf7xj380RjsAAKAJsHsAWrhwoSZPnqy4uDj17NlTqampatGihVasWGFz/uLFixUVFaXExET16NFD8+bNU9++fbVkyRKree7u7vL397csbdq0aYx2AABAE2DXAFReXq6cnBxFRERYxpydnRUREaHs7Gyb22RnZ1vNl6TIyMgq8zds2KD27dure/fuevDBB3XixIlq6ygrK1NJSYnVAgAAHJddA9Dx48dVUVEhPz8/q3E/Pz8VFBTY3KagoOCy86OiorRy5UplZWVpwYIF2rhxo2699VZVVFTY3GdSUpK8vb0tS2Bg4BV2BgAArmau9i6gIdx1112WP/fp00fXX3+9unTpog0bNujmm2+uMn/GjBlKSEiw/FxSUkIIAgDAgdn1CJCvr69cXFxUWFhoNV5YWCh/f3+b2/j7+9dqviT95je/ka+vrw4cOGBzvbu7u7y8vKwWAADguOwagNzc3NSvXz9lZWVZxiorK5WVlaXw8HCb24SHh1vNl6TMzMxq50vS999/rxMnTqhDhw71UzgAAGjS7H4XWEJCgl5++WW98cYb+uabb/Tggw+qtLRUcXFxkqQJEyZoxowZlvnTpk1TRkaGkpOTtWfPHs2dO1fbtm1TfHy8JOns2bNKTEzU559/rkOHDikrK0ujRo1S165dFRkZaZceAQDA1cXu1wCNHTtWxcXFmj17tgoKChQaGqqMjAzLhc55eXlydv5fThs0aJBWrVqlWbNmaebMmerWrZvS09PVu3dvSZKLi4t27typN954Q6dOnVJAQIBuueUWzZs3T+7u7nbpEQAAXF2cDMMw7F3E1aakpETe3t46ffo01wPV0sGDB/VITIxSWrdWF09Pe5dT7w6WluqRU6eUkpamLl262LscAMAv1Obfb7ufAgMAAGhsBCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6rvYuAMDVp7i4WCUlJfYuo8F4eXmpXbt29i4DgB0RgABYKS4u1oN3362yEyfsXUqDcW/bVstWrSIEASZGAAJgpaSkRGUnTuhRd3cFNm9u73LqXf65c0o+cUIlJSUEIMDECEAAbAps3lxdPD3tXUbDKCuzdwUA7IyLoAEAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOlcFQFo6dKlCgoKkoeHh8LCwrR169ZLzk9LS1NwcLA8PDzUp08frVu3rtq5DzzwgJycnJSSklLPVQMAgKbK7gFozZo1SkhI0Jw5c5Sbm6uQkBBFRkaqqKjI5vzNmzdr3LhxmjRpkrZv367o6GhFR0dr9+7dVeb+5z//0eeff66AgICGbgMAADQhdg9ACxcu1OTJkxUXF6eePXsqNTVVLVq00IoVK2zOX7x4saKiopSYmKgePXpo3rx56tu3r5YsWWI178iRI3r44Yf19ttvq1mzZo3RCgAAaCLsGoDKy8uVk5OjiIgIy5izs7MiIiKUnZ1tc5vs7Gyr+ZIUGRlpNb+yslLjx49XYmKievXq1TDFAwCAJsvVng9+/PhxVVRUyM/Pz2rcz89Pe/bssblNQUGBzfkFBQWWnxcsWCBXV1dNnTq1RnWUlZWprKzM8nNJSUlNWwAAAE2Q3U+B1becnBwtXrxYr7/+upycnGq0TVJSkry9vS1LYGBgA1cJAADsya4ByNfXVy4uLiosLLQaLywslL+/v81t/P39Lzn/008/VVFRkTp16iRXV1e5urrq8OHDevTRRxUUFGRznzNmzNDp06ctS35+/pU3BwAArlp2DUBubm7q16+fsrKyLGOVlZXKyspSeHi4zW3Cw8Ot5ktSZmamZf748eO1c+dO7dixw7IEBAQoMTFRH374oc19uru7y8vLy2oBAACOy67XAElSQkKCJk6cqP79+2vgwIFKSUlRaWmp4uLiJEkTJkxQx44dlZSUJEmaNm2ahg4dquTkZI0YMUKrV6/Wtm3btHz5cklS27Zt1bZtW6vHaNasmfz9/dW9e/fGbQ4AAFyV7B6Axo4dq+LiYs2ePVsFBQUKDQ1VRkaG5ULnvLw8OTv/70DVoEGDtGrVKs2aNUszZ85Ut27dlJ6ert69e9urBQAA0MTYPQBJUnx8vOLj422u27BhQ5WxmJgYxcTE1Hj/hw4dqmNlAADAETncXWAAAACXQwACAACmQwACAACmU6cA9O2339Z3HQAAAI2mTgGoa9euGj58uN566y399NNP9V0TAABAg6pTAMrNzdX111+vhIQE+fv76/7779fWrVvruzYAAIAGUacAFBoaqsWLF+vo0aNasWKFjh07psGDB6t3795auHChiouL67tOAACAenNFF0G7urpq9OjRSktL04IFC3TgwAE99thjCgwM1IQJE3Ts2LH6qhMAAKDeXFEA2rZtm/70pz+pQ4cOWrhwoR577DEdPHhQmZmZOnr0qEaNGlVfdQIAANSbOn0S9MKFC/Xaa69p7969uu2227Ry5Urddtttlq+suPbaa/X6669X++3rAAAA9lSnALRs2TL98Y9/VGxsrDp06GBzTvv27fXqq69eUXEAAAANoU4BKDMzU506dbL6klJJMgxD+fn56tSpk9zc3DRx4sR6KRIAAKA+1ekaoC5duuj48eNVxk+ePKlrr732iosCAABoSHUKQIZh2Bw/e/asPDw8rqggAACAhlarU2AJCQmSJCcnJ82ePVstWrSwrKuoqNCWLVsUGhparwUCAADUt1oFoO3bt0v6+QjQrl275ObmZlnn5uamkJAQPfbYY/VbIQAAQD2rVQBav369JCkuLk6LFy+Wl5dXgxQFAADQkOp0F9hrr71W33UAAAA0mhoHoNGjR+v111+Xl5eXRo8efcm5a9euveLCAAAAGkqNA5C3t7ecnJwsfwYAAGiqahyAfnnai1NgAACgKavT5wCdO3dOP/74o+Xnw4cPKyUlRR999FG9FQYAANBQ6hSARo0apZUrV0qSTp06pYEDByo5OVmjRo3SsmXL6rVAAACA+lanAJSbm6v/9//+nyTpX//6l/z9/XX48GGtXLlSL774Yr0WCAAAUN/qFIB+/PFHtWrVSpL00UcfafTo0XJ2dtaNN96ow4cP12uBAAAA9a1OAahr165KT09Xfn6+PvzwQ91yyy2SpKKiIj4cEQAAXPXqFIBmz56txx57TEFBQQoLC1N4eLikn48G3XDDDfVaIAAAQH2r0ydB33nnnRo8eLCOHTumkJAQy/jNN9+s22+/vd6KAwAAaAh1CkCS5O/vL39/f6uxgQMHXnFBAAAADa1OAai0tFTz589XVlaWioqKVFlZabX+22+/rZfiAAAAGkKdAtB9992njRs3avz48erQoYPlKzIAAACagjoFoA8++EDvv/++fvvb39Z3PQAAAA2uTneBtWnTRj4+PvVdCwAAQKOoUwCaN2+eZs+ebfV9YAAAAE1FnU6BJScn6+DBg/Lz81NQUJCaNWtmtT43N7deigMAAGgIdQpA0dHR9VwGAABA46lTAJozZ0591wEAANBo6nQNkCSdOnVKr7zyimbMmKGTJ09K+vnU15EjR+qtOAAAgIZQpyNAO3fuVEREhLy9vXXo0CFNnjxZPj4+Wrt2rfLy8rRy5cr6rhMAAKDe1OkIUEJCgmJjY7V//355eHhYxm+77TZt2rSp3ooDAABoCHUKQF988YXuv//+KuMdO3ZUQUHBFRcFAADQkOoUgNzd3VVSUlJlfN++fWrXrt0VFwUAANCQ6hSARo4cqaefflrnz5+XJDk5OSkvL0+PP/647rjjjnotEAAAoL7VKQAlJyfr7Nmzateunc6dO6ehQ4eqa9euatWqlZ599tn6rhEAAKBe1SkAeXt7KzMzU++//75efPFFxcfHa926ddq4caM8PT1rvb+lS5cqKChIHh4eCgsL09atWy85Py0tTcHBwfLw8FCfPn20bt06q/Vz585VcHCwPD091aZNG0VERGjLli21rgsAADimWgegyspKrVixQr///e91//33a9myZfrss8909OhRGYZR6wLWrFmjhIQEzZkzR7m5uQoJCVFkZKSKiopszt+8ebPGjRunSZMmafv27YqOjlZ0dLR2795tmXPddddpyZIl2rVrlz777DMFBQXplltuUXFxca3rAwAAjqdWAcgwDI0cOVL33Xefjhw5oj59+qhXr146fPiwYmNjdfvtt9e6gIULF2ry5MmKi4tTz549lZqaqhYtWmjFihU25y9evFhRUVFKTExUjx49NG/ePPXt21dLliyxzLn77rsVERGh3/zmN+rVq5cWLlyokpIS7dy5s9b1AQAAx1OrD0J8/fXXtWnTJmVlZWn48OFW6z755BNFR0dr5cqVmjBhQo32V15erpycHM2YMcMy5uzsrIiICGVnZ9vcJjs7WwkJCVZjkZGRSk9Pr/Yxli9fLm9vb4WEhNicU1ZWprKyMsvPtu5wAwAAjqNWR4D+8Y9/aObMmVXCjyTddNNN+stf/qK33367xvs7fvy4Kioq5OfnZzXu5+dX7ecJFRQU1Gj+e++9p5YtW8rDw0OLFi1SZmamfH19be4zKSlJ3t7eliUwMLDGPQAAgKanVgFo586dioqKqnb9rbfeqi+//PKKi6oPw4cP144dO7R582ZFRUVpzJgx1V5XNGPGDJ0+fdqy5OfnN3K1AACgMdUqAJ08ebLK0Zdf8vPz0w8//FDj/fn6+srFxUWFhYVW44WFhfL397e5jb+/f43me3p6qmvXrrrxxhv16quvytXVVa+++qrNfbq7u8vLy8tqAQAAjqtWAaiiokKurtVfNuTi4qILFy7UeH9ubm7q16+fsrKyLGOVlZXKyspSeHi4zW3Cw8Ot5ktSZmZmtfN/ud9fXucDAADMq1YXQRuGodjYWLm7u9tcX5eAkZCQoIkTJ6p///4aOHCgUlJSVFpaqri4OEnShAkT1LFjRyUlJUmSpk2bpqFDhyo5OVkjRozQ6tWrtW3bNi1fvlySVFpaqmeffVYjR45Uhw4ddPz4cS1dulRHjhxRTExMresDAACOp1YBaOLEiZedU9M7wC4aO3asiouLNXv2bBUUFCg0NFQZGRmWU215eXlydv7fgapBgwZp1apVmjVrlmbOnKlu3bopPT1dvXv3lvTzUag9e/bojTfe0PHjx9W2bVsNGDBAn376qXr16lWr2gAAgGOqVQB67bXXGqSI+Ph4xcfH21y3YcOGKmMxMTHVHs3x8PDQ2rVr67M8AADgYOr0VRgAAABNGQEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYjqu9CzCj4uJilZSU2LuMBnH48GFduHDB3mUAl1R2/rwOHz5s7zIaTHl5udzc3OxdRoNy9B4dvT8vLy+1a9fOrjUQgBpZcXGxHrz7bpWdOGHvUhpEaVmZCvPzVebtbe9SAJtOlJfr28OHNf/hh+Xu7m7vcupd2fnz+u7oUXXt2FGuro75V7yj9+jo/UmSe9u2WrZqlV1DkGM+s1exkpISlZ04oUfd3RXYvLm9y6l3n//wg569cEEVHAXCVepsRYXcLlzQdDc3Xde6tb3LqXef//CDnj13TlNdXByyP8nxe3T0/vLPnVPyiRMqKSkhAJlRYPPm6uLpae8y6t3hc+fsXQJQI9d4eDj0e9BR+5Mcv0dH70+SVFZm7wq4CBoAAJgPAQgAAJjOVRGAli5dqqCgIHl4eCgsLExbt2695Py0tDQFBwfLw8NDffr00bp16yzrzp8/r8cff1x9+vSRp6enAgICNGHCBB09erSh2wAAAE2E3QPQmjVrlJCQoDlz5ig3N1chISGKjIxUUVGRzfmbN2/WuHHjNGnSJG3fvl3R0dGKjo7W7t27JUk//vijcnNz9eSTTyo3N1dr167V3r17NXLkyMZsCwAAXMXsHoAWLlyoyZMnKy4uTj179lRqaqpatGihFStW2Jy/ePFiRUVFKTExUT169NC8efPUt29fLVmyRJLk7e2tzMxMjRkzRt27d9eNN96oJUuWKCcnR3l5eY3ZGgAAuErZNQCVl5crJydHERERljFnZ2dFREQoOzvb5jbZ2dlW8yUpMjKy2vmSdPr0aTk5Oal1NbcTlpWVqaSkxGoBAACOy64B6Pjx46qoqJCfn5/VuJ+fnwoKCmxuU1BQUKv5P/30kx5//HGNGzdOXl5eNuckJSXJ29vbsgQGBtahGwAA0FTY/RRYQzp//rzGjBkjwzC0bNmyaufNmDFDp0+ftiz5+fmNWCUAAGhsdv0gRF9fX7m4uKiwsNBqvLCwUP7+/ja38ff3r9H8i+Hn8OHD+uSTT6o9+iNJ7u7uDvmR+AAAwDa7HgFyc3NTv379lJWVZRmrrKxUVlaWwsPDbW4THh5uNV+SMjMzreZfDD/79+/Xxx9/rLZt2zZMAwAAoEmy+1dhJCQkaOLEierfv78GDhyolJQUlZaWKi4uTpI0YcIEdezYUUlJSZKkadOmaejQoUpOTtaIESO0evVqbdu2TcuXL5f0c/i58847lZubq/fee08VFRWW64N8fHwc+tt1AQBAzdg9AI0dO1bFxcWaPXu2CgoKFBoaqoyMDMuFznl5eXJ2/t+BqkGDBmnVqlWaNWuWZs6cqW7duik9PV29e/eWJB05ckTvvvuuJCk0NNTqsdavX69hw4Y1Sl8AAODqZfcAJEnx8fGKj4+3uW7Dhg1VxmJiYhQTE2NzflBQkAzDqM/yAACAg3Hou8AAAABsIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTsXsAWrp0qYKCguTh4aGwsDBt3br1kvPT0tIUHBwsDw8P9enTR+vWrbNav3btWt1yyy1q27atnJyctGPHjgasHgAANEV2DUBr1qxRQkKC5syZo9zcXIWEhCgyMlJFRUU252/evFnjxo3TpEmTtH37dkVHRys6Olq7d++2zCktLdXgwYO1YMGCxmoDAAA0MXYNQAsXLtTkyZMVFxennj17KjU1VS1atNCKFStszl+8eLGioqKUmJioHj16aN68eerbt6+WLFlimTN+/HjNnj1bERERjdUGAABoYuwWgMrLy5WTk2MVVJydnRUREaHs7Gyb22RnZ1cJNpGRkdXOr6mysjKVlJRYLQAAwHHZLQAdP35cFRUV8vPzsxr38/NTQUGBzW0KCgpqNb+mkpKS5O3tbVkCAwOvaH8AAODqZveLoK8GM2bM0OnTpy1Lfn6+vUsCAAANyNVeD+zr6ysXFxcVFhZajRcWFsrf39/mNv7+/rWaX1Pu7u5yd3e/on0AAICmw25HgNzc3NSvXz9lZWVZxiorK5WVlaXw8HCb24SHh1vNl6TMzMxq5wMAANhityNAkpSQkKCJEyeqf//+GjhwoFJSUlRaWqq4uDhJ0oQJE9SxY0clJSVJkqZNm6ahQ4cqOTlZI0aM0OrVq7Vt2zYtX77css+TJ08qLy9PR48elSTt3btX0s9Hj670SBEAAHAMdg1AY8eOVXFxsWbPnq2CggKFhoYqIyPDcqFzXl6enJ3/d5Bq0KBBWrVqlWbNmqWZM2eqW7duSk9PV+/evS1z3n33XUuAkqS77rpLkjRnzhzNnTu3cRoDAABXNbsGIEmKj49XfHy8zXUbNmyoMhYTE6OYmJhq9xcbG6vY2Nh6qg4AADgi7gIDAACmQwACAACmQwACAACmQwACAACmQwACAACmQwACAACmQwACAACmQwACAACmQwACAACmQwACAACmQwACAACmQwACAACmQwACAACmQwACAACmQwACAACmQwACAACmQwACAACmQwACAACmQwACAACmQwACAACmQwACAACmQwACAACmQwACAACmQwACAACmQwACAACmQwACAACmQwACAACmQwACAACmQwACAACmQwACAACmQwACAACmQwACAACmQwACAACmQwACAACmQwACAACmQwACAACmQwACAACmQwACAACmQwACAACmQwACAACmQwACAACmQwACAACmQwACAACmc1UEoKVLlyooKEgeHh4KCwvT1q1bLzk/LS1NwcHB8vDwUJ8+fbRu3Tqr9YZhaPbs2erQoYOaN2+uiIgI7d+/vyFbAAAATYjdA9CaNWuUkJCgOXPmKDc3VyEhIYqMjFRRUZHN+Zs3b9a4ceM0adIkbd++XdHR0YqOjtbu3bstc55//nm9+OKLSk1N1ZYtW+Tp6anIyEj99NNPjdUWAAC4itk9AC1cuFCTJ09WXFycevbsqdTUVLVo0UIrVqywOX/x4sWKiopSYmKievTooXnz5qlv375asmSJpJ+P/qSkpGjWrFkaNWqUrr/+eq1cuVJHjx5Venp6I3YGAACuVnYNQOXl5crJyVFERIRlzNnZWREREcrOzra5TXZ2ttV8SYqMjLTM/+6771RQUGA1x9vbW2FhYdXuEwAAmIurPR/8+PHjqqiokJ+fn9W4n5+f9uzZY3ObgoICm/MLCgos6y+OVTfn18rKylRWVmb5+fTp05KkkpKSWnRTM2fOnNH5igrtOXNGZy5cqPf929vB0lJVGIb2lZaqolkze5dT746cO6cfy8r09ddf68yZM/Yup0Hk5+frp7IyfkebKEfvT3L8Hh29vyPnzul8RYXOnDlT7//OXtyfYRiXnWvXAHS1SEpK0lNPPVVlPDAwsMEe88MG2/PV4c5du+xdQoP6ZORIe5fQ4D62dwENzNF/Rx29P8nxe3T0/j684YYG2/eZM2fk7e19yTl2DUC+vr5ycXFRYWGh1XhhYaH8/f1tbuPv73/J+Rf/W1hYqA4dOljNCQ0NtbnPGTNmKCEhwfJzZWWlTp48qbZt28rJyana+ktKShQYGKj8/Hx5eXlV36gDoWd6dlT0TM+Oykw9G4ahM2fOKCAg4LJz7RqA3Nzc1K9fP2VlZSk6OlrSz+EjKytL8fHxNrcJDw9XVlaWHnnkEctYZmamwsPDJUnXXnut/P39lZWVZQk8JSUl2rJlix588EGb+3R3d5e7u7vVWOvWrWvch5eXl8P/Uv0aPZsDPZsDPZuDWXq+3JGfi+x+CiwhIUETJ05U//79NXDgQKWkpKi0tFRxcXGSpAkTJqhjx45KSkqSJE2bNk1Dhw5VcnKyRowYodWrV2vbtm1avny5JMnJyUmPPPKInnnmGXXr1k3XXnutnnzySQUEBFhCFgAAMDe7B6CxY8equLhYs2fPVkFBgUJDQ5WRkWG5iDkvL0/Ozv+7WW3QoEFatWqVZs2apZkzZ6pbt25KT09X7969LXP+/Oc/q7S0VFOmTNGpU6c0ePBgZWRkyMPDo9H7AwAAVx+7ByBJio+Pr/aU14YNG6qMxcTEKCYmptr9OTk56emnn9bTTz9dXyXa5O7urjlz5lQ5febI6Nkc6Nkc6NkczNhzTTgZNblXDAAAwIHY/ZOgAQAAGhsBCAAAmA4BCAAAmA4BCAAAmA4ByIZNmzbpD3/4gwICAuTk5GTzW+S/+eYbjRw5Ut7e3vL09NSAAQOUl5dnWf/TTz/poYceUtu2bdWyZUvdcccdVT7B+mpSHz0PGzZMTk5OVssDDzzQiF3UzuV6/nUvF5cXXnjBMufkyZO655575OXlpdatW2vSpEk6e/ZsI3dSc/XRc1BQUJX18+fPb+ROauZy/Z49e1bx8fG65ppr1Lx5c/Xs2VOpqalWcxztvVyTnh3tvVxYWKjY2FgFBASoRYsWioqK0v79+63mONrrXJOem9rrXN8IQDaUlpYqJCRES5cutbn+4MGDGjx4sIKDg7Vhwwbt3LlTTz75pNXnDE2fPl3//e9/lZaWpo0bN+ro0aMaPXp0Y7VQa/XRsyRNnjxZx44dsyzPP/98Y5RfJ5fr+Zd9HDt2TCtWrJCTk5PuuOMOy5x77rlHX331lTIzM/Xee+9p06ZNmjJlSmO1UGv10bMkPf3001bzHn744cYov9Yu129CQoIyMjL01ltv6ZtvvtEjjzyi+Ph4vfvuu5Y5jvZerknPkuO8lw3DUHR0tL799lu988472r59uzp37qyIiAiVlpZa5jnS61zTnqWm9TrXOwOXJMn4z3/+YzU2duxY49577612m1OnThnNmjUz0tLSLGPffPONIcnIzs5uqFLrTV16NgzDGDp0qDFt2rSGK6wB2er510aNGmXcdNNNlp+//vprQ5LxxRdfWMY++OADw8nJyThy5EhDlVpv6tKzYRhG586djUWLFjVcYQ3EVr+9evUynn76aauxvn37Gk888YRhGI75Xr5cz4bhWO/lvXv3GpKM3bt3W8YqKiqMdu3aGS+//LJhGI73OtekZ8No2q9zfeAIUC1VVlbq/fff13XXXafIyEi1b99eYWFhVocfc3JydP78eUVERFjGgoOD1alTJ2VnZ9uh6itTk54vevvtt+Xr66vevXtrxowZ+vHHHxu/4AZQWFio999/X5MmTbKMZWdnq3Xr1urfv79lLCIiQs7OztqyZYs9yqxXtnq+aP78+Wrbtq1uuOEGvfDCC7pw4YIdKrxygwYN0rvvvqsjR47IMAytX79e+/bt0y233CLJ8d7L0uV7vshR3stlZWWSZHW02tnZWe7u7vrss88kOd7rXJOeL3KU17kuropPgm5KioqKdPbsWc2fP1/PPPOMFixYoIyMDI0ePVrr16/X0KFDVVBQIDc3typfqOrn56eCggL7FH4FatKzJN19993q3LmzAgICtHPnTj3++OPau3ev1q5da+cOrtwbb7yhVq1aWR0SLygoUPv27a3mubq6ysfHp0m+zr9mq2dJmjp1qvr27SsfHx9t3rxZM2bM0LFjx7Rw4UI7VVp3L730kqZMmaJrrrlGrq6ucnZ21ssvv6whQ4ZIksO9l6XL9yw51nv5YpCZMWOG/v73v8vT01OLFi3S999/r2PHjklyvNe5Jj1LjvU61wUBqJYqKyslSaNGjdL06dMlSaGhodq8ebNSU1MtYcCR1LTnX1770qdPH3Xo0EE333yzDh48qC5dujR+4fVoxYoVuueee0z1fXLV9ZyQkGD58/XXXy83Nzfdf//9SkpKanIftf/SSy/p888/17vvvqvOnTtr06ZNeuihhxQQEGB1NMCR1KRnR3ovN2vWTGvXrtWkSZPk4+MjFxcXRURE6NZbb5XhoF+EUNOeHel1rgsCUC35+vrK1dVVPXv2tBrv0aOH5dCiv7+/ysvLderUKav/oygsLJS/v39jllsvatKzLWFhYZKkAwcONOk306effqq9e/dqzZo1VuP+/v4qKiqyGrtw4YJOnjzZJF/nX6quZ1vCwsJ04cIFHTp0SN27d2+E6urHuXPnNHPmTP3nP//RiBEjJP0c6Hbs2KG//vWvioiIcLj3ck16tqWpv5f79eunHTt26PTp0yovL1e7du0UFhZmOX3taK+zdPmebWnqr3NtcQ1QLbm5uWnAgAHau3ev1fi+ffvUuXNnST//4jVr1kxZWVmW9Xv37lVeXp7Cw8Mbtd76UJOebdmxY4ckqUOHDg1ZXoN79dVX1a9fP4WEhFiNh4eH69SpU8rJybGMffLJJ6qsrLT8RdJUVdezLTt27JCzs3OV04FXu/Pnz+v8+fNydrb+a9DFxcVy1NPR3ss16dkWR3kve3t7q127dtq/f7+2bdumUaNGSXK81/mXquvZFkd5nWuKI0A2nD17VgcOHLD8/N1332nHjh3y8fFRp06dlJiYqLFjx2rIkCEaPny4MjIy9N///tfyzfXe3t6aNGmSEhIS5OPjIy8vLz388MMKDw/XjTfeaKeuLu1Kez548KBWrVql2267TW3bttXOnTs1ffp0DRkyRNdff72durq0y/UsSSUlJUpLS1NycnKV7Xv06KGoqChNnjxZqampOn/+vOLj43XXXXcpICCg0fqojSvtOTs7W1u2bNHw4cPVqlUrZWdna/r06br33nvVpk2bRuujpi7X79ChQ5WYmKjmzZurc+fO2rhxo1auXGm5nskR38uX69kR38tpaWlq166dOnXqpF27dmnatGmKjo62XPjtiK/z5Xpuiq9zvbPvTWhXp/Xr1xuSqiwTJ060zHn11VeNrl27Gh4eHkZISIiRnp5utY9z584Zf/rTn4w2bdoYLVq0MG6//Xbj2LFjjdxJzV1pz3l5ecaQIUMMHx8fw93d3ejatauRmJhonD592g7d1ExNev773/9uNG/e3Dh16pTNfZw4ccIYN26c0bJlS8PLy8uIi4szzpw500gd1N6V9pyTk2OEhYUZ3t7ehoeHh9GjRw/jueeeM3766adG7KLmLtfvsWPHjNjYWCMgIMDw8PAwunfvbiQnJxuVlZWWfTjae/lyPTvie3nx4sXGNddcYzRr1szo1KmTMWvWLKOsrMxqH472Ol+u56b4Otc3J8Nw0KvAAAAAqsE1QAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAcXnFxsfz9/fXcc89ZxjZv3iw3NzerbwAHYB58FxgAU1i3bp2io6O1efNmde/eXaGhoRo1apTlW9ABmAsBCIBpPPTQQ/r444/Vv39/7dq1S1988YXc3d3tXRYAOyAAATCNc+fOqXfv3srPz1dOTo769Olj75IA2AnXAAEwjYMHD+ro0aOqrKzUoUOH7F0OADviCBAAUygvL9fAgQMVGhqq7t27KyUlRbt27VL79u3tXRoAOyAAATCFxMRE/etf/9KXX36pli1baujQofL29tZ7771n79IA2AGnwAA4vA0bNiglJUVvvvmmvLy85OzsrDfffFOffvqpli1bZu/yANgBR4AAAIDpcAQIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYzv8HM62UEhHR8O4AAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Customize your histogram\n", "plt.hist(x, bins=8, edgecolor='black', color='red', alpha=0.7, density=True)\n", "plt.xlabel('x')\n", "plt.ylabel('Density')\n", "plt.title('Histogram Example')\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": 35, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAHHCAYAAABXx+fLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAA9hAAAPYQGoP6dpAAA8uklEQVR4nO3de1iUdf7/8deAAoqCB5QRRS018RTkiXD9Sgc2KHeVLDJrU1jTaiM1im0xQ802tFbE0pWs7Oxa7rrUllFE2mEhTdDUymMppnLSFEUDhfv3Rz9nmxgUERjgfj6ua66az/2573m/53bs1X2YsRiGYQgAAMBEXJxdAAAAQEMjAAEAANMhAAEAANMhAAEAANMhAAEAANMhAAEAANMhAAEAANMhAAEAANMhAAEAANMhAAEm0LNnT0VHRzu7DDRS11xzja655hpnlwE0KAIQ0MS8/PLLslgs2rRpk8Pl11xzjQYOHHjJr7N27VrNmTPnkrfT1PXs2VMWi8XhIyIiwtnlAailFs4uAED927lzp1xcLu7/d9auXaulS5cSgiQFBQXpoYceqjLu5+fnhGoA1AUCEGAC7u7uzi7hopWWlsrT09PZZUiSunbtqj/84Q/OLgNAHeIUGGACv74G6MyZM5o7d6769OkjDw8PdezYUSNHjlRGRoYkKTo6WkuXLpUku1M+55SWluqhhx6Sv7+/3N3d1bdvX/3tb3+TYRh2r3v69GlNmzZNPj4+atu2rcaMGaODBw/KYrHYHVmaM2eOLBaLvvnmG91xxx1q3769Ro4cKUnaunWroqOjdfnll8vDw0NWq1V//OMfdeTIEbvXOreNXbt26Q9/+IO8vb3VqVMnPfbYYzIMQwcOHNDYsWPl5eUlq9WqhQsX1tn7W1hYqE6dOumaa66xew/27NkjT09PjR8/3jb22WefKSoqSt27d5e7u7v8/f314IMP6vTp03bbjI6OVps2bZSXl6ff/e53atOmjbp27WrbL9u2bdN1110nT09P9ejRQytXrrRb/9yp0k8//VT33HOPOnbsKC8vL02cOFE//vjjBXsqKyvT7Nmz1bt3b1udf/7zn1VWVnYpbxXQaHAECGiijh8/ruLi4irjZ86cueC6c+bMUVJSku6++24NHz5cJSUl2rRpk3Jzc/Xb3/5W99xzjw4dOqSMjAy99tprdusahqExY8Zo3bp1mjx5soKCgvTBBx8oPj5eBw8e1KJFi2xzo6Oj9dZbb+muu+7S1VdfrU8++USjR4+utq6oqCj16dNHTz75pC1IZGRk6LvvvlNMTIysVqu+/vprLV++XF9//bW++OILu2AmSePHj1e/fv00f/58vffee3riiSfUoUMHPffcc7ruuuu0YMECvfHGG3r44Yc1bNgwjRo16oLv15kzZxy+156enmrVqpU6d+6sZcuWKSoqSs8++6ymTZumyspKRUdHq23btvr73/9uW2f16tU6deqU7rvvPnXs2FEbN27Us88+qx9++EGrV6+2235FRYVuvPFGjRo1Sk899ZTeeOMNxcbGytPTU48++qjuvPNOjRs3TqmpqZo4caJCQkJ02WWX2W0jNjZW7dq105w5c7Rz504tW7ZM+/fv1/r166u8d+dUVlZqzJgx+vzzzzV16lT169dP27Zt06JFi7Rr1y6lpaVd8D0DGj0DQJPy0ksvGZLO+xgwYIDdOj169DAmTZpkex4YGGiMHj36vK9z//33G47+ikhLSzMkGU888YTd+K233mpYLBZjz549hmEYRk5OjiHJmDFjht286OhoQ5Ixe/Zs29js2bMNScaECROqvN6pU6eqjP3jH/8wJBmffvpplW1MnTrVNnb27FmjW7duhsViMebPn28b//HHH41WrVrZvSfV6dGjR7Xvc1JSkt3cCRMmGK1btzZ27dplPP3004YkIy0t7YL9JCUlGRaLxdi/f79tbNKkSYYk48knn6xSt8ViMVatWmUb37FjR5X39NyfkyFDhhjl5eW28aeeesqQZLz99tu2sdDQUCM0NNT2/LXXXjNcXFyMzz77zK7O1NRUQ5Lx3//+9wLvGtD4cQoMaKKWLl2qjIyMKo8rr7zyguu2a9dOX3/9tXbv3n3Rr7t27Vq5urpq2rRpduMPPfSQDMPQ+++/L0lKT0+XJP3pT3+ym/fAAw9Uu+177723ylirVq1s//7TTz+puLhYV199tSQpNze3yvy7777b9u+urq4aOnSoDMPQ5MmTbePt2rVT37599d1331Vbyy8FBwc7fK8nTJhgN2/JkiXy9vbWrbfeqscee0x33XWXxo4dW20/paWlKi4u1ogRI2QYhjZv3nzefs7V7enpqdtuu8023rdvX7Vr185hP1OnTlXLli1tz++77z61aNFCa9eurbbf1atXq1+/fgoICFBxcbHtcd1110mS1q1bV+26QFPBKTCgiRo+fLiGDh1aZbx9+/YOT9f80uOPP66xY8fqiiuu0MCBAxUREaG77rqrRuFp//798vPzU9u2be3G+/XrZ1t+7p8uLi5VTsn07t272m3/eq4kHT16VHPnztWqVatUWFhot+z48eNV5nfv3t3uube3tzw8POTj41Nl/NfXEVXHx8dHYWFhF5zXoUMHPfPMM4qKipKvr6+eeeaZKnPy8vKUmJiod955p8q1OL/ux8PDQ506dapSd7du3aqcvvL29nZ4bU+fPn3snrdp00ZdunTRvn37qu1j9+7d+vbbb6u89jm/3g9AU0QAAkxo1KhR2rt3r95++219+OGHeuGFF7Ro0SKlpqbaHXFoaL88OnLObbfdpqysLMXHxysoKEht2rRRZWWlIiIiVFlZWWW+q6trjcYkVblouy588MEHkqQff/xRP/zwg9q1a2dbVlFRod/+9rc6evSoHnnkEQUEBMjT01MHDx5UdHR0lX6qq7u++6msrNSgQYOUnJzscLm/v3+dvA7gTAQgwKQ6dOigmJgYxcTE6OTJkxo1apTmzJljC0DVXSDbo0cPffTRRzpx4oTdUaAdO3bYlp/7Z2Vlpb7//nu7oxB79uypcY0//vijMjMzNXfuXCUmJtrGa3PqriGkp6frhRde0J///Ge98cYbmjRpkjZs2KAWLX7+q3bbtm3atWuXXnnlFU2cONG23rm77+rD7t27de2119qenzx5UocPH9ZNN91U7Tq9evXSV199peuvv77aPwdAU8c1QIAJ/frUT5s2bdS7d2+7W5zPfQfPsWPH7ObedNNNqqio0JIlS+zGFy1aJIvFohtvvFGSFB4eLkl2d0BJ0rPPPlvjOs8d6fj1kY2UlJQab6OhHDt2zHZX3ZNPPqkXXnhBubm5evLJJ21zHPVjGIYWL15cb3UtX77c7s7AZcuW6ezZs7b95Mhtt92mgwcP6vnnn6+y7PTp0yotLa2XWoGGxBEgwIT69++va665RkOGDFGHDh20adMm/fOf/1RsbKxtzpAhQyRJ06ZNU3h4uFxdXXX77bfr97//va699lo9+uij2rdvnwIDA/Xhhx/q7bff1owZM9SrVy/b+rfccotSUlJ05MgR223wu3btklT9EaZf8vLyst0CfubMGXXt2lUffvihvv/++3p4V6p38OBBvf7661XG27Rpo8jISEnS9OnTdeTIEX300UdydXVVRESE7r77bj3xxBMaO3asAgMDFRAQoF69eunhhx/WwYMH5eXlpX/96181+l6e2iovL9f111+v2267TTt37tTf//53jRw5UmPGjKl2nbvuuktvvfWW7r33Xq1bt06/+c1vVFFRoR07duitt97SBx984PD6M6BJcd4NaABq49ztzV9++aXD5aGhoRe8Df6JJ54whg8fbrRr185o1aqVERAQYPz1r3+1u1367NmzxgMPPGB06tTJsFgsdrfEnzhxwnjwwQcNPz8/o2XLlkafPn2Mp59+2qisrLR73dLSUuP+++83OnToYLRp08aIjIw0du7caUiyuy393C3sRUVFVfr54YcfjJtvvtlo166d4e3tbURFRRmHDh2q9lb6X29j0qRJhqenZ43eJ0fOdxt8jx49DMMwjLffftuQZCxcuNBu3ZKSEqNHjx5GYGCg7b395ptvjLCwMKNNmzaGj4+PMWXKFOOrr74yJBkvvfRSrevu0aOH3VcbnPtz8sknnxhTp0412rdvb7Rp08a48847jSNHjlTZ5i9vgzcMwygvLzcWLFhgDBgwwHB3dzfat29vDBkyxJg7d65x/PjxC75vQGNnMYx6uAoQAKqxZcsWXXXVVXr99dd15513OrucZuvll19WTEyMvvzyS47WAA5wDRCAevPrn3eQfr5+x8XFpUbfwAwA9YVrgADUm6eeeko5OTm69tpr1aJFC73//vt6//33NXXqVG6lBuBUBCAA9WbEiBHKyMjQvHnzdPLkSXXv3l1z5szRo48+6uzSAJgc1wABAADT4RogAABgOgQgAABgOlwD5EBlZaUOHTqktm3b8jXwAAA0EYZh6MSJE/Lz85OLy/mP8RCAHDh06BB3qAAA0EQdOHBA3bp1O+8cApAD537g8cCBA/Ly8nJyNQAAoCZKSkrk7+9v90PN1SEAOXDutJeXlxcBCACAJqYml69wETQAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdpwegpUuXqmfPnvLw8FBwcLA2btx43vmrV69WQECAPDw8NGjQIK1du7bKnG+//VZjxoyRt7e3PD09NWzYMOXl5dVXCwAAoIlxagB68803FRcXp9mzZys3N1eBgYEKDw9XYWGhw/lZWVmaMGGCJk+erM2bNysyMlKRkZHavn27bc7evXs1cuRIBQQEaP369dq6dasee+wxeXh4NFRbAACgkbMYhmE468WDg4M1bNgwLVmyRJJUWVkpf39/PfDAA/rLX/5SZf748eNVWlqqd9991zZ29dVXKygoSKmpqZKk22+/XS1bttRrr71W67pKSkrk7e2t48eP82OoAAA0ERfz32+nHQEqLy9XTk6OwsLC/leMi4vCwsKUnZ3tcJ3s7Gy7+ZIUHh5um19ZWan33ntPV1xxhcLDw9W5c2cFBwcrLS2t3voAAABNTwtnvXBxcbEqKirk6+trN+7r66sdO3Y4XCc/P9/h/Pz8fElSYWGhTp48qfnz5+uJJ57QggULlJ6ernHjxmndunUKDQ11uN2ysjKVlZXZnpeUlFxKa6ZXVFTUrN9DLy8vderUydllAAAugdMCUH2orKyUJI0dO1YPPvigJCkoKEhZWVlKTU2tNgAlJSVp7ty5DVZnc1ZUVKT77rhDZUeOOLuUeuPesaOWrVxJCAKAJsxpAcjHx0eurq4qKCiwGy8oKJDVanW4jtVqPe98Hx8ftWjRQv3797eb069fP33++efV1pKQkKC4uDjb85KSEvn7+19UP/hZSUmJyo4c0UPu7vJv1crZ5dS5A6dPa+GRIyopKSEAAUAT5rQA5ObmpiFDhigzM1ORkZGSfj6Ck5mZqdjYWIfrhISEKDMzUzNmzLCNZWRkKCQkxLbNYcOGaefOnXbr7dq1Sz169Ki2Fnd3d7m7u19aQ7Dj36qVenl6OruM+vGL06UAgKbJqafA4uLiNGnSJA0dOlTDhw9XSkqKSktLFRMTI0maOHGiunbtqqSkJEnS9OnTFRoaqoULF2r06NFatWqVNm3apOXLl9u2GR8fr/Hjx2vUqFG69tprlZ6erv/85z9av369M1oEAACNkFMD0Pjx41VUVKTExETl5+crKChI6enptgud8/Ly5OLyvxvVRowYoZUrV2rWrFmaOXOm+vTpo7S0NA0cONA25+abb1ZqaqqSkpI0bdo09e3bV//61780cuTIBu8PAAA0Tk79HqDGiu8Bqr29e/dqRlSUUtq1a5anwPaWlmrGsWNKWb1avXr1cnY5AIBfaBLfAwQAAOAsBCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6jSIALV26VD179pSHh4eCg4O1cePG885fvXq1AgIC5OHhoUGDBmnt2rV2y6Ojo2WxWOweERER9dkCAABoQpwegN58803FxcVp9uzZys3NVWBgoMLDw1VYWOhwflZWliZMmKDJkydr8+bNioyMVGRkpLZv3243LyIiQocPH7Y9/vGPfzREOwAAoAlwegBKTk7WlClTFBMTo/79+ys1NVWtW7fWihUrHM5fvHixIiIiFB8fr379+mnevHkaPHiwlixZYjfP3d1dVqvV9mjfvn1DtAMAAJoApwag8vJy5eTkKCwszDbm4uKisLAwZWdnO1wnOzvbbr4khYeHV5m/fv16de7cWX379tV9992nI0eOVFtHWVmZSkpK7B4AAKD5cmoAKi4uVkVFhXx9fe3GfX19lZ+f73Cd/Pz8C86PiIjQq6++qszMTC1YsECffPKJbrzxRlVUVDjcZlJSkry9vW0Pf3//S+wMAAA0Zi2cXUB9uP32223/PmjQIF155ZXq1auX1q9fr+uvv77K/ISEBMXFxdmel5SUEIIAAGjGnHoEyMfHR66uriooKLAbLygokNVqdbiO1Wq9qPmSdPnll8vHx0d79uxxuNzd3V1eXl52DwAA0Hw5NQC5ublpyJAhyszMtI1VVlYqMzNTISEhDtcJCQmxmy9JGRkZ1c6XpB9++EFHjhxRly5d6qZwAADQpDn9LrC4uDg9//zzeuWVV/Ttt9/qvvvuU2lpqWJiYiRJEydOVEJCgm3+9OnTlZ6eroULF2rHjh2aM2eONm3apNjYWEnSyZMnFR8fry+++EL79u1TZmamxo4dq969eys8PNwpPQIAgMbF6dcAjR8/XkVFRUpMTFR+fr6CgoKUnp5uu9A5Ly9PLi7/y2kjRozQypUrNWvWLM2cOVN9+vRRWlqaBg4cKElydXXV1q1b9corr+jYsWPy8/PTDTfcoHnz5snd3d0pPQIAgMbFYhiG4ewiGpuSkhJ5e3vr+PHjXA90kfbu3asZUVFKaddOvTw9nV1OndtbWqoZx44pZfVq9erVy9nlAAB+4WL+++30U2AAAAANjQAEAABMhwAEAABMhwAEAABMhwAEAABMhwAEAABMhwAEAABMhwAEAABMhwAEAABMhwAEAABMhwAEAABMhwAEAABMhwAEAABMhwAEAABMhwAEAABMhwAEAABMhwAEAABMhwAEAABMhwAEAABMhwAEAABMhwAEAABMhwAEAABMhwAEAABMhwAEAABMhwAEAABMhwAEAABMhwAEAABMhwAEAABMhwAEAABMhwAEAABMhwAEAABMhwAEAABMhwAEAABMhwAEAABMhwAEAABMhwAEAABMhwAEAABMhwAEAABMhwAEAABMhwAEAABMhwAEAABMhwAEAABMhwAEAABMhwAEAABMhwAEAABMhwAEAABMhwAEAABMhwAEAABMp1EEoKVLl6pnz57y8PBQcHCwNm7ceN75q1evVkBAgDw8PDRo0CCtXbu22rn33nuvLBaLUlJS6rhqAADQVDk9AL355puKi4vT7NmzlZubq8DAQIWHh6uwsNDh/KysLE2YMEGTJ0/W5s2bFRkZqcjISG3fvr3K3H//+9/64osv5OfnV99tAACAJsTpASg5OVlTpkxRTEyM+vfvr9TUVLVu3VorVqxwOH/x4sWKiIhQfHy8+vXrp3nz5mnw4MFasmSJ3byDBw/qgQce0BtvvKGWLVs2RCsAAKCJaOHMFy8vL1dOTo4SEhJsYy4uLgoLC1N2drbDdbKzsxUXF2c3Fh4errS0NNvzyspK3XXXXYqPj9eAAQMuWEdZWZnKyspsz0tKSi6yE6B5KSoqatafAy8vL3Xq1MnZZQBwIqcGoOLiYlVUVMjX19du3NfXVzt27HC4Tn5+vsP5+fn5tucLFixQixYtNG3atBrVkZSUpLlz515k9UDzVFRUpPvuuENlR444u5R6496xo5atXEkIAkzMqQGoPuTk5Gjx4sXKzc2VxWKp0ToJCQl2R5VKSkrk7+9fXyUCjVpJSYnKjhzRQ+7u8m/Vytnl1LkDp09r4ZEjKikpIQABJubUAOTj4yNXV1cVFBTYjRcUFMhqtTpcx2q1nnf+Z599psLCQnXv3t22vKKiQg899JBSUlK0b9++Ktt0d3eXu7v7JXYDNC/+rVqpl6ens8uoH7845Q3AnJx6EbSbm5uGDBmizMxM21hlZaUyMzMVEhLicJ2QkBC7+ZKUkZFhm3/XXXdp69at2rJli+3h5+en+Ph4ffDBB/XXDAAAaDKcfgosLi5OkyZN0tChQzV8+HClpKSotLRUMTExkqSJEyeqa9euSkpKkiRNnz5doaGhWrhwoUaPHq1Vq1Zp06ZNWr58uSSpY8eO6tixo91rtGzZUlarVX379m3Y5gAAQKPk9AA0fvx4FRUVKTExUfn5+QoKClJ6errtQue8vDy5uPzvQNWIESO0cuVKzZo1SzNnzlSfPn2UlpamgQMHOqsFAADQxDg9AElSbGysYmNjHS5bv359lbGoqChFRUXVePuOrvsBAADm5fQvQgQAAGhoBCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6tQpA3333XV3XAQAA0GBqFYB69+6ta6+9Vq+//rp++umnuq4JAACgXtUqAOXm5urKK69UXFycrFar7rnnHm3cuLGuawMAAKgXtQpAQUFBWrx4sQ4dOqQVK1bo8OHDGjlypAYOHKjk5GQVFRXVdZ0AAAB15pIugm7RooXGjRun1atXa8GCBdqzZ48efvhh+fv7a+LEiTp8+HBd1QkAAFBnLikAbdq0SX/605/UpUsXJScn6+GHH9bevXuVkZGhQ4cOaezYsXVVJwAAQJ1pUZuVkpOT9dJLL2nnzp266aab9Oqrr+qmm26Si8vPeeqyyy7Tyy+/rJ49e9ZlrQAAAHWiVgFo2bJl+uMf/6jo6Gh16dLF4ZzOnTvrxRdfvKTiAAAA6kOtAlBGRoa6d+9uO+JzjmEYOnDggLp37y43NzdNmjSpTooEAACoS7W6BqhXr14qLi6uMn706FFddtlll1wUAABAfapVADIMw+H4yZMn5eHhcUkFAQAA1LeLOgUWFxcnSbJYLEpMTFTr1q1tyyoqKrRhwwYFBQXVaYEAAAB17aIC0ObNmyX9fARo27ZtcnNzsy1zc3NTYGCgHn744bqtEAAAoI5dVABat26dJCkmJkaLFy+Wl5dXvRQFAABQn2p1F9hLL71U13UAAAA0mBoHoHHjxunll1+Wl5eXxo0bd965a9asueTCAAAA6kuNA5C3t7csFovt3wEAAJqqGgegX5724hQYAABoymr1PUCnT5/WqVOnbM/379+vlJQUffjhh3VWGAAAQH2pVQAaO3asXn31VUnSsWPHNHz4cC1cuFBjx47VsmXL6rRAAACAularAJSbm6v/+7//kyT985//lNVq1f79+/Xqq6/qmWeeqdMCAQAA6lqtAtCpU6fUtm1bSdKHH36ocePGycXFRVdffbX2799fpwUCAADUtVoFoN69eystLU0HDhzQBx98oBtuuEGSVFhYyJcjAgCARq9WASgxMVEPP/ywevbsqeDgYIWEhEj6+WjQVVddVacFAgAA1LVafRP0rbfeqpEjR+rw4cMKDAy0jV9//fW6+eab66w4AACA+lCrACRJVqtVVqvVbmz48OGXXBAAAEB9q1UAKi0t1fz585WZmanCwkJVVlbaLf/uu+/qpDgAAID6UKtrgO6++269+OKL+r//+z/FxsZq+vTpdo+LtXTpUvXs2VMeHh4KDg7Wxo0bzzt/9erVCggIkIeHhwYNGqS1a9faLZ8zZ44CAgLk6emp9u3bKywsTBs2bLjougAAQPNUqyNA77//vt577z395je/ueQC3nzzTcXFxSk1NVXBwcFKSUlReHi4du7cqc6dO1eZn5WVpQkTJigpKUm/+93vtHLlSkVGRio3N1cDBw6UJF1xxRVasmSJLr/8cp0+fVqLFi3SDTfcoD179qhTp06XXDMAAGjaanUEqH379urQoUOdFJCcnKwpU6YoJiZG/fv3V2pqqlq3bq0VK1Y4nL948WJFREQoPj5e/fr107x58zR48GAtWbLENueOO+5QWFiYLr/8cg0YMEDJyckqKSnR1q1b66RmAADQtNUqAM2bN0+JiYl2vwdWG+Xl5crJyVFYWNj/CnJxUVhYmLKzsx2uk52dbTdfksLDw6udX15eruXLl8vb29vujjUAAGBetToFtnDhQu3du1e+vr7q2bOnWrZsabc8Nze3RtspLi5WRUWFfH197cZ9fX21Y8cOh+vk5+c7nJ+fn2839u677+r222/XqVOn1KVLF2VkZMjHx8fhNsvKylRWVmZ7XlJSUqP6AQBA01SrABQZGVnHZdS9a6+9Vlu2bFFxcbGef/553XbbbdqwYYPD64qSkpI0d+5cJ1QJAACcoVYBaPbs2XXy4j4+PnJ1dVVBQYHdeEFBQZXvGDrHarXWaL6np6d69+6t3r176+qrr1afPn304osvKiEhoco2ExISFBcXZ3teUlIif3//2rYFAAAauVpdAyRJx44d0wsvvKCEhAQdPXpU0s+nvg4ePFjjbbi5uWnIkCHKzMy0jVVWViozM9P28xq/FhISYjdfkjIyMqqd/8vt/vI01y+5u7vLy8vL7gEAAJqvWh0B2rp1q8LCwuTt7a19+/ZpypQp6tChg9asWaO8vDy9+uqrNd5WXFycJk2apKFDh2r48OFKSUlRaWmpYmJiJEkTJ05U165dlZSUJEmaPn26QkNDtXDhQo0ePVqrVq3Spk2btHz5ckk/f0njX//6V40ZM0ZdunRRcXGxli5dqoMHDyoqKqo27QIAgGamVgEoLi5O0dHReuqpp9S2bVvb+E033aQ77rjjorY1fvx4FRUVKTExUfn5+QoKClJ6errtQue8vDy5uPzvQNWIESO0cuVKzZo1SzNnzlSfPn2UlpZm+w4gV1dX7dixQ6+88oqKi4vVsWNHDRs2TJ999pkGDBhQm3YBAEAzU6sA9OWXX+q5556rMt61a9cqd2PVRGxsrGJjYx0uW79+fZWxqKioao/meHh4aM2aNRddAwAAMI9aXQPk7u7u8FbxXbt28U3LAACg0atVABozZowef/xxnTlzRpJksViUl5enRx55RLfcckudFggAAFDXahWAFi5cqJMnT6pTp046ffq0QkND1bt3b7Vt21Z//etf67pGAACAOlWra4C8vb2VkZGh//73v/rqq6908uRJDR48uMpPVAAAADRGFx2AKisr9fLLL2vNmjXat2+fLBaLLrvsMlmtVhmGIYvFUh91AgAA1JmLOgVmGIbGjBmju+++WwcPHtSgQYM0YMAA7d+/X9HR0br55pvrq04AAIA6c1FHgF5++WV9+umnyszM1LXXXmu37OOPP1ZkZKReffVVTZw4sU6LBAAAqEsXdQToH//4h2bOnFkl/EjSddddp7/85S9644036qw4AACA+nBRAWjr1q2KiIiodvmNN96or7766pKLAgAAqE8XFYCOHj1q+4kKR3x9ffXjjz9eclEAAAD16aICUEVFhVq0qP6yIVdXV509e/aSiwIAAKhPF3URtGEYio6Olru7u8PlZWVldVIUAABAfbqoADRp0qQLzuEOMAAA0NhdVAB66aWX6qsOAACABlOr3wIDAABoyghAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdBpFAFq6dKl69uwpDw8PBQcHa+PGjeedv3r1agUEBMjDw0ODBg3S2rVrbcvOnDmjRx55RIMGDZKnp6f8/Pw0ceJEHTp0qL7bAAAATYTTA9Cbb76puLg4zZ49W7m5uQoMDFR4eLgKCwsdzs/KytKECRM0efJkbd68WZGRkYqMjNT27dslSadOnVJubq4ee+wx5ebmas2aNdq5c6fGjBnTkG0BAIBGzOkBKDk5WVOmTFFMTIz69++v1NRUtW7dWitWrHA4f/HixYqIiFB8fLz69eunefPmafDgwVqyZIkkydvbWxkZGbrtttvUt29fXX311VqyZIlycnKUl5fXkK0BAIBGqoUzX7y8vFw5OTlKSEiwjbm4uCgsLEzZ2dkO18nOzlZcXJzdWHh4uNLS0qp9nePHj8tisahdu3YOl5eVlamsrMz2vKSkpOZN1EJRUVG9v4az7N+/X2fPnnV2GcB5lZ05o/379zu7jHpTXl4uNzc3Z5dRr5p7j829Py8vL3Xq1MmpNTg1ABUXF6uiokK+vr52476+vtqxY4fDdfLz8x3Oz8/Pdzj/p59+0iOPPKIJEybIy8vL4ZykpCTNnTu3Fh1cvKKiIt13xx0qO3KkQV6voZWWlangwAGVeXs7uxTAoSPl5fpu/37Nf+ABubu7O7ucOld25oy+P3RIvbt2VYsWTv0rvt409x6be3+S5N6xo5atXOnUENQ839n/78yZM7rttttkGIaWLVtW7byEhAS7o0olJSXy9/evl5pKSkpUduSIHnJ3l3+rVvXyGs70xY8/6q9nz6qCo0BopE5WVMjt7Fk96OamK6o5KtyUffHjj/rr6dOa5uraLPuTmn+Pzb2/A6dPa+GRIyopKTFvAPLx8ZGrq6sKCgrsxgsKCmS1Wh2uY7VaazT/XPjZv3+/Pv7442qP/kiSu7t7g/+foH+rVurl6dmgr9kQ9p8+7ewSgBrp5uHRrD+DzbU/qfn32Nz7kyT94rITZ3HqRdBubm4aMmSIMjMzbWOVlZXKzMxUSEiIw3VCQkLs5ktSRkaG3fxz4Wf37t366KOP1LFjx/ppAAAANElOPwUWFxenSZMmaejQoRo+fLhSUlJUWlqqmJgYSdLEiRPVtWtXJSUlSZKmT5+u0NBQLVy4UKNHj9aqVau0adMmLV++XNLP4efWW29Vbm6u3n33XVVUVNiuD+rQoUOzvqgMAADUjNMD0Pjx41VUVKTExETl5+crKChI6enptgud8/Ly5OLyvwNVI0aM0MqVKzVr1izNnDlTffr0UVpamgYOHChJOnjwoN555x1JUlBQkN1rrVu3Ttdcc02D9AUAABovpwcgSYqNjVVsbKzDZevXr68yFhUVpaioKIfze/bsKcMw6rI8AADQzDj9ixABAAAaGgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYjtMD0NKlS9WzZ095eHgoODhYGzduPO/81atXKyAgQB4eHho0aJDWrl1rt3zNmjW64YYb1LFjR1ksFm3ZsqUeqwcAAE2RUwPQm2++qbi4OM2ePVu5ubkKDAxUeHi4CgsLHc7PysrShAkTNHnyZG3evFmRkZGKjIzU9u3bbXNKS0s1cuRILViwoKHaAAAATYxTA1BycrKmTJmimJgY9e/fX6mpqWrdurVWrFjhcP7ixYsVERGh+Ph49evXT/PmzdPgwYO1ZMkS25y77rpLiYmJCgsLa6g2AABAE+O0AFReXq6cnBy7oOLi4qKwsDBlZ2c7XCc7O7tKsAkPD692fk2VlZWppKTE7gEAAJovpwWg4uJiVVRUyNfX127c19dX+fn5DtfJz8+/qPk1lZSUJG9vb9vD39//krYHAAAaN6dfBN0YJCQk6Pjx47bHgQMHnF0SAACoRy2c9cI+Pj5ydXVVQUGB3XhBQYGsVqvDdaxW60XNryl3d3e5u7tf0jYAAEDT4bQjQG5ubhoyZIgyMzNtY5WVlcrMzFRISIjDdUJCQuzmS1JGRka18wEAABxx2hEgSYqLi9OkSZM0dOhQDR8+XCkpKSotLVVMTIwkaeLEieratauSkpIkSdOnT1doaKgWLlyo0aNHa9WqVdq0aZOWL19u2+bRo0eVl5enQ4cOSZJ27twp6eejR5d6pAgAADQPTg1A48ePV1FRkRITE5Wfn6+goCClp6fbLnTOy8uTi8v/DlKNGDFCK1eu1KxZszRz5kz16dNHaWlpGjhwoG3OO++8YwtQknT77bdLkmbPnq05c+Y0TGMAAKBRc2oAkqTY2FjFxsY6XLZ+/foqY1FRUYqKiqp2e9HR0YqOjq6j6gAAQHPEXWAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0GkUAWrp0qXr27CkPDw8FBwdr48aN552/evVqBQQEyMPDQ4MGDdLatWvtlhuGocTERHXp0kWtWrVSWFiYdu/eXZ8tAACAJsTpAejNN99UXFycZs+erdzcXAUGBio8PFyFhYUO52dlZWnChAmaPHmyNm/erMjISEVGRmr79u22OU899ZSeeeYZpaamasOGDfL09FR4eLh++umnhmoLAAA0Yk4PQMnJyZoyZYpiYmLUv39/paamqnXr1lqxYoXD+YsXL1ZERITi4+PVr18/zZs3T4MHD9aSJUsk/Xz0JyUlRbNmzdLYsWN15ZVX6tVXX9WhQ4eUlpbWgJ0BAIDGyqkBqLy8XDk5OQoLC7ONubi4KCwsTNnZ2Q7Xyc7OtpsvSeHh4bb533//vfLz8+3meHt7Kzg4uNptAgAAc2nhzBcvLi5WRUWFfH197cZ9fX21Y8cOh+vk5+c7nJ+fn29bfm6sujm/VlZWprKyMtvz48ePS5JKSkouopuaOXHihM5UVGjHiRM6cfZsnW/f2faWlqrCMLSrtFQVLVs6u5w6d/D0aZ0qK9M333yjEydOOLucenHgwAH9VFbGn9Emqrn3JzX/Hpt7fwdPn9aZigqdOHGizv87e257hmFccK5TA1BjkZSUpLlz51YZ9/f3r7fX/KDettw43Lptm7NLqFcfjxnj7BLq3UfOLqCeNfc/o829P6n599jc+/vgqqvqbdsnTpyQt7f3eec4NQD5+PjI1dVVBQUFduMFBQWyWq0O17Fareedf+6fBQUF6tKli92coKAgh9tMSEhQXFyc7XllZaWOHj2qjh07ymKxXHRf51NSUiJ/f38dOHBAXl5edbrtxoD+mr7m3iP9NX3NvUf6qz3DMHTixAn5+fldcK5TA5Cbm5uGDBmizMxMRUZGSvo5fGRmZio2NtbhOiEhIcrMzNSMGTNsYxkZGQoJCZEkXXbZZbJarcrMzLQFnpKSEm3YsEH33Xefw226u7vL3d3dbqxdu3aX1NuFeHl5Ncs/2OfQX9PX3Hukv6avufdIf7VzoSM/5zj9FFhcXJwmTZqkoUOHavjw4UpJSVFpaaliYmIkSRMnTlTXrl2VlJQkSZo+fbpCQ0O1cOFCjR49WqtWrdKmTZu0fPlySZLFYtGMGTP0xBNPqE+fPrrsssv02GOPyc/PzxayAACAuTk9AI0fP15FRUVKTExUfn6+goKClJ6ebruIOS8vTy4u/7tZbcSIEVq5cqVmzZqlmTNnqk+fPkpLS9PAgQNtc/785z+rtLRUU6dO1bFjxzRy5Eilp6fLw8OjwfsDAACNj9MDkCTFxsZWe8pr/fr1VcaioqIUFRVV7fYsFosef/xxPf7443VVYp1xd3fX7Nmzq5xyay7or+lr7j3SX9PX3Hukv4ZhMWpyrxgAAEAz4vRvggYAAGhoBCAAAGA6BCAAAGA6BCAAAGA6BKA68Omnn+r3v/+9/Pz8ZLFYHP7q/LfffqsxY8bI29tbnp6eGjZsmPLy8mzLf/rpJ91///3q2LGj2rRpo1tuuaXKN147S130d80118hisdg97r333gbs4vwu1OOvaz/3ePrpp21zjh49qjvvvFNeXl5q166dJk+erJMnTzZwJ47VRX89e/assnz+/PkN3IljF+rv5MmTio2NVbdu3dSqVSv1799fqampdnMa82dQqpseG/Pn8EL9FRQUKDo6Wn5+fmrdurUiIiK0e/duuzmNeR/WRX+Nef8lJSVp2LBhatu2rTp37qzIyEjt3LnTbk5N9k9eXp5Gjx6t1q1bq3PnzoqPj9fZevpNQgJQHSgtLVVgYKCWLl3qcPnevXs1cuRIBQQEaP369dq6dasee+wxu+8levDBB/Wf//xHq1ev1ieffKJDhw5p3LhxDdXCedVFf5I0ZcoUHT582PZ46qmnGqL8GrlQj7+s+/Dhw1qxYoUsFotuueUW25w777xTX3/9tTIyMvTuu+/q008/1dSpUxuqhfOqi/4k6fHHH7eb98ADDzRE+Rd0of7i4uKUnp6u119/Xd9++61mzJih2NhYvfPOO7Y5jfkzKNVNj1Lj/Ryerz/DMBQZGanvvvtOb7/9tjZv3qwePXooLCxMpaWltnmNeR/WRX9S491/n3zyie6//3598cUXysjI0JkzZ3TDDTdc1P6pqKjQ6NGjVV5erqysLL3yyit6+eWXlZiYWD9FG6hTkox///vfdmPjx483/vCHP1S7zrFjx4yWLVsaq1evto19++23hiQjOzu7vkqtldr0ZxiGERoaakyfPr3+CqtDjnr8tbFjxxrXXXed7fk333xjSDK+/PJL29j7779vWCwW4+DBg/VVaq3Upj/DMIwePXoYixYtqr/C6oij/gYMGGA8/vjjdmODBw82Hn30UcMwmtZn0DBq16NhNJ3P4a/727lzpyHJ2L59u22soqLC6NSpk/H8888bhtG09mFt+jOMprP/DMMwCgsLDUnGJ598YhhGzfbP2rVrDRcXFyM/P982Z9myZYaXl5dRVlZW5zVyBKieVVZW6r333tMVV1yh8PBwde7cWcHBwXaHP3NycnTmzBmFhYXZxgICAtS9e3dlZ2c7oeqaq0l/57zxxhvy8fHRwIEDlZCQoFOnTjV8wXWgoKBA7733niZPnmwby87OVrt27TR06FDbWFhYmFxcXLRhwwZnlFlrjvo7Z/78+erYsaOuuuoqPf300/V2aLqujRgxQu+8844OHjwowzC0bt067dq1SzfccIOkpv0ZPOdCPZ7TFD+HZWVlkmR3VNnFxUXu7u76/PPPJTXtfViT/s5pKvvv+PHjkqQOHTpIqtn+yc7O1qBBg2y/BCFJ4eHhKikp0ddff13nNTaKb4JuzgoLC3Xy5EnNnz9fTzzxhBYsWKD09HSNGzdO69atU2hoqPLz8+Xm5lblB1h9fX2Vn5/vnMJrqCb9SdIdd9yhHj16yM/PT1u3btUjjzyinTt3as2aNU7u4OK98soratu2rd2h2/z8fHXu3NluXosWLdShQ4dGvw9/zVF/kjRt2jQNHjxYHTp0UFZWlhISEnT48GElJyc7qdKae/bZZzV16lR169ZNLVq0kIuLi55//nmNGjVKkpr0Z/CcC/UoNd3P4bn/UCYkJOi5556Tp6enFi1apB9++EGHDx+W1LT3YU36k5rO/qusrNSMGTP0m9/8xvYzVTXZP/n5+Xbh59zyc8vqGgGonlVWVkqSxo4dqwcffFCSFBQUpKysLKWmptoCQlNV0/5+eS3MoEGD1KVLF11//fXau3evevXq1fCFX4IVK1bozjvvbLa/LVddf3FxcbZ/v/LKK+Xm5qZ77rlHSUlJTv9K+wt59tln9cUXX+idd95Rjx499Omnn+r++++Xn5+f3f+RNmU16bGpfg5btmypNWvWaPLkyerQoYNcXV0VFhamG2+8UUYz+DGDmvbXVPbf/fffr+3bt1c5etXYcAqsnvn4+KhFixbq37+/3Xi/fv1sd0lZrVaVl5fr2LFjdnMKCgpktVobqtRaqUl/jgQHB0uS9uzZU6/11bXPPvtMO3fu1N133203brVaVVhYaDd29uxZHT16tNHvw1+qrj9HgoODdfbsWe3bt6/+C7sEp0+f1syZM5WcnKzf//73uvLKKxUbG6vx48frb3/7m6Sm/RmUatajI03pczhkyBBt2bJFx44d0+HDh5Wenq4jR47o8ssvl9T09+GF+nOkMe6/2NhYvfvuu1q3bp26detmG6/J/rFarVXuCjv3vD72IQGonrm5uWnYsGFVbgfctWuXevToIennP/gtW7ZUZmambfnOnTuVl5enkJCQBq33YtWkP0e2bNkiSerSpUt9llfnXnzxRQ0ZMkSBgYF24yEhITp27JhycnJsYx9//LEqKyttf0k1BdX158iWLVvk4uJS5dRfY3PmzBmdOXNGLi72f925urrajmA25c+gVLMeHWmKn0Nvb2916tRJu3fv1qZNmzR27FhJTX8fnlNdf440pv1nGIZiY2P173//Wx9//LEuu+wyu+U12T8hISHatm2b3f9MZmRkyMvLq8r/ZNdV0bhEJ06cMDZv3mxs3rzZkGQkJycbmzdvNvbv328YhmGsWbPGaNmypbF8+XJj9+7dxrPPPmu4uroan332mW0b9957r9G9e3fj448/NjZt2mSEhIQYISEhzmrJzqX2t2fPHuPxxx83Nm3aZHz//ffG22+/bVx++eXGqFGjnNmWnQv1aBiGcfz4caN169bGsmXLHG4jIiLCuOqqq4wNGzYYn3/+udGnTx9jwoQJDdXCeV1qf1lZWcaiRYuMLVu2GHv37jVef/11o1OnTsbEiRMbso1qXai/0NBQY8CAAca6deuM7777znjppZcMDw8P4+9//7ttG435M2gYl95jY/8cXqi/t956y1i3bp2xd+9eIy0tzejRo4cxbtw4u2005n14qf019v133333Gd7e3sb69euNw4cP2x6nTp2yzbnQ/jl79qwxcOBA44YbbjC2bNlipKenG506dTISEhLqpWYCUB1Yt26dIanKY9KkSbY5L774otG7d2/Dw8PDCAwMNNLS0uy2cfr0aeNPf/qT0b59e6N169bGzTffbBw+fLiBO3HsUvvLy8szRo0aZXTo0MFwd3c3evfubcTHxxvHjx93QjeO1aTH5557zmjVqpVx7Ngxh9s4cuSIMWHCBKNNmzaGl5eXERMTY5w4caKBOji/S+0vJyfHCA4ONry9vQ0PDw+jX79+xpNPPmn89NNPDdhF9S7U3+HDh43o6GjDz8/P8PDwMPr27WssXLjQqKystG2jMX8GDePSe2zsn8ML9bd48WKjW7duRsuWLY3u3bsbs2bNqnJrdGPeh5faX2Pff456k2S89NJLtjk12T/79u0zbrzxRqNVq1aGj4+P8dBDDxlnzpypl5ot/79wAAAA0+AaIAAAYDoEIAAAYDoEIAAAYDoEIAAAYDoEIAAAYDoEIAAAYDoEIAAAYDoEIAAAYDoEIAAAYDoEIAAAYDoEIADNXlFRkaxWq5588knbWFZWltzc3Ox+nRqAefBbYABMYe3atYqMjFRWVpb69u2roKAgjR07VsnJyc4uDYATEIAAmMb999+vjz76SEOHDtW2bdv05Zdfyt3d3dllAXACAhAA0zh9+rQGDhyoAwcOKCcnR4MGDXJ2SQCchGuAAJjG3r17dejQIVVWVmrfvn3OLgeAE3EECIAplJeXa/jw4QoKClLfvn2VkpKibdu2qXPnzs4uDYATEIAAmEJ8fLz++c9/6quvvlKbNm0UGhoqb29vvfvuu84uDYATcAoMQLO3fv16paSk6LXXXpOXl5dcXFz02muv6bPPPtOyZcucXR4AJ+AIEAAAMB2OAAEAANMhAAEAANMhAAEAANMhAAEAANMhAAEAANMhAAEAANMhAAEAANMhAAEAANMhAAEAANMhAAEAANMhAAEAANMhAAEAANP5f8JzFVDT37TkAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# specifying bin-edges:\n", "plt.hist(x, bins=[160,165,170,175,180,185,190,195,200], edgecolor='black', color='red', alpha=0.7, density=True)\n", "plt.xlabel('x')\n", "plt.ylabel('Density')\n", "plt.title('Histogram Example')\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Histograms are important - they show how the data is **distributed**
\n", "\n", "Next week we will talk more about theoretical distributions.
\n", "\n", "Histograms serve as *empirical distributions*
\n", "\n", "Based on the histogram above, how would you guess the height-distribution in the *population* looks like?
" ] }, { "cell_type": "code", "execution_count": 39, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkoAAAHHCAYAAABA5XcCAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAA9hAAAPYQGoP6dpAABHCUlEQVR4nO3dfVxUZf7/8fcMCqgIiCiIqXi3qamgqETrqiUbVt9VVjI1W5U1rVYqpdyWtlCrDfMGqTTZbtTadDX351pfMwrJm1pREzTLktRSTG68C1BUQDi/P/o62wRHbgQH6PV8PM4j5jqfc53rOsPgu3POzFgMwzAEAACAcqyOHgAAAEB9RVACAAAwQVACAAAwQVACAAAwQVACAAAwQVACAAAwQVACAAAwQVACAAAwQVACAAAwQVACIEny9/fX5MmTHT0M1FPDhg3TsGHDHD0M4LojKAGN0MqVK2WxWLRnz54K1w8bNky9e/e+5v1s2rRJc+bMueZ+Gjp/f39ZLJYKlxEjRjh6eACuQRNHDwBA/ZCRkSGrtXr/77Rp0yYtXbqUsCQpMDBQjz32WLl2Pz8/B4wGQG0hKAGQJLm4uDh6CNVWWFioFi1aOHoYkqT27dvrvvvuc/QwANQyLr0BkFT+HqWSkhLNnTtX3bt3l6urq1q3bq3BgwcrOTlZkjR58mQtXbpUkuwuNV1RWFioxx57TB06dJCLi4tuvPFGLVy4UIZh2O334sWLeuSRR+Tt7a2WLVtq5MiROnHihCwWi92Zqjlz5shiseirr77Svffeq1atWmnw4MGSpP3792vy5Mnq0qWLXF1d5evrqz/+8Y86c+aM3b6u9PHNN9/ovvvuk4eHh9q0aaOnn35ahmHo+PHjGjVqlNzd3eXr66tFixbV2vE9efKk2rRpo2HDhtkdg8OHD6tFixYaO3asre2TTz7RmDFj1LFjR7m4uKhDhw6aOXOmLl68aNfn5MmT5ebmpszMTP3P//yP3Nzc1L59e9vz8sUXX+i2225TixYt1KlTJ61evdpu+yuXaLdv364HHnhArVu3lru7uyZOnKgffvih0jkVFRVp9uzZ6tatm22cf/7zn1VUVHQthwqoVzijBDRi+fn5On36dLn2kpKSSredM2eO4uLidP/992vQoEEqKCjQnj17lJ6ert/+9rd64IEHlJWVpeTkZP3jH/+w29YwDI0cOVJbtmzRlClTFBgYqA8//FCzZs3SiRMntHjxYlvt5MmT9c477+gPf/iDbr75Zm3btk133XWX6bjGjBmj7t276/nnn7cFjuTkZH377beKjIyUr6+vDhw4oFdffVUHDhzQzp077QKcJI0dO1Y9e/bUvHnz9P777+u5556Tl5eX/v73v+u2227TCy+8oFWrVunxxx/XwIEDNWTIkEqPV0lJSYXHukWLFmrWrJnatm2rZcuWacyYMXr55Zf1yCOPqKysTJMnT1bLli31yiuv2LZZt26dLly4oIceekitW7fW7t279fLLL+v777/XunXr7PovLS3VHXfcoSFDhmj+/PlatWqVoqKi1KJFC/31r3/VhAkTNHr0aCUmJmrixIkKCQlR586d7fqIioqSp6en5syZo4yMDC1btkzHjh3T1q1byx27K8rKyjRy5Eh9+umnmjZtmnr27KkvvvhCixcv1jfffKMNGzZUesyABsEA0OisWLHCkHTV5aabbrLbplOnTsakSZNsjwMCAoy77rrrqvuZPn26UdGfkQ0bNhiSjOeee86u/e677zYsFotx+PBhwzAMIy0tzZBkzJgxw65u8uTJhiRj9uzZtrbZs2cbkozx48eX29+FCxfKtf3zn/80JBnbt28v18e0adNsbZcvXzZuuOEGw2KxGPPmzbO1//DDD0azZs3sjomZTp06mR7nuLg4u9rx48cbzZs3N7755htjwYIFhiRjw4YNlc4nLi7OsFgsxrFjx2xtkyZNMiQZzz//fLlxWywWY82aNbb2gwcPljumV35PgoKCjOLiYlv7/PnzDUnGu+++a2sbOnSoMXToUNvjf/zjH4bVajU++eQTu3EmJiYakoz//Oc/lRw1oGHg0hvQiC1dulTJycnllr59+1a6raenpw4cOKBDhw5Ve7+bNm2Sk5OTHnnkEbv2xx57TIZh6IMPPpAkJSUlSZL+9Kc/2dU9/PDDpn0/+OCD5dqaNWtm+/nSpUs6ffq0br75ZklSenp6ufr777/f9rOTk5MGDBggwzA0ZcoUW7unp6duvPFGffvtt6Zj+ang4OAKj/X48ePt6pYsWSIPDw/dfffdevrpp/WHP/xBo0aNMp1PYWGhTp8+rVtuuUWGYWjv3r1Xnc+Vcbdo0UL33HOPrf3GG2+Up6dnhfOZNm2amjZtanv80EMPqUmTJtq0aZPpfNetW6eePXuqR48eOn36tG257bbbJElbtmwx3RZoSLj0BjRigwYN0oABA8q1t2rVqsLLRD/1zDPPaNSoUfrVr36l3r17a8SIEfrDH/5QpZB17Ngx+fn5qWXLlnbtPXv2tK2/8l+r1VruUlC3bt1M+/55rSSdPXtWc+fO1Zo1a3Ty5Em7dfn5+eXqO3bsaPfYw8NDrq6u8vb2Ltf+8/uczHh7eys0NLTSOi8vL7300ksaM2aMfHx89NJLL5WryczMVGxsrN57771y9wr9fD6urq5q06ZNuXHfcMMN5S6beXh4VHjvUffu3e0eu7m5qV27djp69KjpPA4dOqSvv/663L6v+PnzADRUBCUAFRoyZIiOHDmid999Vx999JFef/11LV68WImJiXZnMK63n55tueKee+7Rjh07NGvWLAUGBsrNzU1lZWUaMWKEysrKytU7OTlVqU1SuZvPa8OHH34oSfrhhx/0/fffy9PT07autLRUv/3tb3X27Fk98cQT6tGjh1q0aKETJ05o8uTJ5eZjNu66nk9ZWZn69Omj+Pj4Ctd36NChVvYDOBpBCYApLy8vRUZGKjIyUufPn9eQIUM0Z84cW1Ayu9G3U6dO2rx5s86dO2d3VungwYO29Vf+W1ZWpu+++87urMbhw4erPMYffvhBKSkpmjt3rmJjY23tNblkeD0kJSXp9ddf15///GetWrVKkyZN0q5du9SkyY9/jr/44gt98803evPNNzVx4kTbdlfebVgXDh06pFtvvdX2+Pz588rOztadd95puk3Xrl31+eefa/jw4aa/B0BjwD1KACr080tObm5u6tatm91bv698hlFeXp5d7Z133qnS0lItWbLErn3x4sWyWCy64447JElhYWGSZPeOL0l6+eWXqzzOK2dOfn6mJCEhocp9XC95eXm2dxE+//zzev3115Wenq7nn3/eVlPRfAzD0Isvvlhn43r11Vft3gm5bNkyXb582fY8VeSee+7RiRMn9Nprr5Vbd/HiRRUWFtbJWIHrjTNKACrUq1cvDRs2TEFBQfLy8tKePXv0r3/9S1FRUbaaoKAgSdIjjzyisLAwOTk5ady4cfrd736nW2+9VX/961919OhRBQQE6KOPPtK7776rGTNmqGvXrrbtIyIilJCQoDNnztg+HuCbb76RZH7G6qfc3d1tb40vKSlR+/bt9dFHH+m7776rg6Ni7sSJE3r77bfLtbu5uSk8PFyS9Oijj+rMmTPavHmznJycNGLECN1///167rnnNGrUKAUEBKhHjx7q2rWrHn/8cZ04cULu7u76f//v/1Xpc41qqri4WMOHD9c999yjjIwMvfLKKxo8eLBGjhxpus0f/vAHvfPOO3rwwQe1ZcsW/frXv1ZpaakOHjyod955Rx9++GGF98cBDY7j3nAHoK5cedv3Z599VuH6oUOHVvrxAM8995wxaNAgw9PT02jWrJnRo0cP429/+5vd28gvX75sPPzww0abNm0Mi8Vi91EB586dM2bOnGn4+fkZTZs2Nbp3724sWLDAKCsrs9tvYWGhMX36dMPLy8twc3MzwsPDjYyMDEOS3dv1r7y1/9SpU+Xm8/333xu///3vDU9PT8PDw8MYM2aMkZWVZfoRAz/vY9KkSUaLFi2qdJwqcrWPB+jUqZNhGIbx7rvvGpKMRYsW2W1bUFBgdOrUyQgICLAd26+++soIDQ013NzcDG9vb2Pq1KnG559/bkgyVqxYUeNxd+rUye4jH678nmzbts2YNm2a0apVK8PNzc2YMGGCcebMmXJ9/vTjAQzDMIqLi40XXnjBuOmmmwwXFxejVatWRlBQkDF37lwjPz+/0uMGNAQWw6iDOxUB4Brs27dP/fr109tvv60JEyY4ejiN1sqVKxUZGanPPvuMsz+ACe5RAuBQP/9aDunH+4usVmuVPhEbAOoS9ygBcKj58+crLS1Nt956q5o0aaIPPvhAH3zwgaZNm8ZbzAE4HEEJgEPdcsstSk5O1rPPPqvz58+rY8eOmjNnjv761786emgAIO5RAgAAMME9SgAAACYISgAAACa4R6mGysrKlJWVpZYtW/Lx/QAANBCGYejcuXPy8/OT1Vr5+SKCUg1lZWXxjhwAABqo48eP64Ybbqi0jqBUQ1e+6PP48eNyd3d38GgAAEBVFBQUqEOHDnZf2H01BKUaunK5zd3dnaAEAEADU9XbZriZGwAAwARBCQAAwARBCQAAwARBCQAAwARBCQAAwARBCQAAwARBCQAAwARBCQAAwARBCQAAwARBCQAAwES9CEpLly6Vv7+/XF1dFRwcrN27d5vWvvbaa/rNb36jVq1aqVWrVgoNDS1XbxiGYmNj1a5dOzVr1kyhoaE6dOiQXc3Zs2c1YcIEubu7y9PTU1OmTNH58+frZH4AAKBhcnhQWrt2raKjozV79mylp6crICBAYWFhOnnyZIX1W7du1fjx47VlyxalpqaqQ4cOuv3223XixAlbzfz58/XSSy8pMTFRu3btUosWLRQWFqZLly7ZaiZMmKADBw4oOTlZGzdu1Pbt2zVt2rQ6ny8AAGg4LIZhGI4cQHBwsAYOHKglS5ZIksrKytShQwc9/PDD+stf/lLp9qWlpWrVqpWWLFmiiRMnyjAM+fn56bHHHtPjjz8uScrPz5ePj49WrlypcePG6euvv1avXr302WefacCAAZKkpKQk3Xnnnfr+++/l5+dX6X4LCgrk4eGh/Px8vhQXAIAGorr/fjv0jFJxcbHS0tIUGhpqa7NarQoNDVVqamqV+rhw4YJKSkrk5eUlSfruu++Uk5Nj16eHh4eCg4NtfaampsrT09MWkiQpNDRUVqtVu3btqo2pAQCARqCJI3d++vRplZaWysfHx67dx8dHBw8erFIfTzzxhPz8/GzBKCcnx9bHz/u8si4nJ0dt27a1W9+kSRN5eXnZan6uqKhIRUVFtscFBQVVGh+A+u3UqVPVej27u7urTZs2dTgiAPWJQ4PStZo3b57WrFmjrVu3ytXVtU73FRcXp7lz59bpPgBcX6dOndJD996rojNnqryNS+vWWrZ6NWEJ+IVwaFDy9vaWk5OTcnNz7dpzc3Pl6+t71W0XLlyoefPmafPmzerbt6+t/cp2ubm5ateunV2fgYGBtpqf3yx++fJlnT171nS/MTExio6Otj0uKChQhw4dKp8kgHqroKBARWfO6DEXF3Vo1qzS+uMXL2rRmTMqKCggKAG/EA69R8nZ2VlBQUFKSUmxtZWVlSklJUUhISGm282fP1/PPvuskpKS7O4zkqTOnTvL19fXrs+CggLt2rXL1mdISIjy8vKUlpZmq/n4449VVlam4ODgCvfp4uIid3d3uwVA49ChWTN1bdGi0qUqYQpA4+LwS2/R0dGaNGmSBgwYoEGDBikhIUGFhYWKjIyUJE2cOFHt27dXXFycJOmFF15QbGysVq9eLX9/f9s9RW5ubnJzc5PFYtGMGTP03HPPqXv37urcubOefvpp+fn5KTw8XJLUs2dPjRgxQlOnTlViYqJKSkoUFRWlcePGVekdbwAA4JfB4UFp7NixOnXqlGJjY5WTk6PAwEAlJSXZbsbOzMyU1frfE1/Lli1TcXGx7r77brt+Zs+erTlz5kiS/vznP6uwsFDTpk1TXl6eBg8erKSkJLv7mFatWqWoqCgNHz5cVqtVEREReumll+p+wgAAoMFw+OcoNVR8jhLQ8B05ckQzxoxRgqenurZoUXl9YaFm5OUpYd06de3a9TqMEEBta1CfowQAAFCfEZQAAABMEJQAAABMEJQAAABMEJQAAABMEJQAAABMEJQAAABMEJQAAABMEJQAAABMEJQAAABMEJQAAABMEJQAAABMEJQAAABMEJQAAABMEJQAAABMEJQAAABMEJQAAABMEJQAAABMEJQAAABMEJQAAABMEJQAAABMEJQAAABMEJQAAABMEJQAAABMEJQAAABMEJQAAABMEJQAAABMEJQAAABMEJQAAABMEJQAAABMEJQAAABMEJQAAABMEJQAAABMODwoLV26VP7+/nJ1dVVwcLB2795tWnvgwAFFRETI399fFotFCQkJ5WqurPv5Mn36dFvNsGHDyq1/8MEH62J6AACgAXNoUFq7dq2io6M1e/ZspaenKyAgQGFhYTp58mSF9RcuXFCXLl00b948+fr6Vljz2WefKTs727YkJydLksaMGWNXN3XqVLu6+fPn1+7kAABAg+fQoBQfH6+pU6cqMjJSvXr1UmJiopo3b67ly5dXWD9w4EAtWLBA48aNk4uLS4U1bdq0ka+vr23ZuHGjunbtqqFDh9rVNW/e3K7O3d291ucHAAAaNocFpeLiYqWlpSk0NPS/g7FaFRoaqtTU1Frbx9tvv60//vGPslgsdutWrVolb29v9e7dWzExMbpw4UKt7BMAADQeTRy149OnT6u0tFQ+Pj527T4+Pjp48GCt7GPDhg3Ky8vT5MmT7drvvfdederUSX5+ftq/f7+eeOIJZWRkaP369aZ9FRUVqaioyPa4oKCgVsYIAADqL4cFpevhjTfe0B133CE/Pz+79mnTptl+7tOnj9q1a6fhw4fryJEj6tq1a4V9xcXFae7cuXU6XgAAUL847NKbt7e3nJyclJuba9eem5treqN2dRw7dkybN2/W/fffX2ltcHCwJOnw4cOmNTExMcrPz7ctx48fv+YxAgCA+s1hQcnZ2VlBQUFKSUmxtZWVlSklJUUhISHX3P+KFSvUtm1b3XXXXZXW7tu3T5LUrl070xoXFxe5u7vbLQAAoHFz6KW36OhoTZo0SQMGDNCgQYOUkJCgwsJCRUZGSpImTpyo9u3bKy4uTtKPN2d/9dVXtp9PnDihffv2yc3NTd26dbP1W1ZWphUrVmjSpElq0sR+ikeOHNHq1at15513qnXr1tq/f79mzpypIUOGqG/fvtdp5gAAoCFwaFAaO3asTp06pdjYWOXk5CgwMFBJSUm2G7wzMzNltf73pFdWVpb69etne7xw4UItXLhQQ4cO1datW23tmzdvVmZmpv74xz+W26ezs7M2b95sC2UdOnRQRESEnnrqqbqbKAAAaJAcfjN3VFSUoqKiKlz30/Aj/fip24ZhVNrn7bffblrXoUMHbdu2rdrjBAAAvzwO/woTAACA+oqgBAAAYIKgBAAAYIKgBAAAYIKgBAAAYIKgBAAAYIKgBAAAYIKgBAAAYIKgBAAAYIKgBAAAYIKgBAAAYIKgBAAAYIKgBAAAYIKgBAAAYIKgBAAAYIKgBAAAYIKgBAAAYIKgBAAAYIKgBAAAYIKgBAAAYIKgBAAAYIKgBAAAYIKgBAAAYIKgBAAAYIKgBAAAYIKgBAAAYIKgBAAAYIKgBAAAYIKgBAAAYIKgBAAAYIKgBAAAYIKgBAAAYIKgBAAAYMLhQWnp0qXy9/eXq6urgoODtXv3btPaAwcOKCIiQv7+/rJYLEpISChXM2fOHFksFrulR48edjWXLl3S9OnT1bp1a7m5uSkiIkK5ubm1PTUAANDAOTQorV27VtHR0Zo9e7bS09MVEBCgsLAwnTx5ssL6CxcuqEuXLpo3b558fX1N+73pppuUnZ1tWz799FO79TNnztT//u//at26ddq2bZuysrI0evToWp0bAABo+BwalOLj4zV16lRFRkaqV69eSkxMVPPmzbV8+fIK6wcOHKgFCxZo3LhxcnFxMe23SZMm8vX1tS3e3t62dfn5+XrjjTcUHx+v2267TUFBQVqxYoV27NihnTt31vocAQBAw+WwoFRcXKy0tDSFhob+dzBWq0JDQ5WamnpNfR86dEh+fn7q0qWLJkyYoMzMTNu6tLQ0lZSU2O23R48e6tix4zXvFwAANC4OC0qnT59WaWmpfHx87Np9fHyUk5NT436Dg4O1cuVKJSUladmyZfruu+/0m9/8RufOnZMk5eTkyNnZWZ6entXab1FRkQoKCuwWAADQuDVx9ABq2x133GH7uW/fvgoODlanTp30zjvvaMqUKTXuNy4uTnPnzq2NIQIAgAbCYWeUvL295eTkVO7dZrm5uVe9Ubu6PD099atf/UqHDx+WJPn6+qq4uFh5eXnV2m9MTIzy8/Nty/Hjx2ttjAAAoH5yWFBydnZWUFCQUlJSbG1lZWVKSUlRSEhIre3n/PnzOnLkiNq1aydJCgoKUtOmTe32m5GRoczMzKvu18XFRe7u7nYLAABo3Bx66S06OlqTJk3SgAEDNGjQICUkJKiwsFCRkZGSpIkTJ6p9+/aKi4uT9OMN4F999ZXt5xMnTmjfvn1yc3NTt27dJEmPP/64fve736lTp07KysrS7Nmz5eTkpPHjx0uSPDw8NGXKFEVHR8vLy0vu7u56+OGHFRISoptvvtkBRwEAANRXDg1KY8eO1alTpxQbG6ucnBwFBgYqKSnJdoN3ZmamrNb/nvTKyspSv379bI8XLlyohQsXaujQodq6dask6fvvv9f48eN15swZtWnTRoMHD9bOnTvVpk0b23aLFy+W1WpVRESEioqKFBYWpldeeeX6TBoAADQYFsMwDEcPoiEqKCiQh4eH8vPzuQwHNFBHjhzRjDFjlODpqa4tWlReX1ioGXl5Sli3Tl27dr0OIwRQ26r777fDv8IEAACgviIoAQAAmCAoAQAAmCAoAQAAmCAoAQAAmCAoAQAAmCAoAQAAmCAoAQAAmCAoAQAAmCAoAQAAmCAoAQAAmCAoAQAAmCAoAQAAmCAoAQAAmCAoAQAAmCAoAQAAmCAoAQAAmCAoAQAAmCAoAQAAmCAoAQAAmCAoAQAAmCAoAQAAmCAoAQAAmCAoAQAAmCAoAQAAmCAoAQAAmCAoAQAAmCAoAQAAmCAoAQAAmCAoAQAAmCAoAQAAmCAoAQAAmCAoAQAAmHB4UFq6dKn8/f3l6uqq4OBg7d6927T2wIEDioiIkL+/vywWixISEsrVxMXFaeDAgWrZsqXatm2r8PBwZWRk2NUMGzZMFovFbnnwwQdre2oAAKCBc2hQWrt2raKjozV79mylp6crICBAYWFhOnnyZIX1Fy5cUJcuXTRv3jz5+vpWWLNt2zZNnz5dO3fuVHJyskpKSnT77bersLDQrm7q1KnKzs62LfPnz6/1+QEAgIatiSN3Hh8fr6lTpyoyMlKSlJiYqPfff1/Lly/XX/7yl3L1AwcO1MCBAyWpwvWSlJSUZPd45cqVatu2rdLS0jRkyBBbe/PmzU3DFgAAgOTAM0rFxcVKS0tTaGjofwdjtSo0NFSpqam1tp/8/HxJkpeXl137qlWr5O3trd69eysmJkYXLlyotX0CAIDGwWFnlE6fPq3S0lL5+PjYtfv4+OjgwYO1so+ysjLNmDFDv/71r9W7d29b+7333qtOnTrJz89P+/fv1xNPPKGMjAytX7/etK+ioiIVFRXZHhcUFNTKGAEAQP3l0EtvdW369On68ssv9emnn9q1T5s2zfZznz591K5dOw0fPlxHjhxR165dK+wrLi5Oc+fOrdPxAgCA+sVhl968vb3l5OSk3Nxcu/bc3NxauXcoKipKGzdu1JYtW3TDDTdctTY4OFiSdPjwYdOamJgY5efn25bjx49f8xgBAED95rCg5OzsrKCgIKWkpNjaysrKlJKSopCQkBr3axiGoqKi9O9//1sff/yxOnfuXOk2+/btkyS1a9fOtMbFxUXu7u52CwAAaNwceuktOjpakyZN0oABAzRo0CAlJCSosLDQ9i64iRMnqn379oqLi5P04w3gX331le3nEydOaN++fXJzc1O3bt0k/Xi5bfXq1Xr33XfVsmVL5eTkSJI8PDzUrFkzHTlyRKtXr9add96p1q1ba//+/Zo5c6aGDBmivn37OuAoAACA+sqhQWns2LE6deqUYmNjlZOTo8DAQCUlJdlu8M7MzJTV+t+TXllZWerXr5/t8cKFC7Vw4UINHTpUW7dulSQtW7ZM0o8fKvlTK1as0OTJk+Xs7KzNmzfbQlmHDh0UERGhp556qm4nCwAAGhyH38wdFRWlqKioCtddCT9X+Pv7yzCMq/ZX2foOHTpo27Zt1RojAAD4ZXL4V5gAAADUVwQlAAAAEwQlAAAAEwQlAAAAEwQlAAAAEwQlAAAAEzUKSt9++21tjwMAAKDeqVFQ6tatm2699Va9/fbbunTpUm2PCQAAoF6oUVBKT09X3759FR0dLV9fXz3wwAPavXt3bY8NAADAoWoUlAIDA/Xiiy8qKytLy5cvV3Z2tgYPHqzevXsrPj5ep06dqu1xAgAAXHfXdDN3kyZNNHr0aK1bt04vvPCCDh8+rMcff1wdOnTQxIkTlZ2dXVvjBAAAuO6uKSjt2bNHf/rTn9SuXTvFx8fr8ccf15EjR5ScnKysrCyNGjWqtsYJAABw3dXoS3Hj4+O1YsUKZWRk6M4779Rbb72lO++8U1brj7mrc+fOWrlypfz9/WtzrAAAANdVjYLSsmXL9Mc//lGTJ09Wu3btKqxp27at3njjjWsaHAAAgCPVKCglJyerY8eOtjNIVxiGoePHj6tjx45ydnbWpEmTamWQAAAAjlCje5S6du2q06dPl2s/e/asOnfufM2DAgAAqA9qFJQMw6iw/fz583J1db2mAQEAANQX1br0Fh0dLUmyWCyKjY1V8+bNbetKS0u1a9cuBQYG1uoAAQAAHKVaQWnv3r2Sfjyj9MUXX8jZ2dm2ztnZWQEBAXr88cdrd4QAAAAOUq2gtGXLFklSZGSkXnzxRbm7u9fJoAAAAOqDGr3rbcWKFbU9DgAAgHqnykFp9OjRWrlypdzd3TV69Oir1q5fv/6aBwYAAOBoVQ5KHh4eslgstp8BAAAauyoHpZ9ebuPSGwAA+CWo0ecoXbx4URcuXLA9PnbsmBISEvTRRx/V2sAAAAAcrUZBadSoUXrrrbckSXl5eRo0aJAWLVqkUaNGadmyZbU6QAAAAEepUVBKT0/Xb37zG0nSv/71L/n6+urYsWN666239NJLL9XqAAEAABylRkHpwoULatmypSTpo48+0ujRo2W1WnXzzTfr2LFjtTpAAAAAR6lRUOrWrZs2bNig48eP68MPP9Ttt98uSTp58iQfQgkAABqNGgWl2NhYPf744/L391dwcLBCQkIk/Xh2qV+/frU6QAAAAEep0Sdz33333Ro8eLCys7MVEBBgax8+fLh+//vf19rgAAAAHKlGQUmSfH195evra9c2aNCgax4QAABAfVGjoFRYWKh58+YpJSVFJ0+eVFlZmd36b7/9tlYGBwAA4Eg1ukfp/vvv1xtvvKHf/OY3ioqK0qOPPmq3VMfSpUvl7+8vV1dXBQcHa/fu3aa1Bw4cUEREhPz9/WWxWJSQkFCjPi9duqTp06erdevWcnNzU0REhHJzc6s1bgAA0PjV6IzSBx98oPfff1+//vWvr2nna9euVXR0tBITExUcHKyEhASFhYUpIyNDbdu2LVd/4cIFdenSRWPGjNHMmTNr3OfMmTP1/vvva926dfLw8FBUVJRGjx6t//znP9c0HwAA0LjU6IxSq1at5OXldc07j4+P19SpUxUZGalevXopMTFRzZs31/LlyyusHzhwoBYsWKBx48bJxcWlRn3m5+frjTfeUHx8vG677TYFBQVpxYoV2rFjh3bu3HnNcwIAAI1HjYLSs88+q9jYWLvve6uu4uJipaWlKTQ09L+DsVoVGhqq1NTUOuszLS1NJSUldjU9evRQx44da7xfAADQONXo0tuiRYt05MgR+fj4yN/fX02bNrVbn56eXmkfp0+fVmlpqXx8fOzafXx8dPDgwZoMq0p95uTkyNnZWZ6enuVqcnJyTPsuKipSUVGR7XFBQUGNxlgXTp06VeXxuLu7q02bNnU8orpRnXkWFxfL2dm5yn1Xp74hH0P8ctWXvxPVGUddj6W66ssxbMga4jGsUVAKDw+v5WHUf3FxcZo7d66jh1HOqVOn9NC996rozJkq1bu0bq1lq1fXi1++6qjOPItKSvRdVpa6tW+vJk0q/xWvbn1DPYb45aovfyeqO466HEt11Zdj2JA11GNYo6A0e/bsa96xt7e3nJycyr3bLDc3t9znM9Vmn76+viouLlZeXp7dWaXK9hsTE6Po6Gjb44KCAnXo0KFG46xNBQUFKjpzRo+5uKhDs2ZXrT1+8aIWnTmjgoICh//iVVd15rnzhx/0t4sX9YiTk371szOH11rfkI8hfrnqy9+J6oyjrsdSXfXlGDZkDfUY1vgDJ/Py8vSvf/1LR44c0axZs+Tl5aX09HT5+Pioffv2lW7v7OysoKAgpaSk2M5QlZWVKSUlRVFRUTUaU1X6DAoKUtOmTZWSkqKIiAhJUkZGhjIzM21fxVIRFxcX0xvI64MOzZqpa4sWlRf+5PJhQ1SVeR67eFGSdIOra5WOSXXrG/oxxC9Xffk7UeVxXIexVFd9OYYNWUM7hjUKSvv371doaKg8PDx09OhRTZ06VV5eXlq/fr0yMzP11ltvVamf6OhoTZo0SQMGDNCgQYOUkJCgwsJCRUZGSpImTpyo9u3bKy4uTtKP95F89dVXtp9PnDihffv2yc3NTd26datSnx4eHpoyZYqio6Pl5eUld3d3PfzwwwoJCdHNN99ck8MBAAAaqRoFpejoaE2ePFnz589Xy5Ytbe133nmn7r333ir3M3bsWJ06dUqxsbHKyclRYGCgkpKSbDdjZ2Zmymr97xvzsrKy7L50d+HChVq4cKGGDh2qrVu3VqlPSVq8eLGsVqsiIiJUVFSksLAwvfLKKzU5FAAAoBGrUVD67LPP9Pe//71ce/v27a/6zrGKREVFmV5quxJ+rvD395dhGNfUpyS5urpq6dKlWrp0abXGCgAAfllq9DlKLi4uFb6975tvvnH4TVcAAAC1pUZBaeTIkXrmmWdUUlIiSbJYLMrMzNQTTzxhu0EaAACgoatRUFq0aJHOnz+vNm3a6OLFixo6dKi6deumli1b6m9/+1ttjxEAAMAhanSPkoeHh5KTk/Wf//xHn3/+uc6fP6/+/fvbfS0IAABAQ1ftoFRWVqaVK1dq/fr1Onr0qCwWizp37ixfX18ZhiGLxVIX4wQAALjuqnXpzTAMjRw5Uvfff79OnDihPn366KabbtKxY8c0efJk/f73v6+rcQIAAFx31TqjtHLlSm3fvl0pKSm69dZb7dZ9/PHHCg8P11tvvaWJEyfW6iABAAAcoVpnlP75z3/qySefLBeSJOm2227TX/7yF61atarWBgcAAOBI1QpK+/fv14gRI0zX33HHHfr888+veVAAAAD1QbWC0tmzZ+2+CuTnfHx89MMPP1zzoAAAAOqDagWl0tJSNWlifluTk5OTLl++fM2DAgAAqA+qdTO3YRiaPHmyXFxcKlxfVFRUK4MCAACoD6oVlCZNmlRpDe94AwAAjUW1gtKKFSvqahwAAAD1To2+6w0AAOCXgKAEAABggqAEAABggqAEAABggqAEAABggqAEAABggqAEAABggqAEAABggqAEAABggqAEAABggqAEAABggqAEAABggqAEAABggqAEAABggqAEAABggqAEAABggqAEAABggqAEAABggqAEAABgol4EpaVLl8rf31+urq4KDg7W7t27r1q/bt069ejRQ66ururTp482bdpkt95isVS4LFiwwFbj7+9fbv28efPqZH4AAKBhcnhQWrt2raKjozV79mylp6crICBAYWFhOnnyZIX1O3bs0Pjx4zVlyhTt3btX4eHhCg8P15dffmmryc7OtluWL18ui8WiiIgIu76eeeYZu7qHH364TucKAAAaFocHpfj4eE2dOlWRkZHq1auXEhMT1bx5cy1fvrzC+hdffFEjRozQrFmz1LNnTz377LPq37+/lixZYqvx9fW1W959913deuut6tKli11fLVu2tKtr0aJFnc4VAAA0LA4NSsXFxUpLS1NoaKitzWq1KjQ0VKmpqRVuk5qaalcvSWFhYab1ubm5ev/99zVlypRy6+bNm6fWrVurX79+WrBggS5fvnwNswEAAI1NE0fu/PTp0yotLZWPj49du4+Pjw4ePFjhNjk5ORXW5+TkVFj/5ptvqmXLlho9erRd+yOPPKL+/fvLy8tLO3bsUExMjLKzsxUfH19hP0VFRSoqKrI9LigoqHR+AACgYXNoULoeli9frgkTJsjV1dWuPTo62vZz37595ezsrAceeEBxcXFycXEp109cXJzmzp1b5+MFAAD1h0MvvXl7e8vJyUm5ubl27bm5ufL19a1wG19f3yrXf/LJJ8rIyND9999f6ViCg4N1+fJlHT16tML1MTExys/Pty3Hjx+vtE8AANCwOTQoOTs7KygoSCkpKba2srIypaSkKCQkpMJtQkJC7OolKTk5ucL6N954Q0FBQQoICKh0LPv27ZPValXbtm0rXO/i4iJ3d3e7BQAANG4Ov/QWHR2tSZMmacCAARo0aJASEhJUWFioyMhISdLEiRPVvn17xcXFSZIeffRRDR06VIsWLdJdd92lNWvWaM+ePXr11Vft+i0oKNC6deu0aNGicvtMTU3Vrl27dOutt6ply5ZKTU3VzJkzdd9996lVq1Z1P2kAANAgODwojR07VqdOnVJsbKxycnIUGBiopKQk2w3bmZmZslr/e+Lrlltu0erVq/XUU0/pySefVPfu3bVhwwb17t3brt81a9bIMAyNHz++3D5dXFy0Zs0azZkzR0VFRercubNmzpxpd98SAACAw4OSJEVFRSkqKqrCdVu3bi3XNmbMGI0ZM+aqfU6bNk3Tpk2rcF3//v21c+fOao8TAAD8sjj8AycBAADqK4ISAACACYISAACACYISAACACYISAACACYISAACACYISAACACYISAACACYISAACACYISAACACYISAACACYISAACACYISAACACYISAACACYISAACACYISAACACYISAACACYISAACACYISAACACYISAACACYISAACACYISAACACYISAACACYISAACACYISAACACYISAACACYISAACACYISAACACYISAACACYISAACACYISAACACYISAACACYISAACAiXoRlJYuXSp/f3+5uroqODhYu3fvvmr9unXr1KNHD7m6uqpPnz7atGmT3frJkyfLYrHYLSNGjLCrOXv2rCZMmCB3d3d5enpqypQpOn/+fK3PDQAANFwOD0pr165VdHS0Zs+erfT0dAUEBCgsLEwnT56ssH7Hjh0aP368pkyZor179yo8PFzh4eH68ssv7epGjBih7Oxs2/LPf/7Tbv2ECRN04MABJScna+PGjdq+fbumTZtWZ/MEAAANj8ODUnx8vKZOnarIyEj16tVLiYmJat68uZYvX15h/YsvvqgRI0Zo1qxZ6tmzp5599ln1799fS5YssatzcXGRr6+vbWnVqpVt3ddff62kpCS9/vrrCg4O1uDBg/Xyyy9rzZo1ysrKqtP5AgCAhsOhQam4uFhpaWkKDQ21tVmtVoWGhio1NbXCbVJTU+3qJSksLKxc/datW9W2bVvdeOONeuihh3TmzBm7Pjw9PTVgwABbW2hoqKxWq3bt2lUbUwMAAI1AE0fu/PTp0yotLZWPj49du4+Pjw4ePFjhNjk5ORXW5+Tk2B6PGDFCo0ePVufOnXXkyBE9+eSTuuOOO5SamionJyfl5OSobdu2dn00adJEXl5edv38VFFRkYqKimyPCwoKqjVXAADQ8Dg0KNWVcePG2X7u06eP+vbtq65du2rr1q0aPnx4jfqMi4vT3Llza2uIAACgAXDopTdvb285OTkpNzfXrj03N1e+vr4VbuPr61uteknq0qWLvL29dfjwYVsfP79Z/PLlyzp79qxpPzExMcrPz7ctx48fr3R+AACgYXNoUHJ2dlZQUJBSUlJsbWVlZUpJSVFISEiF24SEhNjVS1JycrJpvSR9//33OnPmjNq1a2frIy8vT2lpabaajz/+WGVlZQoODq6wDxcXF7m7u9stAACgcXP4u96io6P12muv6c0339TXX3+thx56SIWFhYqMjJQkTZw4UTExMbb6Rx99VElJSVq0aJEOHjyoOXPmaM+ePYqKipIknT9/XrNmzdLOnTt19OhRpaSkaNSoUerWrZvCwsIkST179tSIESM0depU7d69W//5z38UFRWlcePGyc/P7/ofBAAAUC85/B6lsWPH6tSpU4qNjVVOTo4CAwOVlJRku2E7MzNTVut/89wtt9yi1atX66mnntKTTz6p7t27a8OGDerdu7ckycnJSfv379ebb76pvLw8+fn56fbbb9ezzz4rFxcXWz+rVq1SVFSUhg8fLqvVqoiICL300kvXd/IAAKBec3hQkqSoqCjbGaGf27p1a7m2MWPGaMyYMRXWN2vWTB9++GGl+/Ty8tLq1aurNU4AAPDL4vBLbwAAAPUVQQkAAMAEQQkAAMAEQQkAAMAEQQkAAMAEQQkAAMAEQQkAAMAEQQkAAMAEQQkAAMAEQQkAAMAEQQkAAMAEQQkAAMAEQQkAAMAEQQkAAMAEQQkAAMAEQQkAAMAEQQkAAMAEQQkAAMAEQQkAAMAEQQkAAMAEQQkAAMAEQQkAAMAEQQkAAMAEQQkAAMAEQQkAAMAEQQkAAMAEQQkAAMAEQQkAAMAEQQkAAMAEQQkAAMAEQQkAAMAEQQkAAMAEQQkAAMBEvQhKS5culb+/v1xdXRUcHKzdu3dftX7dunXq0aOHXF1d1adPH23atMm2rqSkRE888YT69OmjFi1ayM/PTxMnTlRWVpZdH/7+/rJYLHbLvHnz6mR+AACgYXJ4UFq7dq2io6M1e/ZspaenKyAgQGFhYTp58mSF9Tt27ND48eM1ZcoU7d27V+Hh4QoPD9eXX34pSbpw4YLS09P19NNPKz09XevXr1dGRoZGjhxZrq9nnnlG2dnZtuXhhx+u07kCAICGxeFBKT4+XlOnTlVkZKR69eqlxMRENW/eXMuXL6+w/sUXX9SIESM0a9Ys9ezZU88++6z69++vJUuWSJI8PDyUnJyse+65RzfeeKNuvvlmLVmyRGlpacrMzLTrq2XLlvL19bUtLVq0qPP5AgCAhsOhQam4uFhpaWkKDQ21tVmtVoWGhio1NbXCbVJTU+3qJSksLMy0XpLy8/NlsVjk6elp1z5v3jy1bt1a/fr104IFC3T58uWaTwYAADQ6TRy589OnT6u0tFQ+Pj527T4+Pjp48GCF2+Tk5FRYn5OTU2H9pUuX9MQTT2j8+PFyd3e3tT/yyCPq37+/vLy8tGPHDsXExCg7O1vx8fEV9lNUVKSioiLb44KCgirNEQAANFwODUp1raSkRPfcc48Mw9CyZcvs1kVHR9t+7tu3r5ydnfXAAw8oLi5OLi4u5fqKi4vT3Llz63zMAACg/nDopTdvb285OTkpNzfXrj03N1e+vr4VbuPr61ul+ish6dixY0pOTrY7m1SR4OBgXb58WUePHq1wfUxMjPLz823L8ePHK5kdAABo6BwalJydnRUUFKSUlBRbW1lZmVJSUhQSElLhNiEhIXb1kpScnGxXfyUkHTp0SJs3b1br1q0rHcu+fftktVrVtm3bCte7uLjI3d3dbgEAAI2bwy+9RUdHa9KkSRowYIAGDRqkhIQEFRYWKjIyUpI0ceJEtW/fXnFxcZKkRx99VEOHDtWiRYt01113ac2aNdqzZ49effVVST+GpLvvvlvp6enauHGjSktLbfcveXl5ydnZWampqdq1a5duvfVWtWzZUqmpqZo5c6buu+8+tWrVyjEHAgAA1DsOD0pjx47VqVOnFBsbq5ycHAUGBiopKcl2w3ZmZqas1v+e+Lrlllu0evVqPfXUU3ryySfVvXt3bdiwQb1795YknThxQu+9954kKTAw0G5fW7Zs0bBhw+Ti4qI1a9Zozpw5KioqUufOnTVz5ky7+5YAAAAcHpQkKSoqSlFRURWu27p1a7m2MWPGaMyYMRXW+/v7yzCMq+6vf//+2rlzZ7XHCQAAflkc/oGTAAAA9RVBCQAAwARBCQAAwARBCQAAwARBCQAAwARBCQAAwARBCQAAwARBCQAAwARBCQAAwARBCQAAwARBCQAAwARBCQAAwARBCQAAwARBCQAAwARBCQAAwARBCQAAwARBCQAAwARBCQAAwARBCQAAwARBCQAAwARBCQAAwARBCQAAwARBCQAAwARBCQAAwARBCQAAwARBCQAAwARBCQAAwARBCQAAwARBCQAAwARBCQAAwARBCQAAwARBCQAAwARBCQAAwES9CEpLly6Vv7+/XF1dFRwcrN27d1+1ft26derRo4dcXV3Vp08fbdq0yW69YRiKjY1Vu3bt1KxZM4WGhurQoUN2NWfPntWECRPk7u4uT09PTZkyRefPn6/1uQEAgIbL4UFp7dq1io6O1uzZs5Wenq6AgACFhYXp5MmTFdbv2LFD48eP15QpU7R3716Fh4crPDxcX375pa1m/vz5eumll5SYmKhdu3apRYsWCgsL06VLl2w1EyZM0IEDB5ScnKyNGzdq+/btmjZtWp3PFwAANBwOD0rx8fGaOnWqIiMj1atXLyUmJqp58+Zavnx5hfUvvviiRowYoVmzZqlnz5569tln1b9/fy1ZskTSj2eTEhIS9NRTT2nUqFHq27ev3nrrLWVlZWnDhg2SpK+//lpJSUl6/fXXFRwcrMGDB+vll1/WmjVrlJWVdb2mDgAA6jmHBqXi4mKlpaUpNDTU1ma1WhUaGqrU1NQKt0lNTbWrl6SwsDBb/XfffaecnBy7Gg8PDwUHB9tqUlNT5enpqQEDBthqQkNDZbVatWvXrlqbHwAAaNiaOHLnp0+fVmlpqXx8fOzafXx8dPDgwQq3ycnJqbA+JyfHtv5K29Vq2rZta7e+SZMm8vLystX8XFFRkYqKimyP8/PzJUkFBQVXnWNNnD17Vnl5eVWqPX78uC4VFenguXM6d/nyVWtPXLyoC0VF+uqrr3Tu3LlaGOn1U515HiksVKlh6JvCQpU2bVpp39Wpb8jHEOVV5/dKarjPf335O9GQj3d9OYYNWXWPYUlpqc6dO1fr/85e6c8wjCrVOzQoNSRxcXGaO3duufYOHTo4YDTlba5G7ccjR9bZOOpadeZ59xdfVKvv6tQ35GOI8qrzeyU13Oe/vvydaMjHu74cw4asOsfww3796mwc586dk4eHR6V1Dg1K3t7ecnJyUm5url17bm6ufH19K9zG19f3qvVX/pubm6t27drZ1QQGBtpqfn6z+OXLl3X27FnT/cbExCg6Otr2uKysTGfPnlXr1q1lsViqMNuqKSgoUIcOHXT8+HG5u7vXWr/1DfNsXJhn4/FLmKPEPBub6szTMAydO3dOfn5+VerboUHJ2dlZQUFBSklJUXh4uKQfA0hKSoqioqIq3CYkJEQpKSmaMWOGrS05OVkhISGSpM6dO8vX11cpKSm2YFRQUKBdu3bpoYcesvWRl5entLQ0BQUFSZI+/vhjlZWVKTg4uML9uri4yMXFxa7N09OzhjOvnLu7e6P+pb6CeTYuzLPx+CXMUWKejU1V51mVM0lXOPzSW3R0tCZNmqQBAwZo0KBBSkhIUGFhoSIjIyVJEydOVPv27RUXFydJevTRRzV06FAtWrRId911l9asWaM9e/bo1VdflSRZLBbNmDFDzz33nLp3767OnTvr6aeflp+fny2M9ezZUyNGjNDUqVOVmJiokpISRUVFady4cVVOmAAAoPFzeFAaO3asTp06pdjYWOXk5CgwMFBJSUm2m7EzMzNltf73zXm33HKLVq9eraeeekpPPvmkunfvrg0bNqh37962mj//+c8qLCzUtGnTlJeXp8GDByspKUmurq62mlWrVikqKkrDhw+X1WpVRESEXnrppes3cQAAUP8ZqFcuXbpkzJ4927h06ZKjh1KnmGfjwjwbj1/CHA2DeTY2dTlPi2FU8f1xAAAAvzAO/2RuAACA+oqgBAAAYIKgBAAAYIKgBAAAYIKgdJ1s375dv/vd7+Tn5yeLxaINGzaUq/n66681cuRIeXh4qEWLFho4cKAyMzNt6y9duqTp06erdevWcnNzU0RERLlPKXek2pjjsGHDZLFY7JYHH3zwOs6icpXN8+fjv7IsWLDAVnP27FlNmDBB7u7u8vT01JQpU3T+/PnrPJOrq415+vv7l1s/b9686zyTq6tsnufPn1dUVJRuuOEGNWvWTL169VJiYqJdTX1/bUq1M8/6/vqsbI65ubmaPHmy/Pz81Lx5c40YMUKHDh2yq2kMz2VV5lnfn0vpx68OGzhwoFq2bKm2bdsqPDxcGRkZdjVVeb4yMzN11113qXnz5mrbtq1mzZqly1X4rsErCErXSWFhoQICArR06dIK1x85ckSDBw9Wjx49tHXrVu3fv19PP/203Wc/zZw5U//7v/+rdevWadu2bcrKytLo0aOv1xQqVRtzlKSpU6cqOzvbtsyfP/96DL/KKpvnT8eenZ2t5cuXy2KxKCIiwlYzYcIEHThwQMnJydq4caO2b9+uadOmXa8pVEltzFOSnnnmGbu6hx9++HoMv8oqm2d0dLSSkpL09ttv6+uvv9aMGTMUFRWl9957z1ZT31+bUu3MU6rfr8+rzdEwDIWHh+vbb7/Vu+++q71796pTp04KDQ1VYWGhra6hP5dVnadUv59LSdq2bZumT5+unTt3Kjk5WSUlJbr99tur9XyVlpbqrrvuUnFxsXbs2KE333xTK1euVGxsbNUHUusfOIBKSTL+/e9/27WNHTvWuO+++0y3ycvLM5o2bWqsW7fO1vb1118bkozU1NS6GmqN1WSOhmEYQ4cONR599NG6G1gtq2iePzdq1Cjjtttusz3+6quvDEnGZ599Zmv74IMPDIvFYpw4caKuhnpNajJPwzCMTp06GYsXL667gdWyiuZ50003Gc8884xdW//+/Y2//vWvhmE0vNemYdRsnobRsF6fP59jRkaGIcn48ssvbW2lpaVGmzZtjNdee80wjMbxXFZlnobRsJ7LK06ePGlIMrZt22YYRtWer02bNhlWq9XIycmx1Sxbtsxwd3c3ioqKqrRfzijVA2VlZXr//ff1q1/9SmFhYWrbtq2Cg4PtTqempaWppKREoaGhtrYePXqoY8eOSk1NdcCoq6cqc7xi1apV8vb2Vu/evRUTE6MLFy5c/wHXktzcXL3//vuaMmWKrS01NVWenp4aMGCArS00NFRWq1W7du1yxDCvWUXzvGLevHlq3bq1+vXrpwULFlTrlHd9cMstt+i9997TiRMnZBiGtmzZom+++Ua33367pIb/2ryisnle0VBfn0VFRZJkdwbbarXKxcVFn376qaTG8VxWZZ5XNLTnMj8/X5Lk5eUlqWrPV2pqqvr06WP7tg9JCgsLU0FBgQ4cOFCl/Tr8K0wgnTx5UufPn9e8efP03HPP6YUXXlBSUpJGjx6tLVu2aOjQocrJyZGzs3O5L+L18fFRTk6OYwZeDVWZoyTde++96tSpk/z8/LR//3498cQTysjI0Pr16x08g5p588031bJlS7tTwTk5OWrbtq1dXZMmTeTl5dUgnsuKVDRPSXrkkUfUv39/eXl5aceOHYqJiVF2drbi4+MdNNLqe/nllzVt2jTdcMMNatKkiaxWq1577TUNGTJEkhr8a/OKyuYpNezX55V/QGNiYvT3v/9dLVq00OLFi/X9998rOztbUuN4LqsyT6nhPZdlZWWaMWOGfv3rX9u+sqwqz1dOTo5dSLqy/sq6qiAo1QNlZWWSpFGjRmnmzJmSpMDAQO3YsUOJiYm2ENGQVXWOP71Pp0+fPmrXrp2GDx+uI0eOqGvXrtd/4Ndo+fLlmjBhQrn7sBobs3lGR0fbfu7bt6+cnZ31wAMPKC4uTi4uLtd7mDXy8ssva+fOnXrvvffUqVMnbd++XdOnT5efn5/d/8k2dFWZZ0N+fTZt2lTr16/XlClT5OXlJScnJ4WGhuqOO+6Q0Yi+oKKq82xoz+X06dP15Zdfljsrdj1w6a0e8Pb2VpMmTdSrVy+79p49e9reEebr66vi4mLl5eXZ1eTm5srX1/d6DbXGqjLHigQHB0uSDh8+XKfjqwuffPKJMjIydP/999u1+/r66uTJk3Ztly9f1tmzZxvEc/lzZvOsSHBwsC5fvqyjR4/W/cBqwcWLF/Xkk08qPj5ev/vd79S3b19FRUVp7NixWrhwoaSG/9qUqjbPijS012dQUJD27dunvLw8ZWdnKykpSWfOnFGXLl0kNY7nUqp8nhWpz89lVFSUNm7cqC1btuiGG26wtVfl+fL19S33Lrgrj6v6nBKU6gFnZ2cNHDiw3Nsev/nmG3Xq1EnSj7/4TZs2VUpKim19RkaGMjMzFRIScl3HWxNVmWNF9u3bJ0lq165dXQ6vTrzxxhsKCgpSQECAXXtISIjy8vKUlpZma/v4449VVlZm+2PVkJjNsyL79u2T1Wotd+mxviopKVFJSYmsVvs/lU5OTrazpA39tSlVbZ4VaaivTw8PD7Vp00aHDh3Snj17NGrUKEmN47n8KbN5VqQ+PpeGYSgqKkr//ve/9fHHH6tz585266vyfIWEhOiLL76w+5/T5ORkubu7l/sf96sNBNfBuXPnjL179xp79+41JBnx8fHG3r17jWPHjhmGYRjr1683mjZtarz66qvGoUOHjJdfftlwcnIyPvnkE1sfDz74oNGxY0fj448/Nvbs2WOEhIQYISEhjppSOdc6x8OHDxvPPPOMsWfPHuO7774z3n33XaNLly7GkCFDHDmtciqbp2EYRn5+vtG8eXNj2bJlFfYxYsQIo1+/fsauXbuMTz/91Ojevbsxfvz46zWFKrnWee7YscNYvHixsW/fPuPIkSPG22+/bbRp08aYOHHi9ZxGpSqb59ChQ42bbrrJ2LJli/Htt98aK1asMFxdXY1XXnnF1kd9f20axrXPsyG8Piub4zvvvGNs2bLFOHLkiLFhwwajU6dOxujRo+36aAzPZWXzbAjPpWEYxkMPPWR4eHgYW7duNbKzs23LhQsXbDWVPV+XL182evfubdx+++3Gvn37jKSkJKNNmzZGTExMlcdBULpOtmzZYkgqt0yaNMlW88YbbxjdunUzXF1djYCAAGPDhg12fVy8eNH405/+ZLRq1cpo3ry58fvf/97Izs6+zjMxd61zzMzMNIYMGWJ4eXkZLi4uRrdu3YxZs2YZ+fn5DpiNuarM8+9//7vRrFkzIy8vr8I+zpw5Y4wfP95wc3Mz3N3djcjISOPcuXPXaQZVc63zTEtLM4KDgw0PDw/D1dXV6Nmzp/H8888bly5duo6zqFxl88zOzjYmT55s+Pn5Ga6ursaNN95oLFq0yCgrK7P1Ud9fm4Zx7fNsCK/Pyub44osvGjfccIPRtGlTo2PHjsZTTz1V7i3ijeG5rGyeDeG5NAyjwjlKMlasWGGrqcrzdfToUeOOO+4wmjVrZnh7exuPPfaYUVJSUuVxWP5vMAAAAPgZ7lECAAAwQVACAAAwQVACAAAwQVACAAAwQVACAAAwQVACAAAwQVACAAAwQVACAAAwQVACAAAwQVACAAAwQVACAEmnTp2Sr6+vnn/+eVvbjh075OzsbPft5AB+WfiuNwD4P5s2bVJ4eLh27NihG2+8UYGBgRo1apTi4+MdPTQADkJQAoCfmD59ujZv3qwBAwboiy++0GeffSYXFxdHDwuAgxCUAOAnLl68qN69e+v48eNKS0tTnz59HD0kAA7EPUoA8BNHjhxRVlaWysrKdPToUUcPB4CDcUYJAP5PcXGxBg0apMDAQN14441KSEjQF198obZt2zp6aAAchKAEAP9n1qxZ+te//qXPP/9cbm5uGjp0qDw8PLRx40ZHDw2Ag3DpDQAkbd26VQkJCfrHP/4hd3d3Wa1W/eMf/9Ann3yiZcuWOXp4AByEM0oAAAAmOKMEAABggqAEAABggqAEAABggqAEAABggqAEAABggqAEAABggqAEAABggqAEAABggqAEAABggqAEAABggqAEAABggqAEAABg4v8DAFO3PyRDiQYAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# lets try with really small bins, such that the histogram diplays all the details in the data:\n", "plt.hist(x, bins=np.arange(160,200,1), edgecolor='black', color='red', alpha=0.7, density=True)\n", "plt.xlabel('x')\n", "plt.ylabel('Density')\n", "plt.title('Histogram Example')\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Cumulative distribution\n", "\n", "The \"detailed\" histogram with small bins is maybe not the nicest way to display data.
\n", "\n", "But histograms are dependent on bin-choices, which is also (sometimes) not ideal..
\n", "\n", "An alternative is to do a cumulative kind of plot:" ] }, { "cell_type": "code", "execution_count": 40, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAGiCAYAAAA1LsZRAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAh20lEQVR4nO3df3DT9eHH8VcamrQVWwqFlkJodzoFpxRsIdYf/Ngy6/RQpt4hqEWGOB0yJDcHVWgnOosiyCa4KoPTnfNkeIoorB7rQPToZFR76oQiIJYxWmDYFtralubz/cOvmbUtTaDtu0mfj7vcLW8+n+b93oeYJ59Pmtgsy7IEAABgSITpCQAAgN6NGAEAAEYRIwAAwChiBAAAGEWMAAAAo4gRAABgFDECAACMIkYAAIBRxAgAADCKGAEAAEYFHSPbt2/XpEmTlJycLJvNpg0bNnS4z7Zt23T55ZfL6XTqwgsv1AsvvHAWUwUAAOEo6Bipra1VWlqaVq1aFdD2n3/+uW644QZNnDhRpaWleuCBB3T33Xfr7bffDnqyAAAg/NjO5YvybDabXn/9dU2ePLndbebPn69Nmzbpk08+8Y/ddtttqqqqUmFh4dk+NAAACBN9uvoBiouL5fF4WoxlZWXpgQceaHefhoYGNTQ0+O/7fD6dOHFCAwYMkM1m66qpAgCATmRZlk6ePKnk5GRFRLR/MabLY6SiokKJiYktxhITE1VTU6P6+npFR0e32ic/P1+PPPJIV08NAAB0g0OHDmno0KHt/nmXx8jZyMnJkdfr9d+vrq7WsGHDdOjQIcXGxhqcGQAA4aOu8bTG/rZIkrTz4R8pxtG5WVBTUyOXy6Xzzz//jNt1eYwkJSWpsrKyxVhlZaViY2PbPCsiSU6nU06ns9V4bGwsMQIAQCfp03haEc4YSV+/xnZ2jHyjo7dYdPnnjGRmZqqoqKjF2JYtW5SZmdnVDw0AAEJA0DFy6tQplZaWqrS0VNLXv7pbWlqq8vJySV9fYsnOzvZvf++99+rAgQP69a9/rT179ujZZ5/VX/7yF82bN69zVgAAAEJa0DGya9cujR49WqNHj5Ykeb1ejR49Wrm5uZKkI0eO+MNEkr73ve9p06ZN2rJli9LS0rRs2TL98Y9/VFZWVictAQAAhLKgLw5NmDBBZ/pokrY+XXXChAn68MMPg30oAADQC/DdNAAAwChiBAAAGEWMAAAAo4gRAABgFDECAACMIkYAAIBRxAgAADCKGAEAAEYRIwAAwChiBAAAGEWMAAAAo4gRAABgFDECAACMIkYAAIBRxAgAADCKGAEAAEYRIwAAwChiBAAAGEWMAAAAo4gRAABgFDECAACMIkYAAIBRxAgAADCKGAEAAEYRIwAAwChiBAAAGEWMAAAAo4gRAABgVB/TEwAAIFCWZam+qdn0NMJGXWPP+P+SGAEAhATLsnRrQbFKvvjS9FTQybhMAwAICfVNzYRIF8lIiVd0pN3Y43NmBAAQcnYt9CjGYe7FM9xER9pls9mMPT4xAgAIOTEOu2IcvISFCy7TAAAAo4gRAABgFDECAACMIkYAAIBRxAgAADCKGAEAAEYRIwAAwChiBAAAGEWMAAAAo4gRAABgFDECAACMIkYAAIBRxAgAADCKGAEAAEYRIwAAwChiBAAAGEWMAAAAo4gRAABgFDECAACMIkYAAIBRxAgAADCKGAEAAEYRIwAAwChiBAAAGEWMAAAAo4gRAABgFDECAACMIkYAAIBRxAgAADCKGAEAAEadVYysWrVKqampioqKktvt1s6dO8+4/YoVK3TxxRcrOjpaLpdL8+bN01dffXVWEwYAAOEl6BhZt26dvF6v8vLy9MEHHygtLU1ZWVk6evRom9u//PLLWrBggfLy8rR7926tWbNG69at00MPPXTOkwcAAKGvT7A7LF++XLNmzdKMGTMkSQUFBdq0aZPWrl2rBQsWtNp+x44duuqqqzRt2jRJUmpqqqZOnar333//HKcOAAiGZVmqb2o2PY2zVtcYunPHmQUVI42NjSopKVFOTo5/LCIiQh6PR8XFxW3uc+WVV+qll17Szp07NXbsWB04cECbN2/WnXfe2e7jNDQ0qKGhwX+/pqYmmGkCAL7DsizdWlCski++ND0VoJWgYuT48eNqbm5WYmJii/HExETt2bOnzX2mTZum48eP6+qrr5ZlWTp9+rTuvffeM16myc/P1yOPPBLM1AAAZ1Df1Bw2IZKREq/oSLvpaaATBX2ZJljbtm3T448/rmeffVZut1v79u3T3Llz9eijj2rRokVt7pOTkyOv1+u/X1NTI5fL1dVTBYBeYddCj2IcoftiHh1pl81mMz0NdKKgYiQhIUF2u12VlZUtxisrK5WUlNTmPosWLdKdd96pu+++W5J02WWXqba2Vvfcc48efvhhRUS0fg+t0+mU0+kMZmoAgADFOOyKcXT5v0WBgAX12zQOh0Pp6ekqKiryj/l8PhUVFSkzM7PNferq6loFh93+dZFblhXsfAEAQJgJOo29Xq+mT5+ujIwMjR07VitWrFBtba3/t2uys7M1ZMgQ5efnS5ImTZqk5cuXa/To0f7LNIsWLdKkSZP8UQIAAHqvoGNkypQpOnbsmHJzc1VRUaFRo0apsLDQ/6bW8vLyFmdCFi5cKJvNpoULF+rw4cMaOHCgJk2apN/+9redtwoAABCybFYIXCupqalRXFycqqurFRsba3o6ABBy6hpP65LctyVJny7O4j0j6BaBvn7z3TQAAMAoYgQAABhFjAAAAKOIEQAAYBQxAgAAjCJGAACAUcQIAAAwihgBAABGESMAAMAoYgQAABhFjAAAAKOIEQAAYBQxAgAAjCJGAACAUcQIAAAwihgBAABGESMAAMAoYgQAABhFjAAAAKOIEQAAYBQxAgAAjCJGAACAUcQIAAAwihgBAABGESMAAMAoYgQAABhFjAAAAKOIEQAAYFQf0xMAgHBlWZbqm5pNT0OSVNfYM+YBtIUYAYAuYFmWbi0oVskXX5qeCtDjcZkGALpAfVNzjwyRjJR4RUfaTU8DaIEzIwDQxXYt9CjG0TMCIDrSLpvNZnoaQAvECAB0sRiHXTEO/nMLtIfLNAAAwChiBAAAGEWMAAAAo4gRAABgFDECAACMIkYAAIBRxAgAADCKGAEAAEYRIwAAwChiBAAAGEWMAAAAo4gRAABgFDECAACMIkYAAIBRxAgAADCKGAEAAEYRIwAAwChiBAAAGEWMAAAAo4gRAABgFDECAACMIkYAAIBRxAgAADCKGAEAAEYRIwAAwChiBAAAGEWMAAAAo4gRAABgFDECAACMIkYAAIBRZxUjq1atUmpqqqKiouR2u7Vz584zbl9VVaXZs2dr8ODBcjqduuiii7R58+azmjAAAAgvfYLdYd26dfJ6vSooKJDb7daKFSuUlZWlsrIyDRo0qNX2jY2N+vGPf6xBgwbp1Vdf1ZAhQ/TFF1+oX79+nTF/AAAQ4oKOkeXLl2vWrFmaMWOGJKmgoECbNm3S2rVrtWDBglbbr127VidOnNCOHTsUGRkpSUpNTT23WQMIOZZlqb6p2fQ0uk1dY+9ZK3CugoqRxsZGlZSUKCcnxz8WEREhj8ej4uLiNvfZuHGjMjMzNXv2bL3xxhsaOHCgpk2bpvnz58tut7e5T0NDgxoaGvz3a2pqgpkmgB7GsizdWlCski++ND0VAD1QUO8ZOX78uJqbm5WYmNhiPDExURUVFW3uc+DAAb366qtqbm7W5s2btWjRIi1btkyPPfZYu4+Tn5+vuLg4/83lcgUzTQA9TH1Tc68NkYyUeEVHtv0PLwBfC/oyTbB8Pp8GDRqk559/Xna7Xenp6Tp8+LCWLl2qvLy8NvfJycmR1+v136+pqSFIgDCxa6FHMY7e8+IcHWmXzWYzPQ2gRwsqRhISEmS321VZWdlivLKyUklJSW3uM3jwYEVGRra4JDNixAhVVFSosbFRDoej1T5Op1NOpzOYqQEIETEOu2IcXf7vIAAhJKjLNA6HQ+np6SoqKvKP+Xw+FRUVKTMzs819rrrqKu3bt08+n88/tnfvXg0ePLjNEAEAAL1L0J8z4vV6tXr1ar344ovavXu37rvvPtXW1vp/uyY7O7vFG1zvu+8+nThxQnPnztXevXu1adMmPf7445o9e3bnrQIAAISsoM+VTpkyRceOHVNubq4qKio0atQoFRYW+t/UWl5eroiI/zWOy+XS22+/rXnz5mnkyJEaMmSI5s6dq/nz53feKgAAQMiyWZZlmZ5ER2pqahQXF6fq6mrFxsaang6AINU1ntYluW9Lkj5dnMV7RoBeItDXb76bBgAAGEWMAAAAo4gRAABgFDECAACMIkYAAIBRxAgAADCKGAEAAEYRIwAAwChiBAAAGEWMAAAAo4gRAABgFDECAACMIkYAAIBRxAgAADCKGAEAAEYRIwAAwChiBAAAGEWMAAAAo4gRAABgFDECAACMIkYAAIBRxAgAADCKGAEAAEYRIwAAwChiBAAAGEWMAAAAo4gRAABgFDECAACMIkYAAIBRxAgAADCKGAEAAEYRIwAAwChiBAAAGEWMAAAAo4gRAABgFDECAACMIkYAAIBRxAgAADCKGAEAAEYRIwAAwChiBAAAGEWMAAAAo4gRAABgFDECAACMIkYAAIBRxAgAADCKGAEAAEYRIwAAwChiBAAAGEWMAAAAo4gRAABgFDECAACMIkYAAIBRxAgAADCKGAEAAEYRIwAAwChiBAAAGEWMAAAAo4gRAABgFDECAACMIkYAAIBRxAgAADCKGAEAAEadVYysWrVKqampioqKktvt1s6dOwPa75VXXpHNZtPkyZPP5mEBAEAY6hPsDuvWrZPX61VBQYHcbrdWrFihrKwslZWVadCgQe3ud/DgQf3qV7/SNddcc04TRs9nWZbqm5pNTwM9SF0jfx8AtM9mWZYVzA5ut1tjxozRypUrJUk+n08ul0tz5szRggUL2tynublZ48aN089+9jO9++67qqqq0oYNG9p9jIaGBjU0NPjv19TUyOVyqbq6WrGxscFMF93MsizdWlCski++ND0V9FCfLs5SjCPofwcBCEE1NTWKi4vr8PU7qMs0jY2NKikpkcfj+d8PiIiQx+NRcXFxu/stXrxYgwYN0syZMwN6nPz8fMXFxflvLpcrmGnCoPqmZkIE7cpIiVd0pN30NAD0MEH98+T48eNqbm5WYmJii/HExETt2bOnzX3ee+89rVmzRqWlpQE/Tk5Ojrxer//+N2dGEFp2LfQoxsELD/4nOtIum81mehoAepguPVd68uRJ3XnnnVq9erUSEhIC3s/pdMrpdHbhzNAdYhx2TscDADoU1CtFQkKC7Ha7KisrW4xXVlYqKSmp1fb79+/XwYMHNWnSJP+Yz+f7+oH79FFZWZkuuOCCs5k3AAAIE0G9Z8ThcCg9PV1FRUX+MZ/Pp6KiImVmZrbafvjw4fr4449VWlrqv914442aOHGiSktLufQCAACCv0zj9Xo1ffp0ZWRkaOzYsVqxYoVqa2s1Y8YMSVJ2draGDBmi/Px8RUVF6dJLL22xf79+/SSp1TgAAOidgo6RKVOm6NixY8rNzVVFRYVGjRqlwsJC/5tay8vLFRHBB7sCAIDABP05IyYE+nvKMK+u8bQuyX1bEp8nAQC9XZd8zggAAEBnI0YAAIBRxAgAADCKGAEAAEYRIwAAwChiBAAAGEWMAAAAo4gRAABgFDECAACMIkYAAIBRxAgAADCKGAEAAEYRIwAAwChiBAAAGEWMAAAAo4gRAABgFDECAACMIkYAAIBRxAgAADCKGAEAAEYRIwAAwChiBAAAGEWMAAAAo4gRAABgFDECAACMIkYAAIBRxAgAADCqj+kJoGezLEv1Tc0Bb1/XGPi2AABIxAjOwLIs3VpQrJIvvjQ9FQBAGOMyDdpV39R81iGSkRKv6Eh7J88IABCOODOCgOxa6FGMI/C4iI60y2azdeGMAADhghhBQGIcdsU4+OsCAOh8XKYBAABGESMAAMAoYgQAABhFjAAAAKOIEQAAYBQxAgAAjCJGAACAUcQIAAAwihgBAABGESMAAMAoYgQAABhFjAAAAKOIEQAAYBQxAgAAjCJGAACAUcQIAAAwihgBAABGESMAAMAoYgQAABhFjAAAAKOIEQAAYBQxAgAAjCJGAACAUcQIAAAwihgBAABGESMAAMAoYgQAABhFjAAAAKOIEQAAYBQxAgAAjCJGAACAUWcVI6tWrVJqaqqioqLkdru1c+fOdrddvXq1rrnmGsXHxys+Pl4ej+eM2wMAgN4l6BhZt26dvF6v8vLy9MEHHygtLU1ZWVk6evRom9tv27ZNU6dO1datW1VcXCyXy6Vrr71Whw8fPufJI3iWZamu8XSAt2bT0wUA9AI2y7KsYHZwu90aM2aMVq5cKUny+XxyuVyaM2eOFixY0OH+zc3Nio+P18qVK5Wdnd3mNg0NDWpoaPDfr6mpkcvlUnV1tWJjY4OZLr7FsizdWlCski++DHrfTxdnKcbRpwtmBQAIVzU1NYqLi+vw9TuoMyONjY0qKSmRx+P53w+IiJDH41FxcXFAP6Ourk5NTU3q379/u9vk5+crLi7Of3O5XMFME+2ob2o+qxDJSIlXdKS9C2YEAIAU1D91jx8/rubmZiUmJrYYT0xM1J49ewL6GfPnz1dycnKLoPmunJwceb1e//1vzoyg8+xa6FGMI7DAiI60y2azdfGMAAC9Vbeed1+yZIleeeUVbdu2TVFRUe1u53Q65XQ6u3FmvU+Mw85lFwBAjxDUq1FCQoLsdrsqKytbjFdWViopKemM+z711FNasmSJ/va3v2nkyJHBzxQAAISloN4z4nA4lJ6erqKiIv+Yz+dTUVGRMjMz293vySef1KOPPqrCwkJlZGSc/WwBAEDYCfo8vdfr1fTp05WRkaGxY8dqxYoVqq2t1YwZMyRJ2dnZGjJkiPLz8yVJTzzxhHJzc/Xyyy8rNTVVFRUVkqS+ffuqb9++nbgUAAAQioKOkSlTpujYsWPKzc1VRUWFRo0apcLCQv+bWsvLyxUR8b8TLn/4wx/U2NioW2+9tcXPycvL029+85tzmz0AAAh5QX/OiAmB/p4yzqyu8bQuyX1bEp8bAgDoel3yOSMAAACdjRgBAABGESMAAMAoYgQAABhFjAAAAKOIEQAAYBQxAgAAjCJGAACAUcQIAAAwihgBAABGESMAAMAoYgQAABhFjAAAAKOIEQAAYBQxAgAAjCJGAACAUcQIAAAwihgBAABGESMAAMAoYgQAABhFjAAAAKOIEQAAYBQxAgAAjCJGAACAUcQIAAAwihgBAABGESMAAMCoPqYnYJJlWapvajY9jW5T19h71goACB29NkYsy9KtBcUq+eJL01MBAKBX67WXaeqbmnttiGSkxCs60m56GgAASOrFZ0a+bddCj2IcvefFOTrSLpvNZnoaAABIIkYkSTEOu2Ic/F8BAIAJvfYyDQAA6BmIEQAAYBQxAgAAjCJGAACAUcQIAAAwihgBAABGESMAAMAoYgQAABhFjAAAAKOIEQAAYBQxAgAAjCJGAACAUcQIAAAwihgBAABGESMAAMAoYgQAABhFjAAAAKOIEQAAYBQxAgAAjCJGAACAUcQIAAAwihgBAABGESMAAMAoYgQAABhFjAAAAKOIEQAAYBQxAgAAjCJGAACAUcQIAAAwihgBAABGESMAAMCos4qRVatWKTU1VVFRUXK73dq5c+cZt1+/fr2GDx+uqKgoXXbZZdq8efNZTRYAAISfoGNk3bp18nq9ysvL0wcffKC0tDRlZWXp6NGjbW6/Y8cOTZ06VTNnztSHH36oyZMna/Lkyfrkk0/OefIAACD02SzLsoLZwe12a8yYMVq5cqUkyefzyeVyac6cOVqwYEGr7adMmaLa2lq99dZb/rErrrhCo0aNUkFBQZuP0dDQoIaGBv/96upqDRs2TIcOHVJsbGww021XXeNpjf1tkSRp58M/UoyjT6f8XAAA8LWamhq5XC5VVVUpLi6u/Q2tIDQ0NFh2u916/fXXW4xnZ2dbN954Y5v7uFwu6+mnn24xlpuba40cObLdx8nLy7MkcePGjRs3btzC4Hbo0KEz9kVQpwOOHz+u5uZmJSYmthhPTEzUnj172tynoqKize0rKirafZycnBx5vV7/fZ/PpxMnTmjAgAGy2Wzt7vdNgXXmGZSejjWz5nDFmllzuOpNa7YsSydPnlRycvIZt+uR1yacTqecTmeLsX79+gW8f2xsbNgf4O9izb0Da+4dWHPv0FvWfMbLM/8vqDewJiQkyG63q7KyssV4ZWWlkpKS2twnKSkpqO0BAEDvElSMOBwOpaenq6ioyD/m8/lUVFSkzMzMNvfJzMxssb0kbdmypd3tAQBA7xL0ZRqv16vp06crIyNDY8eO1YoVK1RbW6sZM2ZIkrKzszVkyBDl5+dLkubOnavx48dr2bJluuGGG/TKK69o165dev755zt3Jfr68k5eXl6rSzzhjDX3Dqy5d2DNvUNvXHNHgv7VXklauXKlli5dqoqKCo0aNUq///3v5Xa7JUkTJkxQamqqXnjhBf/269ev18KFC3Xw4EF9//vf15NPPqnrr7++0xYBAABC11nFCAAAQGfhu2kAAIBRxAgAADCKGAEAAEYRIwAAwKgeHyPbt2/XpEmTlJycLJvNpg0bNrTaZvfu3brxxhsVFxen8847T2PGjFF5ebn/z7/66ivNnj1bAwYMUN++fXXLLbe0+iC2nqQz1jxhwgTZbLYWt3vvvbcbVxGcjtb83bV8c1u6dKl/mxMnTuj2229XbGys+vXrp5kzZ+rUqVPdvJLAdcaaU1NTW/35kiVLunklgetozadOndL999+voUOHKjo6WpdcckmrL9QMt+dzIGsOt+dzZWWl7rrrLiUnJysmJkbXXXedPvvssxbbhNtxDmTNoXacO1OPj5Ha2lqlpaVp1apVbf75/v37dfXVV2v48OHatm2bPvroIy1atEhRUVH+bebNm6c333xT69ev1zvvvKP//Oc/uvnmm7trCUHrjDVL0qxZs3TkyBH/7cknn+yO6Z+Vjtb87XUcOXJEa9eulc1m0y233OLf5vbbb9e//vUvbdmyRW+99Za2b9+ue+65p7uWELTOWLMkLV68uMV2c+bM6Y7pn5WO1uz1elVYWKiXXnpJu3fv1gMPPKD7779fGzdu9G8Tbs/nQNYshc/z2bIsTZ48WQcOHNAbb7yhDz/8UCkpKfJ4PKqtrfVvF07HOdA1S6F1nDvVmb+nt2eR1Oobg6dMmWLdcccd7e5TVVVlRUZGWuvXr/eP7d6925JkFRcXd9VUO83ZrNmyLGv8+PHW3Llzu25iXaitNX/XTTfdZP3whz/03//0008tSdY///lP/9hf//pXy2azWYcPH+6qqXaas1mzZVlWSkpKq2/FDhVtrfkHP/iBtXjx4hZjl19+ufXwww9blhWez+eO1mxZ4fV8LisrsyRZn3zyiX+subnZGjhwoLV69WrLssLvOAeyZssK7eN8rnr8mZEz8fl82rRpky666CJlZWVp0KBBcrvdLU6PlZSUqKmpSR6Pxz82fPhwDRs2TMXFxQZmfW4CWfM3/vznPyshIUGXXnqpcnJyVFdX1/0T7gKVlZXatGmTZs6c6R8rLi5Wv379lJGR4R/zeDyKiIjQ+++/b2KanaqtNX9jyZIlGjBggEaPHq2lS5fq9OnTBmbYOa688kpt3LhRhw8flmVZ2rp1q/bu3atrr71WUvg9n6WO1/yNcHk+NzQ0SFKLM7kRERFyOp167733JIXfcQ5kzd8Il+McrB75rb2BOnr0qE6dOqUlS5boscce0xNPPKHCwkLdfPPN2rp1q8aPH6+Kigo5HI5W3/qbmJioiooKMxM/B4GsWZKmTZumlJQUJScn66OPPtL8+fNVVlam1157zfAKzt2LL76o888/v8Up24qKCg0aNKjFdn369FH//v1D8jh/V1trlqRf/vKXuvzyy9W/f3/t2LFDOTk5OnLkiJYvX25opufmmWee0T333KOhQ4eqT58+ioiI0OrVqzVu3DhJCrvns9TxmqXwej5/ExU5OTl67rnndN555+npp5/Wv//9bx05ckRS+B3nQNYshddxDlZIx4jP55Mk3XTTTZo3b54kadSoUdqxY4cKCgr8L8zhJNA1f/u9EpdddpkGDx6sH/3oR9q/f78uuOCC7p94J1q7dq1uv/32Vu+RCWftrdnr9fr/98iRI+VwOPTzn/9c+fn5Ifm9F88884z+8Y9/aOPGjUpJSdH27ds1e/ZsJScnt/hXcjgJZM3h9HyOjIzUa6+9ppkzZ6p///6y2+3yeDz6yU9+IitMPxA80DWH03EOVkjHSEJCgvr06aNLLrmkxfiIESP8p76SkpLU2NioqqqqFpVdWVmppKSk7pxupwhkzW355ruD9u3bF9J/qd99912VlZVp3bp1LcaTkpJ09OjRFmOnT5/WiRMnQvI4f1t7a26L2+3W6dOndfDgQV188cXdMLvOU19fr4ceekivv/66brjhBklfB1ZpaameeuopeTyesHs+B7LmtoT68zk9PV2lpaWqrq5WY2OjBg4cKLfb7b/MGm7HWep4zW0J9eMcjJB+z4jD4dCYMWNUVlbWYnzv3r1KSUmR9PVfgMjISBUVFfn/vKysTOXl5crMzOzW+XaGQNbcltLSUknS4MGDu3J6XW7NmjVKT09XWlpai/HMzExVVVWppKTEP/b3v/9dPp/P/4QOVe2tuS2lpaWKiIhodckqFDQ1NampqUkRES3/s2S32/1nBMPt+RzImtsSLs/nuLg4DRw4UJ999pl27dqlm266SVL4Hedva2/NbQmX4xyIHn9m5NSpU9q3b5///ueff67S0lL1799fw4YN04MPPqgpU6Zo3LhxmjhxogoLC/Xmm29q27Ztkr4+8DNnzpTX61X//v0VGxurOXPmKDMzU1dccYWhVZ3Zua55//79evnll3X99ddrwIAB+uijjzRv3jyNGzdOI0eONLSqM+tozZJUU1Oj9evXa9myZa32HzFihK677jrNmjVLBQUFampq0v3336/bbrtNycnJ3baOYJzrmouLi/X+++9r4sSJOv/881VcXKx58+bpjjvuUHx8fLetIxgdrXn8+PF68MEHFR0drZSUFL3zzjv605/+5H8PTDg+nztaczg+n9evX6+BAwdq2LBh+vjjjzV37lxNnjzZ/6bdcDzOHa05FI9zpzL7yzwd27p1qyWp1W369On+bdasWWNdeOGFVlRUlJWWlmZt2LChxc+or6+3fvGLX1jx8fFWTEyM9dOf/tQ6cuRIN68kcOe65vLycmvcuHFW//79LafTaV144YXWgw8+aFVXVxtYTWACWfNzzz1nRUdHW1VVVW3+jP/+97/W1KlTrb59+1qxsbHWjBkzrJMnT3bTCoJ3rmsuKSmx3G63FRcXZ0VFRVkjRoywHn/8ceurr77qxlUEp6M1HzlyxLrrrrus5ORkKyoqyrr44outZcuWWT6fz/8zwu353NGaw/H5/Lvf/c4aOnSoFRkZaQ0bNsxauHCh1dDQ0OJnhNtx7mjNoXicO5PNssL0HUMAACAkhPR7RgAAQOgjRgAAgFHECAAAMIoYAQAARhEjAADAKGIEAAAYRYwAAACjiBEAAGAUMQIAAIwiRgAAgFHECAAAMOr/ACALanBT6zk7AAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# plot the \"empirical cumulated density function\"\n", "plt.ecdf(x)\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": 43, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[161 166 167 168 179 179 184 187 191 198]\n" ] } ], "source": [ "# compare with values \n", "print(x)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "In the cumulated distribution all detailed information is kept - but is is another way to visualise the distribution of data. " ] }, { "cell_type": "code", "execution_count": 44, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHHCAYAAABDUnkqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAA9hAAAPYQGoP6dpAAA7aElEQVR4nO3deVyU5f7/8feAMEAKboiiBGRlLomKQlpKC0XWsUwtW1HzaJZWyjcryy0rrUyzUxZlWZ2yk2lli6WnOJp65Ljg2nHLvVxQMkHFQJnr90c/5jgCMuDAwM3r+XjM4yHXXPfcn+u+73He3Pd1DzZjjBEAAIBF+Hi7AAAAAE8i3AAAAEsh3AAAAEsh3AAAAEsh3AAAAEsh3AAAAEsh3AAAAEsh3AAAAEsh3AAAAEsh3MDSxo8fL5vN5nZ/m82m8ePHV0gtu3fvls1m0/vvv18hr18VREVFqX///t4uw0VZj4GzXX311br66qs9V1A59e/fX1FRUZWyrlWrVqlLly664IILZLPZtG7dukpZb1lVxeMNVQPhBlXG+++/L5vNVuLjP//5j7dLRAXZv3+/xo8fX2U/RKui3NxcjR8/XosXL/bo6546dUq33367jhw5oldeeUUffvihIiMjPbqOsli+fLnGjx+vo0ePeq0GVD+1vF0AcLYJEyYoOjq6SPvFF19c5tcaPXq0nnzySbf7nzx5UrVq8baobPv379czzzyjqKgotWvXztvlVEkzZsyQw+Fw/pybm6tnnnlGkjx6ZmnHjh3as2ePZsyYob/+9a8ee93yWr58uZ555hn1799fdevWdXlu69at8vHhd3QUxf/iqHK6d++ujh07euS1atWqVWpYcTgcys/PV0BAgAICAjyyXsDT/Pz8KmU9hw4dkqQiQaIqstvt3i4BVRSRF9VO4dyVl19+Wa+88ooiIyMVGBiohIQE/fTTTy59i5tvYbPZNGzYMM2aNUutW7eW3W7XggULnM+dPedm3759GjhwoMLDw2W32xUdHa0HH3xQ+fn5kqQjR47oscce0+WXX67atWsrODhY3bt31/r168s9xqNHj2rEiBGKioqS3W5Xs2bNlJycrKysLEn/u4S3e/dul+UWL14sm83mcqni6quvVps2bbRhwwYlJCQoKChIF198sebOnStJ+vHHHxUfH6/AwEC1aNFCP/zwg8trljTXw525LO5sm8WLF6tTp06SpAEDBjgvQ545N2nFihW68cYbFRISoqCgICUkJOjf//53kfUtW7ZMnTp1UkBAgJo3b6633nrrnPWd7e2331bz5s0VGBiouLg4LV26tNh+eXl5GjdunC6++GLZ7XZFRETo8ccfV15enku/wmNt3rx5atOmjex2u1q3bu083godO3ZMw4cPd+7vRo0a6frrr9eaNWucfc7cD7t371ZoaKgk6ZlnnnFus/Hjx+u9996TzWbT2rVri9Q9ceJE+fr6at++fcWOq3///kpISJAk3X777bLZbM6zQiXNPTr7+Djz/Vm4Pe12uzp16qRVq1YVWX7Lli264447FBoa6jwGn376aUl/HmMjR46UJEVHRzvHWXjcFzfnZufOnbr99ttVv359BQUF6YorrtD8+fNd+hS+Tz799FM9//zzatasmQICAnTddddp+/btxW4bVC+cuUGVk52d7fwQL2Sz2dSgQQOXtr///e86duyYhg4dqj/++EOvvvqqrr32Wm3cuFFhYWHnXMe//vUvffrppxo2bJgaNmxY4kTN/fv3Ky4uTkePHtXgwYN12WWXad++fZo7d65yc3Pl7++vnTt3at68ebr99tsVHR2tzMxMvfXWW0pISNCmTZsUHh5epvEfP35cXbt21ebNm3X//ferQ4cOysrK0ldffaVff/1VDRs2LNPrSdLvv/+uv/zlL7rzzjt1++23680339Sdd96pWbNmafjw4RoyZIjuvvtuTZ48WX369NEvv/yiOnXqlHk9Z3Nn27Rs2VITJkzQ2LFjNXjwYHXt2lWS1KVLF0l/7qvu3bsrNjZW48aNk4+Pj9577z1de+21Wrp0qeLi4iRJGzdu1A033KDQ0FCNHz9ep0+f1rhx40o9Fgq9++67euCBB9SlSxcNHz5cO3fu1C233KL69esrIiLC2c/hcOiWW27RsmXLNHjwYLVs2VIbN27UK6+8om3btmnevHkur7ts2TJ9/vnneuihh1SnTh397W9/U+/evbV3717nMT1kyBDNnTtXw4YNU6tWrfTbb79p2bJl2rx5szp06FCk1tDQUL355pt68MEHddttt6lXr16SpLZt2yo6OlpDhw7VrFmz1L59e5flZs2apauvvlpNmzYtdhs88MADatq0qSZOnKhHHnlEnTp1cnv7ne3jjz/WsWPH9MADD8hms+mll15Sr169tHPnTudZqA0bNqhr167y8/PT4MGDFRUVpR07dujrr7/W888/r169emnbtm36xz/+oVdeecV57BcGu7NlZmaqS5cuys3N1SOPPKIGDRrogw8+0C233KK5c+fqtttuc+n/wgsvyMfHR4899piys7P10ksv6Z577tGKFSvKNWZUIQaoIt577z0jqdiH3W539tu1a5eRZAIDA82vv/7qbF+xYoWRZEaMGOFsGzdunDn7MJdkfHx8zH//+98iNUgy48aNc/6cnJxsfHx8zKpVq4r0dTgcxhhj/vjjD1NQUODy3K5du4zdbjcTJkwoUvd77713zu0wduxYI8l8/vnnJa6zcFvt2rXL5flFixYZSWbRokXOtoSEBCPJfPzxx862LVu2OLfDf/7zH2f7woULi9TYr18/ExkZWaSW4rZtZGSk6devn/Nnd7fNqlWrit02DofDXHLJJSYpKck5dmOMyc3NNdHR0eb66693tvXs2dMEBASYPXv2ONs2bdpkfH19i9R5tvz8fNOoUSPTrl07k5eX52x/++23jSSTkJDgbPvwww+Nj4+PWbp0qctrpKamGknm3//+t7NNkvH39zfbt293tq1fv95IMq+99pqzLSQkxAwdOvScNZ69Hw4fPlzkeC101113mfDwcJdtv2bNGreOv8JjaM6cOS7tCQkJLtuhpLoKj/MGDRqYI0eOONu//PJLI8l8/fXXzrZu3bqZOnXquOwzY4zLvp48eXKxx7oxRY+34cOHG0ku++bYsWMmOjraREVFObdH4Rhbtmzpsr9fffVVI8ls3Lix+I2DaoPLUqhypk+fru+//97l8d133xXp17NnT5ffQOPi4hQfH69vv/221HUkJCSoVatW5+zjcDg0b9489ejRo9g5QIWXZOx2u3NSY0FBgX777TfVrl1bLVq0cLms4K7PPvtMMTExRX7LPHOdZVW7dm3deeedzp9btGihunXrqmXLloqPj3e2F/57586d5VrP2c5326xbt04///yz7r77bv3222/KyspSVlaWTpw4oeuuu05LliyRw+FQQUGBFi5cqJ49e+rCCy90Lt+yZUslJSWVup7Vq1fr0KFDGjJkiPz9/Z3t/fv3V0hIiEvfOXPmqGXLlrrsssuc9WRlZenaa6+VJC1atMilf2Jiopo3b+78uW3btgoODnbZxnXr1tWKFSu0f//+Umt1R3Jysvbv3+9Sy6xZsxQYGKjevXt7ZB2l6du3r+rVq+f8ufCMXOG4Dx8+rCVLluj+++932WdS+Y/zb7/9VnFxcbrqqqucbbVr19bgwYO1e/dubdq0yaX/gAEDXPb32TWi+uKyFKqcuLg4tyYUX3LJJUXaLr30Un366aelLlvc3VhnO3z4sHJyctSmTZtz9nM4HHr11Vf1xhtvaNeuXSooKHA+d/alNHfs2LHD4x9AzZo1K/KBERIS4nK5pbBN+vMyliec77b5+eefJUn9+vUrsU92drby8vJ08uTJYo+JFi1alBp49+zZI6noMeXn56eLLrqoSE2bN28u8dJI4YTcQmd/cEtSvXr1XLbxSy+9pH79+ikiIkKxsbG66aablJycXGTd7rr++uvVpEkTzZo1S9ddd50cDof+8Y9/6NZbb/XI5UZ3nD3uwqBTOO7CAFHa+6ss9uzZ4xLWC7Vs2dL5/JnrK61GVF+EG9RIgYGBHnutiRMnasyYMbr//vv17LPPqn79+vLx8dHw4cNdbt31pJJ+sz0zPJzJ19e3TO3GmHKv60znu20K+0yePLnEW8Rr165dZCJvRXI4HLr88ss1derUYp8/OzC6s43vuOMOde3aVV988YX++c9/avLkyXrxxRf1+eefq3v37mWu0dfXV3fffbdmzJihN954Q//+97+1f/9+3XvvvWV+rUI2m82l5kJlPeaKew1vqQ41onwIN6i2Cn+rP9O2bds89i2uoaGhCg4OLnIH1tnmzp2ra665Ru+++65L+9GjR8s1+bd58+alrrPwN8yzv9is8AyEJ9WrV6/YL1BzZ13ubpuSAlTh5Zzg4GAlJiaWuJ7CO22KOya2bt1aap2FX1L3888/Oy8vSX9+od2uXbsUExPjUtP69et13XXXndc3H5+tSZMmeuihh/TQQw/p0KFD6tChg55//vkSw01p605OTtaUKVP09ddf67vvvlNoaKhbl+hKUq9evWIv15T3mCs8K1XasV6WbRwZGVns/t6yZYvzedQMzLlBtTVv3jyXW1pXrlypFStWlOs33eL4+PioZ8+e+vrrr7V69eoizxf+dufr61vkN705c+aUeLttaXr37q3169friy++KHGdhR/6S5YscT5XUFCgt99+u1zrPJfmzZsrOztbGzZscLYdOHCg2PrO5u62ueCCCyQVDWuxsbFq3ry5Xn75ZR0/frzI6x8+fNi5nqSkJM2bN0979+51Pr9582YtXLiw1Do7duyo0NBQpaamOm/xl/685f7smu644w7t27dPM2bMKPI6J0+e1IkTJ0pd35kKCgqUnZ3t0taoUSOFh4ef84xUUFCQpKLbrFDbtm3Vtm1bvfPOO/rss8905513ntcXVDZv3lxbtmxxbnNJWr9+fbG35LsjNDRU3bp108yZM132meR65qSkY6M4N910k1auXKn09HRn24kTJ/T2228rKiqq1Hl2sA7O3KDK+e6775y/aZ2pS5cuLnMQLr74Yl111VV68MEHlZeXp2nTpqlBgwZ6/PHHPVbLxIkT9c9//lMJCQnO234PHDigOXPmaNmyZapbt67+8pe/aMKECRowYIC6dOmijRs3atasWeWeLzFy5EjNnTtXt99+u+6//37FxsbqyJEj+uqrr5SamqqYmBi1bt1aV1xxhUaNGqUjR46ofv36+uSTT3T69GmPjb3QnXfeqSeeeEK33XabHnnkEeXm5urNN9/UpZdeWuqkYHe3TfPmzVW3bl2lpqaqTp06uuCCCxQfH6/o6Gi988476t69u1q3bq0BAwaoadOm2rdvnxYtWqTg4GB9/fXXkv78vpcFCxaoa9eueuihh3T69Gm99tprat26tUswK46fn5+ee+45PfDAA7r22mvVt29f7dq1S++9916RWu+77z59+umnGjJkiBYtWqQrr7xSBQUF2rJliz799FMtXLiwTF9CeezYMTVr1kx9+vRRTEyMateurR9++EGrVq3SlClTSlwuMDBQrVq10uzZs3XppZeqfv36atOmjcuckuTkZD322GOSdF6XpCTp/vvv19SpU5WUlKSBAwfq0KFDSk1NVevWrZWTk1Ou1/zb3/6mq666Sh06dNDgwYMVHR2t3bt3a/78+c4/xREbGytJevrpp3XnnXfKz89PPXr0cIaeMz355JP6xz/+oe7du+uRRx5R/fr19cEHH2jXrl367LPP+DbjmsRbt2kBZzvXreA64xbWwltNJ0+ebKZMmWIiIiKM3W43Xbt2NevXr3d5zZJuBS/ptlsVc2vtnj17THJysgkNDTV2u91cdNFFZujQoc5bSP/44w/zf//3f6ZJkyYmMDDQXHnllSY9Pb3IrbPu3gpujDG//fabGTZsmGnatKnx9/c3zZo1M/369TNZWVnOPjt27DCJiYnGbrebsLAw89RTT5nvv/++2FvBW7duXWQdkZGR5uabby52G5y9ff75z3+aNm3aGH9/f9OiRQvz0UcfuX0ruDvbxpg/bxVu1aqVqVWrVpHttHbtWtOrVy/ToEEDY7fbTWRkpLnjjjtMWlqay2v8+OOPJjY21vj7+5uLLrrIpKamFltnSd544w0THR1t7Ha76dixo1myZEmxtebn55sXX3zRtG7d2tjtdlOvXj0TGxtrnnnmGZOdnX3ObXn2dsrLyzMjR440MTExpk6dOuaCCy4wMTEx5o033nBZprhb8pcvX+4cb3HH7oEDB4yvr6+59NJL3Rq/MSXfCm6MMR999JG56KKLjL+/v2nXrp1ZuHBhibeCT548ucjyxdX4008/mdtuu83UrVvXBAQEmBYtWpgxY8a49Hn22WdN06ZNjY+Pj8tt4Wcfb8b8+b7o06eP8/Xi4uLMN99849YYy/IeRdVmM4aZU6hedu/erejoaE2ePNn5WymAorKystSkSRONHTtWY8aM8XY5QKXhHB0AWNT777+vgoIC3Xfffd4uBahUzLkBAIv517/+pU2bNun5559Xz549PXYHIVBdEG4AwGImTJig5cuX68orr9Rrr73m7XKASsecGwAAYCnMuQEAAJZCuAEAAJZS4+bcOBwO7d+/X3Xq1PHoV6cDAICKY4zRsWPHFB4eXuoXMta4cLN///4if9gOAABUD7/88ouaNWt2zj41LtzUqVNH0p8bJzg42MvVAAAAd+Tk5CgiIsL5OX4uNS7cFF6KCg4OJtwAAFDNuDOlhAnFAADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUrwabpYsWaIePXooPDxcNptN8+bNK3WZxYsXq0OHDrLb7br44ov1/vvvV3idAACg+vBquDlx4oRiYmI0ffp0t/rv2rVLN998s6655hqtW7dOw4cP11//+lctXLiwgisFAADVRS1vrrx79+7q3r272/1TU1MVHR2tKVOmSJJatmypZcuW6ZVXXlFSUlJFlQkAANxgjNHJUwWSpEA/X9lsNq/UUa3m3KSnpysxMdGlLSkpSenp6SUuk5eXp5ycHJcHAADwvJOnCtRq7EK1GrvQGXK8oVqFm4MHDyosLMylLSwsTDk5OTp58mSxy0yaNEkhISHOR0RERGWUCgAAvKRahZvyGDVqlLKzs52PX375xdslAQCACuTVOTdl1bhxY2VmZrq0ZWZmKjg4WIGBgcUuY7fbZbfbK6M8AABQBVSrMzedO3dWWlqaS9v333+vzp07e6kiAABQ1Xg13Bw/flzr1q3TunXrJP15q/e6deu0d+9eSX9eUkpOTnb2HzJkiHbu3KnHH39cW7Zs0RtvvKFPP/1UI0aM8Eb5AACgCvJquFm9erXat2+v9u3bS5JSUlLUvn17jR07VpJ04MABZ9CRpOjoaM2fP1/ff/+9YmJiNGXKFL3zzjvcBg4AAJy8Oufm6quvljGmxOeL+/bhq6++WmvXrq3AqgAAQHVWrebcAAAAlIZwAwAALIVwAwAALIVwAwAALIVwAwAALIVwAwAALIVwAwAALIVwAwAALIVwAwAALIVwAwAALIVwAwAALIVwAwAALIVwAwAALIVwAwAALIVwAwAALIVwAwAALIVwAwAALIVwAwAALIVwAwAALIVwAwAALIVwAwAALIVwAwAALKWWtwsAAMAbjDE6earA22VYSm5+1diehBsAQI1jjFGf1HRl7Pnd26WgAnBZCgBQ45w8VUCwqUAdI+sp0M/Xa+vnzA0AoEZbPTpRQf7e+yC2okA/X9lsNq+tn3ADAKjRgvx9FeTPx6GVcFkKAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYitfDzfTp0xUVFaWAgADFx8dr5cqV5+w/bdo0tWjRQoGBgYqIiNCIESP0xx9/VFK1AACgqvNquJk9e7ZSUlI0btw4rVmzRjExMUpKStKhQ4eK7f/xxx/rySef1Lhx47R582a9++67mj17tp566qlKrhwAAFRVXg03U6dO1aBBgzRgwAC1atVKqampCgoK0syZM4vtv3z5cl155ZW6++67FRUVpRtuuEF33XVXqWd7AABAzVHLWyvOz89XRkaGRo0a5Wzz8fFRYmKi0tPTi12mS5cu+uijj7Ry5UrFxcVp586d+vbbb3XfffdVVtkAgP/PGKOTpwq8XUa55OZXz7rhHq+Fm6ysLBUUFCgsLMylPSwsTFu2bCl2mbvvvltZWVm66qqrZIzR6dOnNWTIkHNelsrLy1NeXp7z55ycHM8MAABqMGOM+qSmK2PP794uBSjC6xOKy2Lx4sWaOHGi3njjDa1Zs0aff/655s+fr2effbbEZSZNmqSQkBDnIyIiohIrBgBrOnmqwBLBpmNkPQX6+Xq7DHiY187cNGzYUL6+vsrMzHRpz8zMVOPGjYtdZsyYMbrvvvv017/+VZJ0+eWX68SJExo8eLCefvpp+fgUzWqjRo1SSkqK8+ecnBwCDgB40OrRiQryr54BIdDPVzabzdtlwMO8Fm78/f0VGxurtLQ09ezZU5LkcDiUlpamYcOGFbtMbm5ukQDj6/vnG8oYU+wydrtddrvdc4UDAFwE+fsqyN9rHydAEV49GlNSUtSvXz917NhRcXFxmjZtmk6cOKEBAwZIkpKTk9W0aVNNmjRJktSjRw9NnTpV7du3V3x8vLZv364xY8aoR48ezpADAABqNq+Gm759++rw4cMaO3asDh48qHbt2mnBggXOScZ79+51OVMzevRo2Ww2jR49Wvv27VNoaKh69Oih559/3ltDAAAAVYzNlHQ9x6JycnIUEhKi7OxsBQcHe7scAKiWcvNPq9XYhZKkTROSuCyFCleWz+9qdbcUAABAaQg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUmp5uwAAQOmMMTp5qsDbZTjl5ledWoCzEW4AoIozxqhParoy9vzu7VKAaoHLUgBQxZ08VVBlg03HyHoK9PP1dhmAC87cAEA1snp0ooL8q06YCPTzlc1m83YZgAvCDQBUI0H+vgry579u4Fy4LAUAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACzF6+Fm+vTpioqKUkBAgOLj47Vy5cpz9j969KiGDh2qJk2ayG6369JLL9W3335bSdUCAICqrpY3Vz579mylpKQoNTVV8fHxmjZtmpKSkrR161Y1atSoSP/8/Hxdf/31atSokebOnaumTZtqz549qlu3buUXDwAAqiSvhpupU6dq0KBBGjBggCQpNTVV8+fP18yZM/Xkk08W6T9z5kwdOXJEy5cvl5+fnyQpKiqqMksGUAUYY3TyVIG3y6g0ufk1Z6yAJ3gt3OTn5ysjI0OjRo1ytvn4+CgxMVHp6enFLvPVV1+pc+fOGjp0qL788kuFhobq7rvv1hNPPCFfX99il8nLy1NeXp7z55ycHM8OBEClMsaoT2q6Mvb87u1SAFRRXptzk5WVpYKCAoWFhbm0h4WF6eDBg8Uus3PnTs2dO1cFBQX69ttvNWbMGE2ZMkXPPfdcieuZNGmSQkJCnI+IiAiPjgNA5Tp5qqDGBpuOkfUU6Ff8L3IA/serl6XKyuFwqFGjRnr77bfl6+ur2NhY7du3T5MnT9a4ceOKXWbUqFFKSUlx/pyTk0PAASxi9ehEBfnXnA/7QD9f2Ww2b5cBVHleCzcNGzaUr6+vMjMzXdozMzPVuHHjYpdp0qSJ/Pz8XC5BtWzZUgcPHlR+fr78/f2LLGO322W32z1bPIAqIcjfV0H+1ep3NACVwGuXpfz9/RUbG6u0tDRnm8PhUFpamjp37lzsMldeeaW2b98uh8PhbNu2bZuaNGlSbLABAAA1j1e/5yYlJUUzZszQBx98oM2bN+vBBx/UiRMnnHdPJScnu0w4fvDBB3XkyBE9+uij2rZtm+bPn6+JEydq6NCh3hoCAACoYrx6Prdv3746fPiwxo4dq4MHD6pdu3ZasGCBc5Lx3r175ePzv/wVERGhhQsXasSIEWrbtq2aNm2qRx99VE888YS3hgAAAKoYmzHGeLuIypSTk6OQkBBlZ2crODjY2+UAKKPc/NNqNXahJGnThCTm3AA1RFk+v73+5xcAAAA8iXADAAAshXADAAAspcwXqzdv3qxPPvlES5cu1Z49e5Sbm6vQ0FC1b99eSUlJ6t27N98rAwAAvMbtMzdr1qxRYmKi2rdvr2XLlik+Pl7Dhw/Xs88+q3vvvVfGGD399NMKDw/Xiy++6PL3nAAAACqL22duevfurZEjR2ru3LmqW7duif3S09P16quvasqUKXrqqac8USMAAIDb3A4327Ztk5+fX6n9OnfurM6dO+vUqVPnVRgAAEB5uH1Zyp1gI0m5ubll6g8AAOBJ5bpb6rrrrtO+ffuKtK9cuVLt2rU735oAAADKrVzhJiAgQG3bttXs2bMl/fkHL8ePH6+rrrpKN910k0cLBAAAKItyfW/5/PnzNX36dN1///368ssvtXv3bu3Zs0fffPONbrjhBk/XCAAA4LZy/1GWoUOH6tdff9WLL76oWrVqafHixerSpYsnawMAACizcl2W+v3339W7d2+9+eabeuutt3THHXfohhtu0BtvvOHp+gAAAMqkXGdu2rRpo+joaK1du1bR0dEaNGiQZs+erYceekjz58/X/PnzPV0nAACAW8p15mbIkCFasmSJoqOjnW19+/bV+vXrlZ+f77HiAAAAyqpcZ27GjBlTbHuzZs30/fffn1dBAAAA58PtMzd79+4t0wsX9z04AAAAFc3tcNOpUyc98MADWrVqVYl9srOzNWPGDLVp00afffaZRwoEAAAoC7cvS23atEnPP/+8rr/+egUEBCg2Nlbh4eEKCAjQ77//rk2bNum///2vOnTooJdeeokv8wMAAF7h9pmbBg0aaOrUqTpw4IBef/11XXLJJcrKytLPP/8sSbrnnnuUkZGh9PR0gg0AAPAat8/cbNiwQW3atFFgYKD69OmjPn36VGRdAAAA5eL2mZv27dsrKytLknTRRRfpt99+q7CiAAAAysvtcFO3bl3t2rVLkrR79245HI4KKwoAAKC83L4s1bt3byUkJKhJkyay2Wzq2LGjfH19i+27c+dOjxUIAABQFm6Hm7ffflu9evXS9u3b9cgjj2jQoEGqU6dORdYGAABQZmX6huIbb7xRkpSRkaFHH32UcAMAAKqccv35hffee8/TdQAAAHiE2+GmV69ebr/o559/Xq5iAAAAzpfbd0uFhIQ4H8HBwUpLS9Pq1audz2dkZCgtLU0hISEVUigAAIA73D5zc+alqCeeeEJ33HGHUlNTnXdMFRQU6KGHHlJwcLDnqwQAAHCT22duzjRz5kw99thjLreC+/r6KiUlRTNnzvRYcQAAAGVVrnBz+vRpbdmypUj7li1b+HI/AADgVeW6W2rAgAEaOHCgduzYobi4OEnSihUr9MILL2jAgAEeLRAAAKAsyhVuXn75ZTVu3FhTpkzRgQMHJElNmjTRyJEj9X//938eLRAAAKAsyhVufHx89Pjjj+vxxx9XTk6OJDGRGAAAVAnlCje7du3S6dOndckll7iEmp9//ll+fn6KioryVH0AAABlUq4Jxf3799fy5cuLtK9YsUL9+/c/35oAAADKrVzhZu3atbryyiuLtF9xxRVat27d+dYEAABQbuUKNzabTceOHSvSnp2drYKCgvMuCgAAoLzKFW66deumSZMmuQSZgoICTZo0SVdddZXHigMAACirck0ofvHFF9WtWze1aNFCXbt2lSQtXbpU2dnZWrRokUcLBAAAKItynblp1aqVNmzYoL59++rQoUM6duyYkpOTtXXrVrVp08bTNQIAALitXGduJGnHjh3avXu3jhw5orlz56pp06b68MMPFR0dzaUpAADgNeU6c/PZZ58pKSlJQUFBWrt2rfLy8iT9OaF44sSJHi0QAACgLMoVbp577jmlpqZqxowZ8vPzc7ZfeeWVWrNmjceKAwAAKKtyhZutW7eqW7duRdpDQkJ09OjR860JAACg3MoVbho3bqzt27cXaV+2bJkuuuii8y4KAACgvMoVbgYNGqRHH31UK1askM1m0/79+zVr1iw99thjevDBBz1dIwAAgNvKdbfUk08+KYfDoeuuu065ubnq1q2b7Ha7HnvsMT388MOerhEAAMBt5Qo3NptNTz/9tEaOHKnt27fr+PHjatWqlWrXru3p+gAAAMqkXJelCvn7+6tVq1aKi4s7r2Azffp0RUVFKSAgQPHx8Vq5cqVby33yySey2Wzq2bNnudcNAACs5bzCjSfMnj1bKSkpGjdunNasWaOYmBglJSXp0KFD51xu9+7deuyxx5x//gEAAECqAuFm6tSpGjRokAYMGKBWrVopNTVVQUFBmjlzZonLFBQU6J577tEzzzzD3VkAAMBFuf/8gifk5+crIyNDo0aNcrb5+PgoMTFR6enpJS43YcIENWrUSAMHDtTSpUsro1R4iTFGJ08VlN4RNUZuPscDgHPzarjJyspSQUGBwsLCXNrDwsK0ZcuWYpdZtmyZ3n33Xa1bt86tdeTl5Tn/PIQk5eTklLteVC5jjPqkpitjz+/eLgUAUI14/bJUWRw7dkz33XefZsyYoYYNG7q1zKRJkxQSEuJ8REREVHCV8JSTpwoINihRx8h6CvTz9XYZAKogr565adiwoXx9fZWZmenSnpmZqcaNGxfpX/iXyHv06OFsczgckqRatWpp69atat68ucsyo0aNUkpKivPnnJwcAk41tHp0ooL8+SDD/wT6+cpms3m7DABVkFfDjb+/v2JjY5WWlua8ndvhcCgtLU3Dhg0r0v+yyy7Txo0bXdpGjx6tY8eO6dVXXy02tNjtdtnt9gqpH5UnyN9XQf5ePVwBANWE1z8tUlJS1K9fP3Xs2FFxcXGaNm2aTpw4oQEDBkiSkpOT1bRpU02aNEkBAQFq06aNy/J169aVpCLtAACgZvJ6uOnbt68OHz6ssWPH6uDBg2rXrp0WLFjgnGS8d+9e+fhUq6lBAADAi2zGGOPtIipTTk6OQkJClJ2dreDgYG+Xg3PIzT+tVmMXSpI2TUjishQA1GBl+fzmlAgAALAUwg0AALAUwg0AALAUwg0AALAUwg0AALAUwg0AALAUwg0AALAUwg0AALAUwg0AALAUwg0AALAUwg0AALAUwg0AALAUwg0AALAUwg0AALAUwg0AALAUwg0AALAUwg0AALAUwg0AALAUwg0AALAUwg0AALAUwg0AALAUwg0AALAUwg0AALCUWt4uADWLMUYnTxW41Tc3371+AACciXCDSmOMUZ/UdGXs+d3bpQAALIzLUqg0J08VlCvYdIysp0A/3wqoCABgRZy5gVesHp2oIH/3Akugn69sNlsFVwQAsArCDbwiyN9XQf4cfgAAz+OyFAAAsBTCDQAAsBTCDQAAsBTCDQAAsBTCDQAAsBTCDQAAsBTCDQAAsBTCDQAAsBTCDQAAsBTCDQAAsBTCDQAAsBTCDQAAsBTCDQAAsBTCDQAAsBTCDQAAsBTCDQAAsBTCDQAAsBTCDQAAsBTCDQAAsBTCDQAAsBTCDQAAsBTCDQAAsBTCDQAAsJQqEW6mT5+uqKgoBQQEKD4+XitXriyx74wZM9S1a1fVq1dP9erVU2Ji4jn7AwCAmsXr4Wb27NlKSUnRuHHjtGbNGsXExCgpKUmHDh0qtv/ixYt11113adGiRUpPT1dERIRuuOEG7du3r5IrBwAAVZHNGGO8WUB8fLw6deqk119/XZLkcDgUERGhhx9+WE8++WSpyxcUFKhevXp6/fXXlZycXGr/nJwchYSEKDs7W8HBweddf01njNHJUwVu9c3NL1DH536QJG2akKQg/1oVWRoAwELK8vnt1U+X/Px8ZWRkaNSoUc42Hx8fJSYmKj093a3XyM3N1alTp1S/fv1in8/Ly1NeXp7z55ycnPMrGk7GGPVJTVfGnt+9XQoAAE5evSyVlZWlgoIChYWFubSHhYXp4MGDbr3GE088ofDwcCUmJhb7/KRJkxQSEuJ8REREnHfd+NPJUwXlCjYdI+sp0M+3AioCAMDLZ27O1wsvvKBPPvlEixcvVkBAQLF9Ro0apZSUFOfPOTk5BJwKsHp0ooL83QssgX6+stlsFVwRAKCm8mq4adiwoXx9fZWZmenSnpmZqcaNG59z2ZdfflkvvPCCfvjhB7Vt27bEfna7XXa73SP1omRB/r7MoQEAVAlevSzl7++v2NhYpaWlOdscDofS0tLUuXPnEpd76aWX9Oyzz2rBggXq2LFjZZQKAACqCa//qp2SkqJ+/fqpY8eOiouL07Rp03TixAkNGDBAkpScnKymTZtq0qRJkqQXX3xRY8eO1ccff6yoqCjn3JzatWurdu3aXhsHAACoGrwebvr27avDhw9r7NixOnjwoNq1a6cFCxY4Jxnv3btXPj7/O8H05ptvKj8/X3369HF5nXHjxmn8+PGVWToAAKiCvP49N5WN77nxnNz802o1dqEkvrcGAFCxyvL57fVvKAYAAPAkwg0AALAUwg0AALAUwg0AALAUwg0AALAUwg0AALAUwg0AALAUwg0AALAUwg0AALAUwg0AALAUwg0AALAUwg0AALAUwg0AALAUwg0AALAUwg0AALAUwg0AALAUwg0AALAUwg0AALAUwg0AALAUwg0AALAUwg0AALAUwg0AALCUWt4uwEqMMTp5qsDbZVSa3PyaM1YAQPVBuPEQY4z6pKYrY8/v3i4FAIAajctSHnLyVEGNDTYdI+sp0M/X22UAACCJMzcVYvXoRAX515wP+0A/X9lsNm+XAQCAJMJNhQjy91WQP5sWAABv4LIUAACwFMINAACwFMINAACwFMINAACwFMINAACwFMINAACwFMINAACwFMINAACwFMINAACwFMINAACwFMINAACwFMINAACwFMINAACwFMINAACwFMINAACwFMINAACwFMINAACwFMINAACwFMINAACwFMINAACwFMINAACwFMINAACwFMINAACwFMINAACwlCoRbqZPn66oqCgFBAQoPj5eK1euPGf/OXPm6LLLLlNAQIAuv/xyffvtt5VUKQAAqOq8Hm5mz56tlJQUjRs3TmvWrFFMTIySkpJ06NChYvsvX75cd911lwYOHKi1a9eqZ8+e6tmzp3766adKrhwAAFRFNmOM8WYB8fHx6tSpk15//XVJksPhUEREhB5++GE9+eSTRfr37dtXJ06c0DfffONsu+KKK9SuXTulpqaWur6cnByFhIQoOztbwcHBHhtHbv5ptRq7UJK0aUKSgvxreey1AQCo6cry+e3VMzf5+fnKyMhQYmKis83Hx0eJiYlKT08vdpn09HSX/pKUlJRUYv+8vDzl5OS4PAAAgHV5NdxkZWWpoKBAYWFhLu1hYWE6ePBgscscPHiwTP0nTZqkkJAQ5yMiIsIzxQMAgCrJ63NuKtqoUaOUnZ3tfPzyyy8Vsp5AP19tmpCkTROSFOjnWyHrAAAApfPqxJCGDRvK19dXmZmZLu2ZmZlq3Lhxscs0bty4TP3tdrvsdrtnCj4Hm83GPBsAAKoAr5658ff3V2xsrNLS0pxtDodDaWlp6ty5c7HLdO7c2aW/JH3//fcl9gcAADWL1081pKSkqF+/furYsaPi4uI0bdo0nThxQgMGDJAkJScnq2nTppo0aZIk6dFHH1VCQoKmTJmim2++WZ988olWr16tt99+25vDAAAAVYTXw03fvn11+PBhjR07VgcPHlS7du20YMEC56ThvXv3ysfnfyeYunTpoo8//lijR4/WU089pUsuuUTz5s1TmzZtvDUEAABQhXj9e24qW0V9zw0AAKg41eZ7bgAAADyNcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyllrcLqGzGGElSTk6OlysBAADuKvzcLvwcP5caF26OHTsmSYqIiPByJQAAoKyOHTumkJCQc/axGXcikIU4HA7t379fderUkc1mO2ffnJwcRURE6JdfflFwcHAlVehdjNn6Y65p45UYM2O2rpo0ZmOMjh07pvDwcPn4nHtWTY07c+Pj46NmzZqVaZng4GDLHzRnY8zWV9PGKzHmmoIxW1dpZ2wKMaEYAABYCuEGAABYCuHmHOx2u8aNGye73e7tUioNY7a+mjZeiTHXFIwZhWrchGIAAGBtnLkBAACWQrgBAACWQrgBAACWQrgBAACWUuPCzZIlS9SjRw+Fh4fLZrNp3rx5Rfps3rxZt9xyi0JCQnTBBReoU6dO2rt3r/P5P/74Q0OHDlWDBg1Uu3Zt9e7dW5mZmZU4irLxxJivvvpq2Ww2l8eQIUMqcRRlU9qYzx5L4WPy5MnOPkeOHNE999yj4OBg1a1bVwMHDtTx48creSTu88SYo6Kiijz/wgsvVPJI3FfamI8fP65hw4apWbNmCgwMVKtWrZSamurSx2rvZ3fGbLX3c2Zmpvr376/w8HAFBQXpxhtv1M8//+zSpzrtZ0+Mt7rtY0+rceHmxIkTiomJ0fTp04t9fseOHbrqqqt02WWXafHixdqwYYPGjBmjgIAAZ58RI0bo66+/1pw5c/Tjjz9q//796tWrV2UNocw8MWZJGjRokA4cOOB8vPTSS5VRfrmUNuYzx3HgwAHNnDlTNptNvXv3dva555579N///lfff/+9vvnmGy1ZskSDBw+urCGUmSfGLEkTJkxw6ffwww9XRvnlUtqYU1JStGDBAn300UfavHmzhg8frmHDhumrr75y9rHa+9mdMUvWeT8bY9SzZ0/t3LlTX375pdauXavIyEglJibqxIkTzn7VaT97YrxS9drHHmdqMEnmiy++cGnr27evuffee0tc5ujRo8bPz8/MmTPH2bZ582YjyaSnp1dUqR5TnjEbY0xCQoJ59NFHK66wClTcmM926623mmuvvdb586ZNm4wks2rVKmfbd999Z2w2m9m3b19Fleox5RmzMcZERkaaV155peIKq0DFjbl169ZmwoQJLm0dOnQwTz/9tDHGmu/n0sZsjLXez1u3bjWSzE8//eRsKygoMKGhoWbGjBnGmOq9n8szXmOq9z72hBp35uZcHA6H5s+fr0svvVRJSUlq1KiR4uPjXU4JZmRk6NSpU0pMTHS2XXbZZbrwwguVnp7uharPjztjLjRr1iw1bNhQbdq00ahRo5Sbm1v5BVeAzMxMzZ8/XwMHDnS2paenq27duurYsaOzLTExUT4+PlqxYoU3yvSo4sZc6IUXXlCDBg3Uvn17TZ48WadPn/ZChZ7RpUsXffXVV9q3b5+MMVq0aJG2bdumG264QZL13s9S6WMuZJX3c15eniS5nGn28fGR3W7XsmXLJFlrP7sz3kJW2cflUeP+cOa5HDp0SMePH9cLL7yg5557Ti+++KIWLFigXr16adGiRUpISNDBgwfl7++vunXruiwbFhamgwcPeqfw8+DOmCXp7rvvVmRkpMLDw7VhwwY98cQT2rp1qz7//HMvj+D8ffDBB6pTp47LKeqDBw+qUaNGLv1q1aql+vXrV8v9fLbixixJjzzyiDp06KD69etr+fLlGjVqlA4cOKCpU6d6qdLz89prr2nw4MFq1qyZatWqJR8fH82YMUPdunWTJMu9n6XSxyxZ6/1cGFJGjRqlt956SxdccIFeeeUV/frrrzpw4IAka+1nd8YrWWsflwfh5gwOh0OSdOutt2rEiBGSpHbt2mn58uVKTU11ftBbibtjPnOuyeWXX64mTZrouuuu044dO9S8efPKL9yDZs6cqXvuuafIHCMrK2nMKSkpzn+3bdtW/v7+euCBBzRp0qRq+fXur732mv7zn//oq6++UmRkpJYsWaKhQ4cqPDzc5bd4K3FnzFZ6P/v5+enzzz/XwIEDVb9+ffn6+ioxMVHdu3eXseAX8Ls7Xivt4/Ig3JyhYcOGqlWrllq1auXS3rJlS+fpvsaNGys/P19Hjx51+S0gMzNTjRs3rsxyPcKdMRcnPj5ekrR9+/Zq/UZZunSptm7dqtmzZ7u0N27cWIcOHXJpO336tI4cOVIt9/OZShpzceLj43X69Gnt3r1bLVq0qITqPOfkyZN66qmn9MUXX+jmm2+W9GdgW7dunV5++WUlJiZa7v3szpiLU93fz7GxsVq3bp2ys7OVn5+v0NBQxcfHOy8rW20/lzbe4lT3fVxWzLk5g7+/vzp16qStW7e6tG/btk2RkZGS/jyo/Pz8lJaW5nx+69at2rt3rzp37lyp9XqCO2Muzrp16yRJTZo0qcjyKty7776r2NhYxcTEuLR37txZR48eVUZGhrPtX//6lxwOh/M/ieqqpDEXZ926dfLx8Slyia46OHXqlE6dOiUfH9f/5nx9fZ1nLK32fnZnzMWxyvs5JCREoaGh+vnnn7V69Wrdeuutkqy3nwuVNN7iWGUfu6vGnbk5fvy4tm/f7vx5165dWrdunerXr68LL7xQI0eOVN++fdWtWzddc801WrBggb7++mstXrxY0p8H08CBA5WSkqL69esrODhYDz/8sDp37qwrrrjCS6M6t/Md844dO/Txxx/rpptuUoMGDbRhwwaNGDFC3bp1U9u2bb00qnMrbcySlJOTozlz5mjKlClFlm/ZsqVuvPFGDRo0SKmpqTp16pSGDRumO++8U+Hh4ZU2jrI43zGnp6drxYoVuuaaa1SnTh2lp6drxIgRuvfee1WvXr1KG0dZlDbmhIQEjRw5UoGBgYqMjNSPP/6ov//97845RFZ8P5c2Ziu+n+fMmaPQ0FBdeOGF2rhxox599FH17NnTOYm6uu3n8x1vddzHHufdm7Uq36JFi4ykIo9+/fo5+7z77rvm4osvNgEBASYmJsbMmzfP5TVOnjxpHnroIVOvXj0TFBRkbrvtNnPgwIFKHon7znfMe/fuNd26dTP169c3drvdXHzxxWbkyJEmOzvbC6Nxjztjfuutt0xgYKA5evRosa/x22+/mbvuusvUrl3bBAcHmwEDBphjx45V0gjK7nzHnJGRYeLj401ISIgJCAgwLVu2NBMnTjR//PFHJY6ibEob84EDB0z//v1NeHi4CQgIMC1atDBTpkwxDofD+RpWez+XNmYrvp9fffVV06xZM+Pn52cuvPBCM3r0aJOXl+fyGtVpP5/veKvjPvY0mzEWnHEFAABqLObcAAAASyHcAAAASyHcAAAASyHcAAAASyHcAAAASyHcAAAASyHcAAAASyHcAAAASyHcAAAASyHcAAAASyHcAKj2Dh8+rMaNG2vixInOtuXLl8vf39/lL0EDqBn421IALOHbb79Vz549tXz5crVo0ULt2rXTrbfe6vxr2ABqDsINAMsYOnSofvjhB3Xs2FEbN27UqlWrZLfbvV0WgEpGuAFgGSdPnlSbNm30yy+/KCMjQ5dffrm3SwLgBcy5AWAZO3bs0P79++VwOLR7925vlwPASzhzA8AS8vPzFRcXp3bt2qlFixaaNm2aNm7cqEaNGnm7NACVjHADwBJGjhypuXPnav369apdu7YSEhIUEhKib775xtulAahkXJYCUO0tXrxY06ZN04cffqjg4GD5+Pjoww8/1NKlS/Xmm296uzwAlYwzNwAAwFI4cwMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACzl/wET6lxlVneAjQAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# lets increase the y-range slightly:\n", "plt.ecdf(x)\n", "plt.ylim(-0.1,1.1)\n", "plt.xlabel('x')\n", "plt.ylabel('ecdf(x)')\n", "plt.title('Epirical cumulated density function')\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The y-range goes from 0 to 1 - or 0% to 100%
\n", "\n", "Every vertical line-segment is a datapoint
\n", "\n", "When the plot is \"steep\" there are many datapoints (corresponds to high values in the histogram).
\n", "\n", "The cumulated plot can be used to understand the \"averaged_inverted_cdf\" used for percentiles.
\n", "\n", "OBS: we will talk more about distributions - and cumulative distributions - over the next couple of weeks. " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Other plots in Python" ] }, { "cell_type": "code", "execution_count": 58, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAGdCAYAAAA44ojeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAgFUlEQVR4nO3db2yV9f3/8deppYdW2sNOAU9P6CnTqC0qlVZScQRaaYDDUsB2iX9orBnSkQG6diHLcbINE1P8hyamiluAqgUxZFpgJMSh0GoouhZP0KWUFktAaesNpIdToK3p+d7g59nvjJZ54NTz6eH5SK7oda4/fV/e6dPrXKfHEggEAgIAADBIXLQHAAAA+G8ECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjxEd7gKsxODio06dPKzk5WRaLJdrjAACAHyEQCOjcuXNyOp2Ki7vyPZJRGSinT59Wenp6tMcAAABX4dSpU5o8efIV9xmVgZKcnCzp0gWmpKREeRoAAPBj+Hw+paenB3+PX8moDJQf3tZJSUkhUAAAGGV+zOMZPCQLAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwzqj8skAA5jl//ryOHj16zee5cOGCTpw4oSlTpigxMTECk0mZmZlKSkqKyLkA/DQIFAARcfToUeXm5kZ7jCE1NzcrJycn2mMACAOBAiAiMjMz1dzcfM3naWlpUWlpqWpra5WVlRWByS7NBmB0IVAARERSUlJE71JkZWVx1wO4jvGQLAAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADBO2IHS0NCgoqIiOZ1OWSwW1dXVhWzv7u7WY489JqfTqaSkJC1YsEBtbW0h++Tn58tisYQsK1asuKYLAQAAsSPsQOnt7VV2draqq6sv2xYIBLRkyRJ99dVX2rlzpz7//HNlZGSosLBQvb29IfsuX75cnZ2dweX555+/+qsAAAAxJT7cA9xut9xu95Db2tradOjQIX355Ze64447JEmvv/66HA6H3nnnHT3++OPBfZOSkuRwOK5ybAAAEMsi+gxKX1+fJGns2LH/+QFxcbJarfrkk09C9t26dasmTJigO++8Ux6PR+fPn7/ieX0+X8gCAABiV0QDJTMzUy6XSx6PR9999536+/v13HPP6euvv1ZnZ2dwv0ceeUS1tbXav3+/PB6P3n77bZWWlg573qqqKtlstuCSnp4eybEBAIBhwn6L50rGjBmj9957T8uWLZPdbtcNN9ygwsJCud1uBQKB4H7l5eXBf7/rrruUlpamuXPn6vjx47rlllsuO6/H41FlZWVw3efzESkAAMSwiAaKJOXm5srr9aqnp0f9/f2aOHGi8vLydM899wx7TF5eniSpvb19yECxWq2yWq2RHhUAABhqxP4Ois1m08SJE9XW1qampiYtXrx42H29Xq8kKS0tbaTGAQAAo0jYd1D8fr/a29uD6x0dHfJ6vbLb7XK5XNqxY4cmTpwol8ulL774Qk8++aSWLFmiefPmSZKOHz+ubdu2aeHChUpNTdWRI0dUUVGh2bNna9q0aZG7MgAAMGqFHShNTU0qKCgIrv/wbEhZWZlqamrU2dmpyspKdXd3Ky0tTY8++qjWrl0b3D8hIUH79u3TK6+8ot7eXqWnp6ukpERPP/10BC4HAADEAkvg/396dZTw+Xyy2Wzq6elRSkpKtMcBEEGHDx9Wbm6umpublZOTE+1xAERQOL+/+S4eAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGCfsQGloaFBRUZGcTqcsFovq6upCtnd3d+uxxx6T0+lUUlKSFixYoLa2tpB9Ll68qJUrVyo1NVXjxo1TSUmJuru7r+lCAABA7Ag7UHp7e5Wdna3q6urLtgUCAS1ZskRfffWVdu7cqc8//1wZGRkqLCxUb29vcL+Kigrt3r1bO3bsUH19vU6fPq3i4uJruxIAABAz4sM9wO12y+12D7mtra1Nhw4d0pdffqk77rhDkvT666/L4XDonXfe0eOPP66enh5t2rRJ27Zt0/333y9J2rJli7KysnTo0CHde++913A5AAAgFkT0GZS+vj5J0tixY//zA+LiZLVa9cknn0iSmpubNTAwoMLCwuA+mZmZcrlcamxsHPa8Pp8vZAEAALErooHyQ2h4PB5999136u/v13PPPaevv/5anZ2dkqSuri4lJCRo/PjxIcfedNNN6urqGvK8VVVVstlswSU9PT2SYwMAAMNENFDGjBmj9957T8eOHZPdbldSUpL2798vt9utuLir/1Eej0c9PT3B5dSpUxGcGgAAmCbsZ1D+l9zcXHm9XvX09Ki/v18TJ05UXl6e7rnnHkmSw+FQf3+/zp49G3IXpbu7Ww6HY8hzWq1WWa3WSI8KAAAMNWJ/B8Vms2nixIlqa2tTU1OTFi9eLOlSwIwZM0YffvhhcN/W1ladPHlSM2fOHKlxAADAKBL2HRS/36/29vbgekdHh7xer+x2u1wul3bs2KGJEyfK5XLpiy++0JNPPqklS5Zo3rx5ki6Fy7Jly1RZWSm73a6UlBStXr1aM2fO5BM8AABA0lUESlNTkwoKCoLrlZWVkqSysjLV1NSos7NTlZWV6u7uVlpamh599FGtXbs25Bwvv/yy4uLiVFJSor6+Ps2fP1+vvfbaNV4KAACIFZZAIBCI9hDh8vl8stls6unpUUpKSrTHARBBhw8fVm5urpqbm5WTkxPtcQBEUDi/v/kuHgAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGCc+2gMAiK62tjadO3cu2mMEtbS0hPzTFMnJybr11lujPQZw3SBQgOtYW1ubbrvttmiPMaTS0tJoj3CZY8eOESnAT4RAAa5jP9w5qa2tVVZWVpSnueTChQs6ceKEpkyZosTExGiPI+nS3ZzS0lKj7jQBsY5AAaCsrCzl5OREe4ygX/ziF9EeAUCU8ZAsAAAwDoECAACMQ6AAAADjECgAAMA4YQdKQ0ODioqK5HQ6ZbFYVFdXF7Ld7/dr1apVmjx5shITEzV16lRt3LgxZJ/8/HxZLJaQZcWKFdd0IQAAIHaE/Sme3t5eZWdn69e//rWKi4sv215ZWamPPvpItbW1mjJlij744AP99re/ldPp1KJFi4L7LV++XM8880xwPSkp6SovAQAAxJqwA8Xtdsvtdg+7/eDBgyorK1N+fr4kqby8XG+88YY+++yzkEBJSkqSw+EIf2IAABDzIv4Myn333addu3bpm2++USAQ0P79+3Xs2DHNmzcvZL+tW7dqwoQJuvPOO+XxeHT+/PlIjwIAAEapiP+htldffVXl5eWaPHmy4uPjFRcXp7/97W+aPXt2cJ9HHnlEGRkZcjqdOnLkiP7whz+otbVV77333pDn7OvrU19fX3Dd5/NFemwAAGCQEQmUQ4cOadeuXcrIyFBDQ4NWrlwpp9OpwsJCSZfe9vnBXXfdpbS0NM2dO1fHjx/XLbfcctk5q6qqtG7dukiPCgAADBXRt3guXLigp556Shs2bFBRUZGmTZumVatW6cEHH9SLL7447HF5eXmSpPb29iG3ezwe9fT0BJdTp05FcmwAAGCYiN5BGRgY0MDAgOLiQrvnhhtu0ODg4LDHeb1eSVJaWtqQ261Wq6xWa8TmBAAAZgs7UPx+f8idjo6ODnm9XtntdrlcLs2ZM0dr1qxRYmKiMjIyVF9fr7feeksbNmyQJB0/flzbtm3TwoULlZqaqiNHjqiiokKzZ8/WtGnTIndlAABg1Ao7UJqamlRQUBBcr6yslCSVlZWppqZG27dvl8fj0dKlS3XmzBllZGTo2WefDf4htoSEBO3bt0+vvPKKent7lZ6erpKSEj399NMRuiQAADDahR0o+fn5CgQCw253OBzasmXLsNvT09NVX18f7o8FAADXEb6LBwAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHHCDpSGhgYVFRXJ6XTKYrGorq4uZLvf79eqVas0efJkJSYmaurUqdq4cWPIPhcvXtTKlSuVmpqqcePGqaSkRN3d3dd0IQAAIHaEHSi9vb3Kzs5WdXX1kNsrKyu1d+9e1dbWqqWlRb/73e+0atUq7dq1K7hPRUWFdu/erR07dqi+vl6nT59WcXHx1V8FAACIKfHhHuB2u+V2u4fdfvDgQZWVlSk/P1+SVF5erjfeeEOfffaZFi1apJ6eHm3atEnbtm3T/fffL0nasmWLsrKydOjQId17771XdyUAACBmRPwZlPvuu0+7du3SN998o0AgoP379+vYsWOaN2+eJKm5uVkDAwMqLCwMHpOZmSmXy6XGxsYhz9nX1yefzxeyAACA2BXxQHn11Vc1depUTZ48WQkJCVqwYIGqq6s1e/ZsSVJXV5cSEhI0fvz4kONuuukmdXV1DXnOqqoq2Wy24JKenh7psQEAgEFGJFAOHTqkXbt2qbm5WS+99JJWrlypffv2XfU5PR6Penp6gsupU6ciODEAADBN2M+gXMmFCxf01FNP6f3339cvf/lLSdK0adPk9Xr14osvqrCwUA6HQ/39/Tp79mzIXZTu7m45HI4hz2u1WmW1WiM5KgAAMFhE76AMDAxoYGBAcXGhp73hhhs0ODgoScrNzdWYMWP04YcfBre3trbq5MmTmjlzZiTHAQAAo1TYd1D8fr/a29uD6x0dHfJ6vbLb7XK5XJozZ47WrFmjxMREZWRkqL6+Xm+99ZY2bNggSbLZbFq2bJkqKytlt9uVkpKi1atXa+bMmXyCBwAASLqKQGlqalJBQUFwvbKyUpJUVlammpoabd++XR6PR0uXLtWZM2eUkZGhZ599VitWrAge8/LLLysuLk4lJSXq6+vT/Pnz9dprr0XgcgAAQCwIO1Dy8/MVCASG3e5wOLRly5YrnmPs2LGqrq4e9o+9AQCA6xvfxQMAAIwT0U/xABh9HOMsSjx7TDrN/68MJ/HsMTnGWaI9BnBdIVCA69xvchOU1fAbqSHak5grS5f+OwH46RAowHXujeZ+PfinGmVlZkZ7FGO1HD2qN156RIuiPQhwHSFQgOtclz+gC+Nvk5x3R3sUY13oGlSXf/gPBwCIPN50BgAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGCTtQGhoaVFRUJKfTKYvForq6upDtFotlyOWFF14I7jNlypTLtq9fv/6aLwYAAMSGsAOlt7dX2dnZqq6uHnJ7Z2dnyLJ582ZZLBaVlJSE7PfMM8+E7Ld69eqruwIAABBz4sM9wO12y+12D7vd4XCErO/cuVMFBQW6+eabQ15PTk6+bF8AAABphJ9B6e7u1p49e7Rs2bLLtq1fv16pqamaPn26XnjhBX3//ffDnqevr08+ny9kAQAAsSvsOyjhePPNN5WcnKzi4uKQ15944gnl5OTIbrfr4MGD8ng86uzs1IYNG4Y8T1VVldatWzeSowIAAIOMaKBs3rxZS5cu1dixY0Ner6ysDP77tGnTlJCQoN/85jeqqqqS1Wq97DwejyfkGJ/Pp/T09JEbHAAARNWIBcrHH3+s1tZWvfvuu/9z37y8PH3//fc6ceKEbr/99su2W63WIcMFAADEphF7BmXTpk3Kzc1Vdnb2/9zX6/UqLi5OkyZNGqlxAADAKBL2HRS/36/29vbgekdHh7xer+x2u1wul6RLb8Hs2LFDL7300mXHNzY26tNPP1VBQYGSk5PV2NioiooKlZaW6mc/+9k1XAoAAIgVYQdKU1OTCgoKgus/PBtSVlammpoaSdL27dsVCAT08MMPX3a81WrV9u3b9Ze//EV9fX36+c9/roqKipBnTAAAwPUt7EDJz89XIBC44j7l5eUqLy8fcltOTo4OHToU7o8FAADXEb6LBwAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHHCDpSGhgYVFRXJ6XTKYrGorq4uZLvFYhlyeeGFF4L7nDlzRkuXLlVKSorGjx+vZcuWye/3X/PFAACA2BB2oPT29io7O1vV1dVDbu/s7AxZNm/eLIvFopKSkuA+S5cu1b///W/985//1D/+8Q81NDSovLz86q8CAADElPhwD3C73XK73cNudzgcIes7d+5UQUGBbr75ZklSS0uL9u7dq3/961+65557JEmvvvqqFi5cqBdffFFOpzPckQAAQIwZ0WdQuru7tWfPHi1btiz4WmNjo8aPHx+ME0kqLCxUXFycPv300yHP09fXJ5/PF7IAAIDYNaKB8uabbyo5OVnFxcXB17q6ujRp0qSQ/eLj42W329XV1TXkeaqqqmSz2YJLenr6SI4NAACibEQDZfPmzVq6dKnGjh17TefxeDzq6ekJLqdOnYrQhAAAwERhP4PyY3388cdqbW3Vu+++G/K6w+HQt99+G/La999/rzNnzlz2/MoPrFarrFbrSI0KAAAMM2J3UDZt2qTc3FxlZ2eHvD5z5kydPXtWzc3Nwdc++ugjDQ4OKi8vb6TGAQAAo0jYd1D8fr/a29uD6x0dHfJ6vbLb7XK5XJIkn8+nHTt26KWXXrrs+KysLC1YsEDLly/Xxo0bNTAwoFWrVumhhx7iEzwAAEDSVdxBaWpq0vTp0zV9+nRJUmVlpaZPn64//elPwX22b9+uQCCghx9+eMhzbN26VZmZmZo7d64WLlyoWbNm6a9//etVXgIAAIg1Yd9Byc/PVyAQuOI+5eXlV/zDa3a7Xdu2bQv3RwMAgOsE38UDAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIwTH+0BAETP+fPnJUmHDx+O8iT/ceHCBZ04cUJTpkxRYmJitMeRJLW0tER7BOC6Q6AA17GjR49KkpYvXx7lSUaH5OTkaI8AXDcIFOA6tmTJEklSZmamkpKSojvM/9PS0qLS0lLV1tYqKysr2uMEJScn69Zbb432GMB1g0ABrmMTJkzQ448/Hu0xhpSVlaWcnJxojwEgSnhIFgAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGCfsQGloaFBRUZGcTqcsFovq6uou26elpUWLFi2SzWbTjTfeqBkzZujkyZPB7fn5+bJYLCHLihUrrulCAABA7Ag7UHp7e5Wdna3q6uohtx8/flyzZs1SZmamDhw4oCNHjmjt2rUaO3ZsyH7Lly9XZ2dncHn++eev7goAAEDMiQ/3ALfbLbfbPez2P/7xj1q4cGFIcNxyyy2X7ZeUlCSHwxHujwcAANeBiD6DMjg4qD179ui2227T/PnzNWnSJOXl5Q35NtDWrVs1YcIE3XnnnfJ4PDp//vyw5+3r65PP5wtZAABA7IpooHz77bfy+/1av369FixYoA8++EAPPPCAiouLVV9fH9zvkUceUW1trfbv3y+Px6O3335bpaWlw563qqpKNpstuKSnp0dybAAAYJiw3+K5ksHBQUnS4sWLVVFRIUm6++67dfDgQW3cuFFz5syRJJWXlwePueuuu5SWlqa5c+fq+PHjQ74d5PF4VFlZGVz3+XxECgAAMSyid1AmTJig+Ph4TZ06NeT1rKyskE/x/Le8vDxJUnt7+5DbrVarUlJSQhYAABC7IhooCQkJmjFjhlpbW0NeP3bsmDIyMoY9zuv1SpLS0tIiOQ4AABilwn6Lx+/3h9zp6OjokNfrld1ul8vl0po1a/Tggw9q9uzZKigo0N69e7V7924dOHBA0qWPIW/btk0LFy5Uamqqjhw5ooqKCs2ePVvTpk2L2IUBAIDRK+xAaWpqUkFBQXD9h2dDysrKVFNTowceeEAbN25UVVWVnnjiCd1+++36+9//rlmzZkm6dJdl3759euWVV9Tb26v09HSVlJTo6aefjtAlAQCA0c4SCAQC0R4iXD6fTzabTT09PTyPAsSYw4cPKzc3V83NzcrJyYn2OAAiKJzf33wXDwAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOPHRHgBAbDh//ryOHj16zedpaWkJ+WckZGZmKikpKWLnAzDyCBQAEXH06FHl5uZG7HylpaURO1dzc7NycnIidj4AI49AARARmZmZam5uvubzXLhwQSdOnNCUKVOUmJgYgckuzQZgdLEEAoFAtIcIl8/nk81mU09Pj1JSUqI9DgAA+BHC+f3NQ7IAAMA4BAoAADBO2IHS0NCgoqIiOZ1OWSwW1dXVXbZPS0uLFi1aJJvNphtvvFEzZszQyZMng9svXryolStXKjU1VePGjVNJSYm6u7uv6UIAAEDsCDtQent7lZ2drerq6iG3Hz9+XLNmzVJmZqYOHDigI0eOaO3atRo7dmxwn4qKCu3evVs7duxQfX29Tp8+reLi4qu/CgAAEFOu6SFZi8Wi999/X0uWLAm+9tBDD2nMmDF6++23hzymp6dHEydO1LZt2/SrX/1K0qWPJ2ZlZamxsVH33nvv//y5PCQLAMDoE7WHZAcHB7Vnzx7ddtttmj9/viZNmqS8vLyQt4Gam5s1MDCgwsLC4GuZmZlyuVxqbGyM5DgAAGCUimigfPvtt/L7/Vq/fr0WLFigDz74QA888ICKi4tVX18vSerq6lJCQoLGjx8fcuxNN92krq6uIc/b19cnn88XsgAAgNgV0T/UNjg4KElavHixKioqJEl33323Dh48qI0bN2rOnDlXdd6qqiqtW7cuYnMCAACzRfQOyoQJExQfH6+pU6eGvJ6VlRX8FI/D4VB/f7/Onj0bsk93d7ccDseQ5/V4POrp6Qkup06diuTYAADAMBENlISEBM2YMUOtra0hrx87dkwZGRmSpNzcXI0ZM0YffvhhcHtra6tOnjypmTNnDnleq9WqlJSUkAUAAMSusN/i8fv9am9vD653dHTI6/XKbrfL5XJpzZo1evDBBzV79mwVFBRo79692r17tw4cOCBJstlsWrZsmSorK2W325WSkqLVq1dr5syZP+oTPAAAIPaF/THjAwcOqKCg4LLXy8rKVFNTI0navHmzqqqq9PXXX+v222/XunXrtHjx4uC+Fy9e1O9//3u988476uvr0/z58/Xaa68N+xbPf+NjxgAAjD7h/P7mywIBAMBPIpzf3xH9FM9P5Yem4uPGAACMHj/83v4x90ZGZaCcO3dOkpSenh7lSQAAQLjOnTsnm812xX1G5Vs8g4ODOn36tJKTk2WxWKI9DoAI8vl8Sk9P16lTp3gLF4gxgUBA586dk9PpVFzclT9IPCoDBUDs4hkzAFKE/w4KAABAJBAoAADAOAQKAKNYrVb9+c9/ltVqjfYoAKKIZ1AAAIBxuIMCAACMQ6AAAADjECgAAMA4BAoAADAOgQLACA0NDSoqKpLT6ZTFYlFdXV20RwIQRQQKACP09vYqOztb1dXV0R4FgAFG5ZcFAog9brdbbrc72mMAMAR3UAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcfgUDwAj+P1+tbe3B9c7Ojrk9Xplt9vlcrmiOBmAaODbjAEY4cCBAyooKLjs9bKyMtXU1Pz0AwGIKgIFAAAYh2dQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxvk/zIlc6W4NuQkAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# make a boxplot\n", "plt.boxplot(x)\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now the *values* are on the **y-axis**" ] }, { "cell_type": "code", "execution_count": 61, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAGzCAYAAAAFROyYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAA9hAAAPYQGoP6dpAAA1q0lEQVR4nO3de1xVVf7/8fdB5aZcBkWRBOyigpkk6JiOY5KkoqGlTRd18m4X7SLfn9+iMrOmoaYym0KtGZVKUccZxzKni5pKpVZafLW+iGCalgg1Kggq2LB/f+yvh46CevQgC3w9H4/9kL3X2mt/to9H8Xbttc9xWJZlCQAAwCBedV0AAADAqQgoAADAOAQUAABgHAIKAAAwDgEFAAAYh4ACAACMQ0ABAADGIaAAAADjEFAAAIBxCCgAzsmePXvkcDiUkZFxwWOtX79eDodDf//73y+8sIsoIyNDDodDe/bsqetSgAaPgALUMyd/Sf5ya9mypRISEvTee+/VdXmoQWZmpmbNmlXXZQD1RuO6LgDA+Xnqqad0+eWXy7IsFRYWKiMjQwMHDtTKlSt10003efx6UVFROnbsmJo0aeLxsS8FmZmZ+vrrr/XQQw/VdSlAvUBAAeqppKQkde3a1bk/btw4tWrVSosXL66VgOJwOOTr6+vxcQGgOjziARqI4OBg+fn5qXFj1393vPDCC+rZs6eaN28uPz8/xcfHV7v2Y/Xq1erVq5eCg4PVrFkzdejQQY8++qizvaY1KDt27NBtt92m0NBQ+fn5qUOHDnrsscfOqeb//Oc/evTRRxUWFqamTZtq8ODB2rdv32n9li1bpvj4ePn5+alFixYaOXKkfvjhB2f79OnT5eXlpbVr17qcN3HiRHl7e+t//ud/zliHw+HQ5MmTtWjRInXo0EG+vr6Kj49XVlbWOd3H7NmzdfXVV8vHx0fh4eGaNGmSDh8+7Gzv06ePVq1ape+++875WK5t27bnNDZwqWIGBainiouL9dNPP8myLBUVFemVV15RaWmpRo4c6dLv5Zdf1uDBgzVixAhVVFRoyZIl+t3vfqd3331XgwYNkiR98803uummm9S5c2c99dRT8vHxUX5+vj799NMz1rBt2zb99re/VZMmTTRx4kS1bdtWu3bt0sqVK/XMM8+c9R6eeeYZORwOPfzwwyoqKtKsWbOUmJio7Oxs+fn5SbLX3IwZM0bdunVTWlqaCgsL9fLLL+vTTz/VV199peDgYD3++ONauXKlxo0bp+3btysgIEAffPCB/vKXv+jpp59WbGzsWWvZsGGDli5dqgceeEA+Pj6aPXu2BgwYoM8//1ydOnWq8bwnn3xSM2bMUGJiou69917l5uZqzpw5+uKLL/Tpp5+qSZMmeuyxx1RcXKzvv/9eL730kiSpWbNmZ60JuKRZAOqVBQsWWJJO23x8fKyMjIzT+h89etRlv6KiwurUqZN1ww03OI+99NJLliTrxx9/rPG6u3fvtiRZCxYscB7r3bu3FRAQYH333XcufSsrK894D+vWrbMkWZdddplVUlLiPP63v/3NkmS9/PLLzlpbtmxpderUyTp27Jiz37vvvmtJsp544gnnse3bt1ve3t7W+PHjrUOHDlmXXXaZ1bVrV+vEiRNnrMWyLOff4ZYtW5zHvvvuO8vX19e65ZZbnMdO/t3v3r3bsizLKioqsry9va1+/fpZ//nPf5z9Xn31VUuSNX/+fOexQYMGWVFRUWetBYCNRzxAPZWenq7Vq1dr9erVWrhwoRISEjR+/HgtX77cpd/JmQhJOnTokIqLi/Xb3/5WX375pfN4cHCwJOntt99WZWXlOV3/xx9/VFZWlsaOHavIyEiXNofDcU5j3HXXXQoICHDu33rrrWrdurX+9a9/SZK2bNmioqIi3XfffS7rXwYNGqTo6GitWrXKeaxTp06aMWOG/vrXv6p///766aef9MYbb5z2yKsmPXr0UHx8vHM/MjJSQ4YM0QcffKD//Oc/1Z6zZs0aVVRU6KGHHpKXV9X/TidMmKDAwECX+gC4h4AC1FO//vWvlZiYqMTERI0YMUKrVq1Sx44dNXnyZFVUVDj7vfvuu7ruuuvk6+urkJAQhYaGas6cOSouLnb2uf322/Wb3/xG48ePV6tWrXTHHXfob3/72xnDyrfffitJZ3z8cTbt2rVz2Xc4HLrqqqucnzPy3XffSZI6dOhw2rnR0dHO9pOmTp2q2NhYff7555o+fbo6dux43rVIUvv27XX06FH9+OOP1Z5TU33e3t664oorTqsPwLkjoAANhJeXlxISElRQUKC8vDxJ0scff6zBgwfL19dXs2fP1r/+9S+tXr1aw4cPl2VZznP9/PyUlZWlNWvW6Pe//722bdum22+/XTfeeGONswcm+vbbb533vn379jquBsCFIKAADcjPP/8sSSotLZUk/eMf/5Cvr68++OADjR07VklJSUpMTKz2XC8vL/Xt21czZ87U//7v/+qZZ57RRx99pHXr1lXb/4orrpAkff311+dd78kwcZJlWcrPz3e+4RIVFSVJys3NPe3c3NxcZ7skVVZWavTo0QoMDNSjjz6qxYsXn/a4y51aJGnnzp3y9/dXaGhotefUVF9FRYV2797tUt+5PvYCYCOgAA3EiRMn9OGHH8rb21sxMTGSpEaNGsnhcLjMguzZs0crVqxwOffgwYOnjXfttddKksrLy6u9XmhoqHr37q358+dr7969Lm2/nJ05kzfffFNHjhxx7v/9739XQUGBkpKSJEldu3ZVy5YtNXfuXJc63nvvPeXk5DjfQpKkmTNnauPGjXr99df19NNPq2fPnrr33nv1008/nVMtmzZtclmXs2/fPr399tvq16+fGjVqVO05iYmJ8vb21p///GeXe543b56Ki4td6mvatKnLYzUAZ8ZrxkA99d5772nHjh2SpKKiImVmZiovL0+PPPKIAgMDJdmLSWfOnKkBAwZo+PDhKioqUnp6uq666ipt27bNOdZTTz2lrKwsDRo0SFFRUSoqKtLs2bPVpk0b9erVq8Ya/vznP6tXr16Ki4vTxIkTdfnll2vPnj1atWqVsrOzz3oPISEh6tWrl8aMGaPCwkLNmjVLV111lSZMmCBJatKkiZ577jmNGTNG119/ve68807na8Zt27bVlClTJEk5OTmaNm2aRo8ereTkZEn268nXXnut7rvvPv3tb387ay2dOnVS//79XV4zlqQZM2bUeE5oaKhSU1M1Y8YMDRgwQIMHD1Zubq5mz56tbt26ubzyHR8fr6VLlyolJUXdunVTs2bNnLUCqEbdvkQEwF3VvWbs6+trXXvttdacOXNOe8V33rx5Vrt27SwfHx8rOjraWrBggTV9+nTrl//5r1271hoyZIgVHh5ueXt7W+Hh4dadd95p7dy509mnuteMLcuyvv76a+uWW26xgoODLV9fX6tDhw7WtGnTzngPJ18zXrx4sZWammq1bNnS8vPzswYNGnTaK8uWZVlLly61unTpYvn4+FghISHWiBEjrO+//96yLMv6+eefrW7dullt2rSxDh8+7HLeyy+/bEmyli5desZ6JFmTJk2yFi5c6Py76tKli7Vu3TqXfqe+ZnzSq6++akVHR1tNmjSxWrVqZd17773WoUOHXPqUlpZaw4cPt4KDgy1JvHIMnIXDss5xLhYAGiiHw6FJkybp1VdfretSAPwf1qAAAADjEFAAAIBxCCgAAMA4vMUD4JLHUjzAPMygAAAA4xBQAACAcerlI57Kykrt379fAQEBfHw0AAD1hGVZOnLkiMLDw12+Abw69TKg7N+/XxEREXVdBgAAOA/79u1TmzZtztinXgaUgIAASfYNnvxIbwAAYLaSkhJFREQ4f4+fSb0MKCcf6wQGBhJQAACoZ85leQaLZAEAgHEIKAAAwDgEFAAAYBwCCgA0IG3bSrNm1XUVwIUjoABALRo9WnI4pHvuOb1t0iS7bfRoz13viy+kiRM9Nx5QVwgoAFDLIiKkJUukY8eqjh0/LmVmSpGRnr1WaKjk7+/ZMYG6QEABgFoWF2eHlOXLq44tX26Hky5dqo69/77Uq5cUHCw1by7ddJO0a1dV+5tvSs2aSXl5Vcfuu0+KjpaOHrX3T33E43BIr71mj+XvL8XESJs2Sfn5Up8+UtOmUs+ertcZPVq6+WbXe3joIbv/SX36SA88IP33f0shIVJYmPTkk+7+zQA1I6AAwEUwdqy0YEHV/vz50pgxrn3KyqSUFGnLFmntWsnLS7rlFqmy0m6/6y5p4EBpxAjp55+lVaukv/5VWrTozLMmTz9tn5udbYeZ4cOlu++WUlPta1mWNHmy+/f0xht2wPnsM+lPf5Keekpavdr9cYDq1MsPagOA+mbkSDsQfPedvf/pp/Zjn/Xrq/oMG+Z6zvz59iOb//1fqVMn+9hrr0mdO9uzF8uX27MW8fFnvvaYMdJtt9k/P/yw1KOHNG2a1L+/fezBB08PS+eic2dp+nT753btpFdftYPVjTe6PxZwKgIKAFwEoaHSoEFSRoY9YzFokNSihWufvDzpiSfsGYmffqqaOdm7tyqg/OpX0rx5drjo2VN65JGzX7tz56qfW7Wy/7zmGtdjx49LJSWSOx/O/ctxJal1a6mo6NzPB86EgAIAF8nYsVWPUtLTT29PTpaioqS//EUKD7cDSqdOUkWFa7+sLKlRI6mgwH4sdLavNWnSpOrnk58wXt2xk4HIy8sOUb904sSZxz05zskxgAvFGhQAuEgGDLDDxokTVY9XTvr3v6XcXOnxx6W+fe3FrIcOnT7Gxo3Sc89JK1faC2bPZ+3I2YSG2uHnl7KzPX8d4EyYQQHgEUePHtWOHTsueJxjx45pz549atu2rfz8/DxQmRQdHS1/A969bdRIysmp+vmXfvUr+82d11+3H5Xs3Xv645sjR6Tf/95ef5KUJLVpI3XrZs+83Hqr5+q84Qbp+eftt4Z69JAWLpS+/tr1jSOgthFQAHjEjh07FH+21Zp1ZOvWrYqLi6vrMiTVvMbDy8teNPvAA/ZjnQ4dpD//2fXV3gcftN+a+eMf7f1rrrF/vvtuO0hcdplnauzf315E+9//ba9NGTvWfgto+3bPjA+cC4dlnfqk0XwlJSUKCgpScXGxAt1Z0QWg1nhqBiUnJ0cjR47UwoULFRMT44HKzJlBAS517vz+ZgYFgEf4+/t7dJYiJibGmFkPABcfi2QBAIBxCCgAAMA4BBQAAGAcAgoAADAOAQUAABiHgAIAAIxDQAEAAMYhoAAAAOMQUAAAgHEIKAAAwDgEFAAAYBwCCgAAMA4BBQAAGIeAAgAAjENAAQAAxiGgAAAA4xBQAACAcQgoAADAOAQUAABgHAIKAAAwDgEFAAAYx+2AkpWVpeTkZIWHh8vhcGjFihUu7YWFhRo9erTCw8Pl7++vAQMGKC8vz6VPnz595HA4XLZ77rnngm4EAAA0HG4HlLKyMsXGxio9Pf20NsuydPPNN+vbb7/V22+/ra+++kpRUVFKTExUWVmZS98JEyaooKDAuf3pT386/7sAAAANSmN3T0hKSlJSUlK1bXl5edq8ebO+/vprXX311ZKkOXPmKCwsTIsXL9b48eOdff39/RUWFnaeZQMAgIbMo2tQysvLJUm+vr5VF/Dyko+Pjz755BOXvosWLVKLFi3UqVMnpaam6ujRo2cct6SkxGUDAAANl0cDSnR0tCIjI5WamqpDhw6poqJCzz33nL7//nsVFBQ4+w0fPlwLFy7UunXrlJqaqrfeeksjR46scdy0tDQFBQU5t4iICE+WDQAADOP2I54zadKkiZYvX65x48YpJCREjRo1UmJiopKSkmRZlrPfxIkTnT9fc801at26tfr27atdu3bpyiuvPG3c1NRUpaSkOPdLSkoIKQAANGAeDSiSFB8fr+zsbBUXF6uiokKhoaHq3r27unbtWuM53bt3lyTl5+dXG1B8fHzk4+Pj6VIBAIChau1zUIKCghQaGqq8vDxt2bJFQ4YMqbFvdna2JKl169a1VQ4AAKhH3J5BKS0tVX5+vnN/9+7dys7OVkhIiCIjI7Vs2TKFhoYqMjJS27dv14MPPqibb75Z/fr1kyTt2rVLmZmZGjhwoJo3b65t27ZpypQp6t27tzp37uy5OwMAAPWW2wFly5YtSkhIcO6fXBsyatQoZWRkqKCgQCkpKSosLFTr1q111113adq0ac7+3t7eWrNmjWbNmqWysjJFRERo2LBhevzxxz1wOwAAoCFwWL9cvVpPlJSUKCgoSMXFxQoMDKzrcgB40Jdffqn4+Hht3bpVcXFxdV0OAA9y5/c338UDAACMQ0ABAADGIaAAAADjEFAAAIBxCCgAAMA4BBQAAGAcAgoAADAOAQUAABiHgAIAAIxDQAEAAMYhoAAAAOMQUAAAgHEIKAAAwDgEFAAAYBwCCgAAMA4BBQAAGIeAAgAAjENAAQAAxiGgAAAA4xBQAACAcQgoAADAOAQUAABgHAIKAAAwDgEFAAAYh4ACAACMQ0ABAADGIaAAAADjEFAAAIBxCCgAAMA4BBQAAGAcAgoAADAOAQUAABiHgAIAAIxDQAEAAMZxO6BkZWUpOTlZ4eHhcjgcWrFihUt7YWGhRo8erfDwcPn7+2vAgAHKy8tz6XP8+HFNmjRJzZs3V7NmzTRs2DAVFhZe0I0AAICGw+2AUlZWptjYWKWnp5/WZlmWbr75Zn377bd6++239dVXXykqKkqJiYkqKytz9psyZYpWrlypZcuWacOGDdq/f7+GDh16YXcCAAAajMbunpCUlKSkpKRq2/Ly8rR582Z9/fXXuvrqqyVJc+bMUVhYmBYvXqzx48eruLhY8+bNU2Zmpm644QZJ0oIFCxQTE6PNmzfruuuuu4DbAQAADYFH16CUl5dLknx9fasu4OUlHx8fffLJJ5KkrVu36sSJE0pMTHT2iY6OVmRkpDZt2lTjuCUlJS4bAABouDwaUE4GjdTUVB06dEgVFRV67rnn9P3336ugoECSdODAAXl7eys4ONjl3FatWunAgQPVjpuWlqagoCDnFhER4cmyAQCAYTwaUJo0aaLly5dr586dCgkJkb+/v9atW6ekpCR5eZ3/pVJTU1VcXOzc9u3b58GqAQCAadxeg3I28fHxys7OVnFxsSoqKhQaGqru3bura9eukqSwsDBVVFTo8OHDLrMohYWFCgsLq3ZMHx8f+fj4eLpUAABgqFr7HJSgoCCFhoYqLy9PW7Zs0ZAhQyTZAaZJkyZau3ats29ubq727t2rHj161FY5AACgHnF7BqW0tFT5+fnO/d27dys7O1shISGKjIzUsmXLFBoaqsjISG3fvl0PPvigbr75ZvXr10+SHVzGjRunlJQUhYSEKDAwUPfff7969OjBGzwAAEDSeQSULVu2KCEhwbmfkpIiSRo1apQyMjJUUFCglJQUFRYWqnXr1rrrrrs0bdo0lzFeeukleXl5adiwYSovL1f//v01e/bsC7wVAADQUDgsy7Lqugh3lZSUKCgoSMXFxQoMDKzrcgB40Jdffqn4+Hht3bpVcXFxdV0OAA9y5/c338UDAACMQ0ABAADGIaAAAADjEFAAAIBxCCgAAMA4BBQAAGAcAgoAADAOAQUAABiHgAIAAIxDQAEAAMYhoAAAAOMQUAAAgHEIKAAAwDgEFAAAYBwCCgAAMA4BBQAAGIeAAgAAjENAAQAAxiGgAMBFsG+fNHasFB4ueXtLUVHSgw9K//53VZ8nn5Sio6WmTaVf/UpKTJQ++6zOSgbqFAEFAGrZt99KXbtKeXnS4sVSfr40d660dq3Uo4d08KDdr3176dVXpe3bpU8+kdq2lfr1k378sU7LB+pE47ouAAAaukmT7FmTDz+U/PzsY5GRUpcu0pVXSo89Js2ZIw0f7nrezJnSvHnStm1S374Xv26gLjGDAgC16OBB6YMPpPvuqwonJ4WFSSNGSEuXSpbl2lZRIb3+uhQUJMXGXrx6AVMQUACgFuXl2eEjJqb69pgY6dChqsc4774rNWsm+fpKL70krV4ttWhx8eoFTEFAAYCL4NQZklN5e9t/JiRI2dnSxo3SgAHSbbdJRUW1Xh5gHAIKANSiq66SHA4pJ6f69pwcKTRUCg6295s2tc+57jp7/UnjxvafwKWGgAIAtah5c+nGG6XZs6Vjx1zbDhyQFi2SRo+u+fzKSqm8vFZLBIzEWzzAJS4vL09Hjhyp6zKccv5vqiGnpimHOhIQEKB27dqd17mvvir17Cn17y/94Q/S5ZdL33wjTZ1qv1r8xBNSWZn0zDPS4MFS69bSTz9J6enSDz9Iv/udh28GqAcIKMAlLC8vT+3bt6/rMqo1cuTIui7hNDt37jyvkNKunfTFF/YHsZ1cU2JZ0tCh0ltvSf7+0vHj0o4d0htv2OGkeXOpWzfp44+lq6/2/L0ApiOgAJewkzMnCxcuVExNr5lcZMeOHdOePXvUtm1b+Z36Xm4dycnJ0ciRIy9opqltWykjo2p/+nT7c062bbPXm/j6SsuXX3CpQINBQAGgmJgYxcXF1XUZTr/5zW/quoRaN2OGHVo2b5Z+/WvJixWBgAsCCgDUkTFj6roCwFxkdgAAYBwCCgAAMA4BBQAAGIeAAgAAjON2QMnKylJycrLCw8PlcDi0YsUKl/bS0lJNnjxZbdq0kZ+fnzp27Ki5c+e69OnTp48cDofLds8991zQjQAAgIbD7bd4ysrKFBsbq7Fjx2ro0KGntaekpOijjz7SwoUL1bZtW3344Ye67777FB4ersGDBzv7TZgwQU899ZRz39/f/zxvAQAANDRuB5SkpCQlJSXV2L5x40aNGjVKffr0kSRNnDhRr732mj7//HOXgOLv76+wsDD3KwYAAA2ex9eg9OzZU++8845++OEHWZaldevWaefOnerXr59Lv0WLFqlFixbq1KmTUlNTdfTo0RrHLC8vV0lJicsGAAAaLo9/UNsrr7yiiRMnqk2bNmrcuLG8vLz0l7/8Rb1793b2GT58uKKiohQeHq5t27bp4YcfVm5urpbX8DnPaWlpmjFjhqdLBQAAhqqVgLJ582a98847ioqKUlZWliZNmqTw8HAlJiZKsh/7nHTNNdeodevW6tu3r3bt2qUrr7zytDFTU1OVkpLi3C8pKVFERISnSwcAAIbwaEA5duyYHn30Uf3zn//UoEGDJEmdO3dWdna2XnjhBWdAOVX37t0lSfn5+dUGFB8fH/n4+HiyVAAAYDCPrkE5ceKETpw4Ia9TvvWqUaNGqqysrPG87OxsSVLr1q09WQ4AAKin3J5BKS0tVX5+vnN/9+7dys7OVkhIiCIjI3X99ddr6tSp8vPzU1RUlDZs2KA333xTM2fOlCTt2rVLmZmZGjhwoJo3b65t27ZpypQp6t27tzp37uy5OwMAAPWW2wFly5YtSkhIcO6fXBsyatQoZWRkaMmSJUpNTdWIESN08OBBRUVF6ZlnnnF+EJu3t7fWrFmjWbNmqaysTBERERo2bJgef/xxD90SAACo79wOKH369JFlWTW2h4WFacGCBTW2R0REaMOGDe5eFgAAXEL4Lh4AAGAcAgoAADAOAQUAABiHgAIAAIxDQAEAAMYhoAAAAOMQUAAAgHEIKAAAwDgEFAAAYBwCCgAAMA4BBQAAGIeAAgAAjENAAQAAxiGgAAAA4xBQAACAcQgoAADAOAQUAABgHAIKAAAwDgEFAAAYh4ACAACMQ0ABAADGIaAAAADjEFAAAIBxCCgAAMA4BBQAAGAcAgoAADAOAQUAABiHgAIAAIxDQAEAAMYhoAAAAOMQUAAAgHEIKAAAwDgEFAAAYBwCCgAAMI7bASUrK0vJyckKDw+Xw+HQihUrXNpLS0s1efJktWnTRn5+furYsaPmzp3r0uf48eOaNGmSmjdvrmbNmmnYsGEqLCy8oBsBAAANh9sBpaysTLGxsUpPT6+2PSUlRe+//74WLlyonJwcPfTQQ5o8ebLeeecdZ58pU6Zo5cqVWrZsmTZs2KD9+/dr6NCh538XAACgQWns7glJSUlKSkqqsX3jxo0aNWqU+vTpI0maOHGiXnvtNX3++ecaPHiwiouLNW/ePGVmZuqGG26QJC1YsEAxMTHavHmzrrvuuvO7EwAA0GB4fA1Kz5499c477+iHH36QZVlat26ddu7cqX79+kmStm7dqhMnTigxMdF5TnR0tCIjI7Vp06ZqxywvL1dJSYnLBgCQ1q+XHA7p8GF7PyNDCg6uu3oAT/F4QHnllVfUsWNHtWnTRt7e3howYIDS09PVu3dvSdKBAwfk7e2t4FP+C2rVqpUOHDhQ7ZhpaWkKCgpybhEREZ4uGwBqxejRdoC4557T2yZNsttGj/bc9W6/Xdq503PjAXWlVgLK5s2b9c4772jr1q168cUXNWnSJK1Zs+a8x0xNTVVxcbFz27dvnwcrBoDaFREhLVkiHTtWdez4cSkzU4qM9Oy1/Pykli09OyZQFzwaUI4dO6ZHH31UM2fOVHJysjp37qzJkyfr9ttv1wsvvCBJCgsLU0VFhQ6fnI/8P4WFhQoLC6t2XB8fHwUGBrpsAFBfxMXZIWX58qpjy5fb4aRLl6pjlZVSWpp0+eV20IiNlf7+d9ex/vUvqX17uz0hQdqzx7X91Ec8u3ZJQ4ZIrVpJzZpJ3bpJp/57sW1b6Y9/lMaOlQIC7Lpef/3C7xu4EB4NKCdOnNCJEyfk5eU6bKNGjVRZWSlJio+PV5MmTbR27Vpne25urvbu3asePXp4shwAMMbYsdKCBVX78+dLY8a49klLk958U5o7V/rmG2nKFGnkSGnDBrt93z5p6FApOVnKzpbGj5ceeeTM1y0tlQYOlNaulb76ShowwD5/717Xfi++KHXtave57z7p3nul3NwLvm3gvLn9Fk9paany8/Od+7t371Z2drZCQkIUGRmp66+/XlOnTpWfn5+ioqK0YcMGvfnmm5o5c6YkKSgoSOPGjVNKSopCQkIUGBio+++/Xz169OANHgAN1siRUmqq9N139v6nn9qPfdavt/fLy+1ZjDVrpJP/VrviCumTT6TXXpOuv16aM0e68ko7TEhShw7S9u3Sc8/VfN3YWHs76emnpX/+U3rnHWny5KrjAwfawUSSHn5Yeuklad06+xpAXXA7oGzZskUJCQnO/ZSUFEnSqFGjlJGRoSVLlig1NVUjRozQwYMHFRUVpWeeeUb3/GKF2EsvvSQvLy8NGzZM5eXl6t+/v2bPnu2B2wEAM4WGSoMG2Y9gLMv+uUWLqvb8fOnoUenGG13Pq6ioegyUkyN17+7afraJ59JS6cknpVWrpIIC6eef7bUwp86gdO5c9bPDIYWFSUVF7twh4FluB5Q+ffrIsqwa28PCwrTgl/OY1fD19VV6enqNH/YGAA3R2LFVsxan/u+vtNT+c9Uq6bLLXNt8fM7/mv/v/0mrV0svvCBddZW9duXWW+3g80tNmrjuOxz2mhigrrgdUAAA52fAADsYOBxS//6ubR072kFk7177cU51YmLsRzO/tHnzma/56af2a8y33GLvl5aevrAWMBEBBbjEhTVzyO/wTmk/3x1aE7/DOxXWzHHB4zRqZD+mOfnzLwUE2LMdU6bYMxe9eknFxXbACAyURo2yP0vlxRelqVPtBbJbt9qPjM6kXTv7jaHkZDsYTZvGzAjqBwIKcIm7O95bMVl3S1l1XYm5YmT/PXnCmT4l4emn7bUqaWnSt9/arwvHxUmPPmq3R0ZK//iHHWJeeUX69a+rXg+uycyZdnvPnvaal4cflvgwbtQHDutMC0oMVVJSoqCgIBUXF/OZKMAF+PLLLzXo+q766O1MxURH13U5xsrZsUM3DBmuVRu2KC4urq7LAeotd35/M4MCXOIOlFo6FtxeCr+2rksx1rEDlTpQWu/+LQfUazx0BgAAxiGgAAAA4xBQAACAcQgoAADAOAQUAABgHAIKAAAwDgEFAAAYh4ACAACMQ0ABAADGIaAAAADjEFAAAIBxCCgAAMA4BBQAAGAcAgoAADAOAQUAABiHgAIAAIxDQAEAAMYhoAAAAOMQUAAAgHEIKAAAwDgEFAAAYBwCCgAAMA4BBQAAGIeAAgAAjENAAQAAxiGgAAAA4xBQAACAcQgoAADAOAQUAABgHLcDSlZWlpKTkxUeHi6Hw6EVK1a4tDscjmq3559/3tmnbdu2p7U/++yzF3wzAACgYXA7oJSVlSk2Nlbp6enVthcUFLhs8+fPl8Ph0LBhw1z6PfXUUy797r///vO7AwAA0OA0dveEpKQkJSUl1dgeFhbmsv/2228rISFBV1xxhcvxgICA0/oCAABItbwGpbCwUKtWrdK4ceNOa3v22WfVvHlzdenSRc8//7x+/vnnGscpLy9XSUmJywYAABout2dQ3PHGG28oICBAQ4cOdTn+wAMPKC4uTiEhIdq4caNSU1NVUFCgmTNnVjtOWlqaZsyYUZulAgAAg9RqQJk/f75GjBghX19fl+MpKSnOnzt37ixvb2/dfffdSktLk4+Pz2njpKamupxTUlKiiIiI2iscAADUqVoLKB9//LFyc3O1dOnSs/bt3r27fv75Z+3Zs0cdOnQ4rd3Hx6fa4AIAABqmWluDMm/ePMXHxys2NvasfbOzs+Xl5aWWLVvWVjkAAKAecXsGpbS0VPn5+c793bt3Kzs7WyEhIYqMjJRkP4JZtmyZXnzxxdPO37Rpkz777DMlJCQoICBAmzZt0pQpUzRy5Ej96le/uoBbAQAADYXbAWXLli1KSEhw7p9cGzJq1ChlZGRIkpYsWSLLsnTnnXeedr6Pj4+WLFmiJ598UuXl5br88ss1ZcoUlzUmAADg0uZ2QOnTp48syzpjn4kTJ2rixInVtsXFxWnz5s3uXhYAAFxC+C4eAABgHAIKAAAwDgEFAAAYh4ACAACMQ0ABAADGIaAAAADjEFAAAIBxCCgAAMA4BBQAAGAcAgoAADAOAQUAABiHgAIAAIxDQAEAAMYhoAAAAOMQUAAAgHEIKAAAwDgEFAAAYBwCCgAAMA4BBQAAGIeAAgAAjENAAQAAxiGgAAAA4xBQAACAcQgoAADAOAQUAABgHAIKAAAwDgEFAAAYh4ACAACMQ0ABAADGIaAAAADjEFAAAIBxCCgAAMA4BBQAAGAcAgoAADAOAQUAABjH7YCSlZWl5ORkhYeHy+FwaMWKFS7tDoej2u3555939jl48KBGjBihwMBABQcHa9y4cSotLb3gmwEAAA2D2wGlrKxMsbGxSk9Pr7a9oKDAZZs/f74cDoeGDRvm7DNixAh98803Wr16td59911lZWVp4sSJ538XAACgQWns7glJSUlKSkqqsT0sLMxl/+2331ZCQoKuuOIKSVJOTo7ef/99ffHFF+ratask6ZVXXtHAgQP1wgsvKDw83N2SAABAA1Ora1AKCwu1atUqjRs3znls06ZNCg4OdoYTSUpMTJSXl5c+++yzascpLy9XSUmJywYAABquWg0ob7zxhgICAjR06FDnsQMHDqhly5Yu/Ro3bqyQkBAdOHCg2nHS0tIUFBTk3CIiImqzbAAAUMdqNaDMnz9fI0aMkK+v7wWNk5qaquLiYue2b98+D1UIAABM5PYalHP18ccfKzc3V0uXLnU5HhYWpqKiIpdjP//8sw4ePHja+pWTfHx85OPjU1ulAgAAw9TaDMq8efMUHx+v2NhYl+M9evTQ4cOHtXXrVuexjz76SJWVlerevXttlQMAAOoRt2dQSktLlZ+f79zfvXu3srOzFRISosjISElSSUmJli1bphdffPG082NiYjRgwABNmDBBc+fO1YkTJzR58mTdcccdvMEDAAAknccMypYtW9SlSxd16dJFkpSSkqIuXbroiSeecPZZsmSJLMvSnXfeWe0YixYtUnR0tPr27auBAweqV69eev3118/zFgAAQEPj9gxKnz59ZFnWGftMnDjxjB+8FhISoszMTHcvDQAALhF8Fw8AADAOAQUAABiHgAIAAIxDQAEAAMYhoAAAAOMQUAAAgHEIKAAAwDgEFAAAYBwCCgAAMA4BBQAugn37pLFjpfBwydtbioqSHnxQ+ve/q/osXy716yc1by45HFJ2dp2VC9Q5AgoA1LJvv5W6dpXy8qTFi6X8fGnuXGntWqlHD+ngQbtfWZnUq5f03HN1Wy9gAre/iwcA4J5Jk+xZkw8/lPz87GORkVKXLtKVV0qPPSbNmSP9/vd22549dVYqYAxmUACgFh08KH3wgXTffVXh5KSwMGnECGnpUuks38EKXHIIKABQi/Ly7PARE1N9e0yMdOiQ9OOPF7cuwHQEFAC4CM42Q+LtfXHqAOoLAgoA1KKrrrLfyMnJqb49J0cKDZWCgy9qWYDxCCgAUIuaN5duvFGaPVs6dsy17cABadEiafToOikNMBpv8QCXsKNHj0qSvvzyyzqupMqxY8e0Z88etW3bVn6nriqtIzk1TX+co1dflXr2lPr3l/7wB+nyy6VvvpGmTpXat5eeeMLud/CgtHevtH+/vZ+ba/8ZFmZvwKWEgAJcwnbs2CFJmjBhQh1XUj8EBASc13nt2klffCE9+aR0221SUZG9JmXoUOmttyR/f7vfO+9IY8ZUnXfHHfaf06fb5wKXEodl1b+X20pKShQUFKTi4mIFBgbWdTlAvfXTTz9pxYoVio6Olv/J35J1LCcnRyNHjtTChQsVU9OrL3UgICBA7dq189h406dLM2dKq1dL113nsWEBo7nz+5sZFOAS1qJFC40fP76uy6hWTEyM4uLi6rqMWjNjhtS2rbR5s/TrX0terAgEXBBQAKCO/PJxDgBXZHYAAGAcAgoAADAOAQUAABiHgAIAAIxDQAEAAMYhoAAAAOMQUAAAgHEIKAAAwDgEFAAAYBwCCgAAMA4BBQAAGIeAAgAAjON2QMnKylJycrLCw8PlcDi0YsWK0/rk5ORo8ODBCgoKUtOmTdWtWzft3bvX2d6nTx85HA6X7Z577rmgGwEAAA2H2wGlrKxMsbGxSk9Pr7Z9165d6tWrl6Kjo7V+/Xpt27ZN06ZNk6+vr0u/CRMmqKCgwLn96U9/Or87AAAADU5jd09ISkpSUlJSje2PPfaYBg4c6BI4rrzyytP6+fv7KywszN3LAwCAS4BH16BUVlZq1apVat++vfr376+WLVuqe/fu1T4GWrRokVq0aKFOnTopNTVVR48erXHc8vJylZSUuGwAAKDh8mhAKSoqUmlpqZ599lkNGDBAH374oW655RYNHTpUGzZscPYbPny4Fi5cqHXr1ik1NVVvvfWWRo4cWeO4aWlpCgoKcm4RERGeLBsAABjG7Uc8Z1JZWSlJGjJkiKZMmSJJuvbaa7Vx40bNnTtX119/vSRp4sSJznOuueYatW7dWn379tWuXbuqfRyUmpqqlJQU535JSQkhBQCABsyjMygtWrRQ48aN1bFjR5fjMTExLm/xnKp79+6SpPz8/GrbfXx8FBgY6LIBAICGy6MBxdvbW926dVNubq7L8Z07dyoqKqrG87KzsyVJrVu39mQ5AACgnnL7EU9paanLTMfu3buVnZ2tkJAQRUZGaurUqbr99tvVu3dvJSQk6P3339fKlSu1fv16SfZryJmZmRo4cKCaN2+ubdu2acqUKerdu7c6d+7ssRsDAAD1l9sBZcuWLUpISHDun1wbMmrUKGVkZOiWW27R3LlzlZaWpgceeEAdOnTQP/7xD/Xq1UuSPcuyZs0azZo1S2VlZYqIiNCwYcP0+OOPe+iWAABAfeewLMuq6yLcVVJSoqCgIBUXF7MeBWhgvvzyS8XHx2vr1q2Ki4ur63IAeJA7v7/5Lh4AAGAcAgoAADAOAQUAABiHgAIAAIxDQAEAAMYhoAAAAOMQUAAAgHEIKAAAwDgEFAAAYBwCCgAAMA4BBQAAGIeAAgAAjENAAQAAxiGgAAAA4xBQAACAcQgoAADAOAQUAABgHAIKAAAwDgEFAAAYh4ACAIbo00d66KFz779nj+RwSNnZtVMPUJcIKABQi0aPtkPEPfec3jZpkt02erS9v3y59PTT5z52RIRUUCB16uSJSgGzEFAAoJZFREhLlkjHjlUdO35cysyUIiOrjoWESAEB5z5uo0ZSWJjUuLHnagVMQUABgFoWF2eHlOXLq44tX26Hky5dqo6d+oinbVvpj3+Uxo61g0tkpPT661Xtpz7iWb/e3v/gA3tcPz/phhukoiLpvfekmBgpMFAaPlw6etT1OrNmudZ87bXSk09W7Tsc0muvSTfdJPn722Nt2iTl59t1N20q9ewp7dp1nn9JwCkIKABwEYwdKy1YULU/f740ZszZz3vxRalrV+mrr6T77pPuvVfKzT3zOU8+Kb36qrRxo7Rvn3TbbXYAycyUVq2SPvxQeuUV9+/h6aelu+6yA1F0tB107r5bSk2VtmyRLEuaPNn9cYHqEFAA4CIYOVL65BPpu+/s7dNP7WNnM3CgHUyuukp6+GGpRQtp3bozn/OHP0i/+Y09izJunLRhgzRnjr3/299Kt9569jGqM2aMHXbat7dr2bNHGjFC6t/fnlF58EF7FgfwBJ5cAsBFEBoqDRokZWTYMw2DBtlh42w6d6762eGw15wUFZ37Oa1a2Y9krrjC9djnn7tVfrXjStI117geO35cKimxHyUBF4KAAgAXydixVY9A0tPP7ZwmTVz3HQ6psvLcz3E4zj6Gl5cdmn7pxImzj1vTsbPVB5wLAgoAXCQDBkgVFfYv8v7967qaKqGh9uvKJ5WUSLt31109gERAAeAhR48e1Y4dOy54nJycHJc/PSE6Olr+/v4eG+98NWoknbytRo3qtpZfuuEG+9FTcrIUHCw98YRZ9eHSREAB4BE7duxQfHy8x8YbeS4rSM/R1q1bFRcX57HxLoSJazNSU+0Zk5tukoKC7Ld1mEFBXXNY1qlPHs1XUlKioKAgFRcXK9DE/9qBS5CnZlCOHTumPXv2qG3btvLz8/NAZebMoACXOnd+fxNQAADAReHO728+BwUAABiHgAIAAIxDQAEAAMZxO6BkZWUpOTlZ4eHhcjgcWrFixWl9cnJyNHjwYAUFBalp06bq1q2b9u7d62w/fvy4Jk2apObNm6tZs2YaNmyYCgsLL+hGAABAw+F2QCkrK1NsbKzSa/gYxF27dqlXr16Kjo7W+vXrtW3bNk2bNk2+vr7OPlOmTNHKlSu1bNkybdiwQfv379fQoUPP/y4AAECDckFv8TgcDv3zn//UzTff7Dx2xx13qEmTJnrrrbeqPae4uFihoaHKzMzUrbfeKsn+/ISYmBht2rRJ11133Vmvy1s8AADUP3X2Fk9lZaVWrVql9u3bq3///mrZsqW6d+/u8hho69atOnHihBITE53HoqOjFRkZqU2bNlU7bnl5uUpKSlw2AADQcHk0oBQVFam0tFTPPvusBgwYoA8//FC33HKLhg4dqg0bNkiSDhw4IG9vbwUHB7uc26pVKx04cKDacdPS0hQUFOTcIiIiPFk2AAAwjMdnUCRpyJAhmjJliq699lo98sgjuummmzR37tzzHjc1NVXFxcXObd++fZ4qGQAAGMij38XTokULNW7cWB07dnQ5HhMTo08++USSFBYWpoqKCh0+fNhlFqWwsFBhYWHVjuvj4yMfHx9PlgoAAAzm0RkUb29vdevWTbm5uS7Hd+7cqaioKElSfHy8mjRporVr1zrbc3NztXfvXvXo0cOT5QAAgHrK7RmU0tJS5efnO/d3796t7OxshYSEKDIyUlOnTtXtt9+u3r17KyEhQe+//75Wrlyp9evXS5KCgoI0btw4paSkKCQkRIGBgbr//vvVo0ePc3qDBwAANHxuv2a8fv16JSQknHZ81KhRysjIkCTNnz9faWlp+v7779WhQwfNmDFDQ4YMcfY9fvy4/uu//kuLFy9WeXm5+vfvr9mzZ9f4iOdUvGYMAED90+C/zbi4uFjBwcHat28fAQUAgHqipKREEREROnz4sIKCgs7Y16OLZC+WI0eOSBKvGwMAUA8dOXLkrAGlXs6gVFZWav/+/QoICJDD4ajrcgB40Ml/YTFDCjQ8lmXpyJEjCg8Pl5fXmd/TqZcBBUDDxRozAJKHXzMGAADwBAIKAAAwDgEFgFF8fHw0ffp0Pj0auMSxBgUAABiHGRQAAGAcAgoAADAOAQUAABiHgAIAAIxDQAEAAMYhoAAwQlZWlpKTkxUeHi6Hw6EVK1bUdUkA6hABBYARysrKFBsbq/T09LouBYAB6uW3GQNoeJKSkpSUlFTXZQAwBDMoAADAOAQUAABgHAIKAAAwDgEFAAAYh4ACAACMw1s8AIxQWlqq/Px85/7u3buVnZ2tkJAQRUZG1mFlAOqCw7Isq66LAID169crISHhtOOjRo1SRkbGxS8IQJ0ioAAAAOOwBgUAABiHgAIAAIxDQAEAAMYhoAAAAOMQUAAAgHEIKAAAwDgEFAAAYBwCCgAAMA4BBQAAGIeAAgAAjENAAQAAxvn/evioV6ETXzwAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Adding some explanation:\n", "plt.boxplot(x)\n", "plt.text(1.1, np.percentile(x, [0]), 'Minimum', color='blue')\n", "plt.text(1.1, np.percentile(x, [25]), 'Q1', color='blue')\n", "plt.text(1.1, np.percentile(x, [50]), 'Median', color='blue')\n", "plt.text(1.1, np.percentile(x, [75]), 'Q3', color='blue')\n", "plt.text(1.1, np.percentile(x,[100]), 'Maximun', color='blue')\n", "plt.title(\"Basic box plot\")\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "see documentation for definition of box and whiskers: \n", "\n", "https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.boxplot.html#matplotlib.axes.Axes.boxplot\n", "\n" ] }, { "cell_type": "code", "execution_count": 62, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAGdCAYAAAA44ojeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAisElEQVR4nO3df3AU9eH/8deFkCORu0tPCUeGBKioSQqlEhmIKCU2kxACNQ1M1YLCNErrXGghDkPjWKp1+olVrDN1QOqMEloacbD8dqBNQRIsQSXKlDAhQAUJDRfoIHckQBLIff7gy32+V+KPSw7ufeH5mNnp3O57997rP/fssrux+P1+vwAAAAwSE+kJAAAA/DcCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxYiM9gZ7o6upSc3OzbDabLBZLpKcDAAC+Br/fr3Pnzik5OVkxMV9+jSQqA6W5uVkpKSmRngYAAOiBpqYmDR069EvHRGWg2Gw2SVdO0G63R3g2AADg6/D5fEpJSQn8jn+ZqAyUq/+sY7fbCRQAAKLM17k9g5tkAQCAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMaJyhe1AeibLl++rF27dunkyZMaMmSI7r//fvXr1y/S0wIQAVxBAWCEdevWaeTIkcrOztaPfvQjZWdna+TIkVq3bl2kpwYgAggUABG3bt06zZw5U6NHj1Ztba3OnTun2tpajR49WjNnziRSgJuQxe/3+yM9iVD5fD45HA55vV7+Fg8Q5S5fvqyRI0dq9OjR2rBhQ9CfYO/q6lJhYaHq6+t1+PBh/rkHiHKh/H5zBQVARO3atUvHjh3T008/HRQnkhQTE6OysjIdPXpUu3btitAMAUQCgQIgok6ePClJGjVqVLfbr66/Og7AzYFAARBRQ4YMkSTV19d3u/3q+qvjANwcCBQAEXX//fdr+PDh+p//+R91dXUFbevq6lJ5eblGjBih+++/P0IzBBAJBAqAiOrXr59efvllbdmyRYWFhUFP8RQWFmrLli1aunQpN8gCNxle1AYg4oqKivTOO+/oqaee0r333htYP2LECL3zzjsqKiqK4OwARAKPGQMwBm+SBfq2UH6/uYICwBj9+vXT5MmTIz0NAAbgHhQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxQgqU8vJyjRs3TjabTUlJSSosLFRjY2PQmJ/85Ce6/fbbFR8fr0GDBunBBx/UwYMHg8YcP35cBQUFSkhIUFJSkhYtWqRLly71/mwAAECfEFKgVFdXy+12a8+ePaqqqlJnZ6dyc3PV1tYWGJOZmamVK1eqoaFBf/3rX+X3+5Wbm6vLly9LuvLn1AsKCtTR0aHdu3dr1apVqqio0JIlS8J7ZgAAIGpZ/H6/v6c7nz59WklJSaqurtakSZO6HfPPf/5TY8aM0ZEjR3T77bdr69atmjZtmpqbmzV48GBJ0ooVK7R48WKdPn1acXFxX/m9Pp9PDodDXq9Xdru9p9MHAAA3UCi/3726B8Xr9UqSnE5nt9vb2tq0cuVKjRgxQikpKZKk2tpajR49OhAnkpSXlyefz6cDBw50e5z29nb5fL6gBQAA9F09DpSuri4tWLBAEydO1KhRo4K2LV++XAMHDtTAgQO1detWVVVVBa6MeDyeoDiRFPjs8Xi6/a7y8nI5HI7AcjV2AABA39TjQHG73aqvr9eaNWuu2TZr1ix98sknqq6u1p133qkf/vCHunjxYo8nWVZWJq/XG1iampp6fCwAAGC+2J7sVFJSoi1btqimpkZDhw69ZvvVKx133HGHJkyYoG984xtav369HnnkEblcLn344YdB41taWiRJLper2++zWq2yWq09mSoAAIhCIV1B8fv9Kikp0fr167Vjxw6NGDHia+3j9/vV3t4uScrKytL+/ft16tSpwJiqqirZ7XZlZGSEOH0AANAXhXQFxe12q7KyUhs3bpTNZgvcM+JwOBQfH69PP/1Ub7/9tnJzczVo0CCdOHFCL7zwguLj4zV16lRJUm5urjIyMvToo4/qxRdflMfj0TPPPCO3281VEgAAICnEKyivvfaavF6vJk+erCFDhgSWt99+W5I0YMAA7dq1S1OnTtXIkSP10EMPyWazaffu3UpKSpIk9evXT1u2bFG/fv2UlZWl2bNn67HHHtOvf/3r8J8dAACISr16D0qk8B4UAACizw17DwoAAMD1QKAAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA44QUKOXl5Ro3bpxsNpuSkpJUWFioxsbGwPYzZ85o/vz5uuuuuxQfH6/U1FT97Gc/k9frDTrO8ePHVVBQoISEBCUlJWnRokW6dOlSeM4IAABEvZACpbq6Wm63W3v27FFVVZU6OzuVm5urtrY2SVJzc7Oam5u1dOlS1dfXq6KiQtu2bVNxcXHgGJcvX1ZBQYE6Ojq0e/durVq1ShUVFVqyZEl4zwwAAEQti9/v9/d059OnTyspKUnV1dWaNGlSt2PWrl2r2bNnq62tTbGxsdq6daumTZum5uZmDR48WJK0YsUKLV68WKdPn1ZcXNxXfq/P55PD4ZDX65Xdbu/p9AEAwA0Uyu93r+5BufpPN06n80vH2O12xcbGSpJqa2s1evToQJxIUl5ennw+nw4cONCb6QAAgD4itqc7dnV1acGCBZo4caJGjRrV7Zj//Oc/ev755zVv3rzAOo/HExQnkgKfPR5Pt8dpb29Xe3t74LPP5+vptAEAQBTo8RUUt9ut+vp6rVmzptvtPp9PBQUFysjI0LPPPtvTr5F05eZch8MRWFJSUnp1PAAAYLYeBUpJSYm2bNmi9957T0OHDr1m+7lz5zRlyhTZbDatX79e/fv3D2xzuVxqaWkJGn/1s8vl6vb7ysrK5PV6A0tTU1NPpg0AAKJESIHi9/tVUlKi9evXa8eOHRoxYsQ1Y3w+n3JzcxUXF6dNmzZpwIABQduzsrK0f/9+nTp1KrCuqqpKdrtdGRkZ3X6v1WqV3W4PWgAAQN8V0j0obrdblZWV2rhxo2w2W+CeEYfDofj4+ECcnD9/XqtXr5bP5wvcLzJo0CD169dPubm5ysjI0KOPPqoXX3xRHo9HzzzzjNxut6xWa/jPEAAARJ2QHjO2WCzdrl+5cqXmzp2rnTt3Kjs7u9sxR48e1fDhwyVJn332mZ588knt3LlTt9xyi+bMmaMXXngh8KTPV+ExYwAAok8ov9+9eg9KpBAoAABEnxv2HhQAAIDrgUABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcUIKlPLyco0bN042m01JSUkqLCxUY2Nj0JjXX39dkydPlt1ul8Vi0dmzZ685zpkzZzRr1izZ7XYlJiaquLhYra2tvToRAADQd4QUKNXV1XK73dqzZ4+qqqrU2dmp3NxctbW1BcacP39eU6ZM0dNPP/2Fx5k1a5YOHDigqqoqbdmyRTU1NZo3b17PzwIAAPQpFr/f7+/pzqdPn1ZSUpKqq6s1adKkoG07d+5Udna2Pv/8cyUmJgbWNzQ0KCMjQx999JHuueceSdK2bds0depUnThxQsnJyV/5vT6fTw6HQ16vV3a7vafTBwAAN1Aov9+9ugfF6/VKkpxO59fep7a2VomJiYE4kaScnBzFxMTogw8+6Haf9vZ2+Xy+oAUAAPRdPQ6Urq4uLViwQBMnTtSoUaO+9n4ej0dJSUlB62JjY+V0OuXxeLrdp7y8XA6HI7CkpKT0dNoAACAK9DhQ3G636uvrtWbNmnDOp1tlZWXyer2Bpamp6bp/JwAAiJzYnuxUUlISuLl16NChIe3rcrl06tSpoHWXLl3SmTNn5HK5ut3HarXKarX2ZKoAACAKhXQFxe/3q6SkROvXr9eOHTs0YsSIkL8wKytLZ8+eVV1dXWDdjh071NXVpfHjx4d8PAAA0PeEdAXF7XarsrJSGzdulM1mC9wz4nA4FB8fL+nKPSYej0dHjhyRJO3fv182m02pqalyOp1KT0/XlClT9MQTT2jFihXq7OxUSUmJHn744a/1BA8AAOj7QnrM2GKxdLt+5cqVmjt3riTp2Wef1XPPPfelY86cOaOSkhJt3rxZMTExmjFjhn7/+99r4MCBX2sePGYMAED0CeX3u1fvQYkUAgUAgOhzw96DAgAAcD0QKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4IQVKeXm5xo0bJ5vNpqSkJBUWFqqxsTFozMWLF+V2u3Xrrbdq4MCBmjFjhlpaWoLGHD9+XAUFBUpISFBSUpIWLVqkS5cu9f5sAABAnxBSoFRXV8vtdmvPnj2qqqpSZ2encnNz1dbWFhizcOFCbd68WWvXrlV1dbWam5tVVFQU2H758mUVFBSoo6NDu3fv1qpVq1RRUaElS5aE76wAAEBUs/j9fn9Pdz59+rSSkpJUXV2tSZMmyev1atCgQaqsrNTMmTMlSQcPHlR6erpqa2s1YcIEbd26VdOmTVNzc7MGDx4sSVqxYoUWL16s06dPKy4u7iu/1+fzyeFwyOv1ym6393T6AADgBgrl97tX96B4vV5JktPplCTV1dWps7NTOTk5gTFpaWlKTU1VbW2tJKm2tlajR48OxIkk5eXlyefz6cCBA91+T3t7u3w+X9ACAAD6rh4HSldXlxYsWKCJEydq1KhRkiSPx6O4uDglJiYGjR08eLA8Hk9gzP8fJ1e3X93WnfLycjkcjsCSkpLS02kDAIAo0ONAcbvdqq+v15o1a8I5n26VlZXJ6/UGlqampuv+nQAAIHJie7JTSUmJtmzZopqaGg0dOjSw3uVyqaOjQ2fPng26itLS0iKXyxUY8+GHHwYd7+pTPlfH/Der1Sqr1dqTqQIAgCgU0hUUv9+vkpISrV+/Xjt27NCIESOCtmdmZqp///7avn17YF1jY6OOHz+urKwsSVJWVpb279+vU6dOBcZUVVXJbrcrIyOjN+cCAAD6iJCuoLjdblVWVmrjxo2y2WyBe0YcDofi4+PlcDhUXFys0tJSOZ1O2e12zZ8/X1lZWZowYYIkKTc3VxkZGXr00Uf14osvyuPx6JlnnpHb7eYqCQAAkBTiY8YWi6Xb9StXrtTcuXMlXXlR21NPPaW33npL7e3tysvL0/Lly4P++eazzz7Tk08+qZ07d+qWW27RnDlz9MILLyg29uv1Eo8ZAwAQfUL5/e7Ve1AihUABACD63LD3oAAAAFwPPXqKBwD+2/nz53Xw4MFeH+fChQs6duyYhg8frvj4+DDM7MoLIxMSEsJyLAA3BoECICwOHjyozMzMSE+jW3V1dRo7dmykpwEgBAQKgLBIS0tTXV1dr4/T0NCg2bNna/Xq1UpPTw/DzK7MDUB0IVAAhEVCQkJYr1Kkp6dz1QO4iXGTLAAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACME3Kg1NTUaPr06UpOTpbFYtGGDRuCtre0tGju3LlKTk5WQkKCpkyZosOHDweNuXjxotxut2699VYNHDhQM2bMUEtLS69OBAAA9B0hB0pbW5vGjBmjZcuWXbPN7/ersLBQn376qTZu3KhPPvlEw4YNU05Ojtra2gLjFi5cqM2bN2vt2rWqrq5Wc3OzioqKencmAACgz4gNdYf8/Hzl5+d3u+3w4cPas2eP6uvr9a1vfUuS9Nprr8nlcumtt97S448/Lq/XqzfeeEOVlZV64IEHJEkrV65Uenq69uzZowkTJvTidAAAQF8Q1ntQ2tvbJUkDBgz4vy+IiZHVatX7778vSaqrq1NnZ6dycnICY9LS0pSamqra2tovPK7P5wtaAABA3xXWQLkaGmVlZfr888/V0dGh3/72tzpx4oROnjwpSfJ4PIqLi1NiYmLQvoMHD5bH4+n2uOXl5XI4HIElJSUlnNMGAACGCWug9O/fX+vWrdOhQ4fkdDqVkJCg9957T/n5+YqJ6flXlZWVyev1BpampqYwzhoAAJgm5HtQvkpmZqb27dsnr9erjo4ODRo0SOPHj9c999wjSXK5XOro6NDZs2eDrqK0tLTI5XJ1e0yr1Sqr1RruqQIAAEOFPVCucjgckq7cOLt37149//zzkq4ETP/+/bV9+3bNmDFDktTY2Kjjx48rKyvrek0HwBc4fPiwzp07F+lpBDQ0NAT9rylsNpvuuOOOSE8DuGmEHCitra06cuRI4PPRo0e1b98+OZ1Opaamau3atRo0aJBSU1O1f/9+/fznP1dhYaFyc3MlXQmX4uJilZaWyul0ym63a/78+crKyuIJHuAGO3z4sO68885IT6Nbs2fPjvQUrnHo0CEiBbhBQg6UvXv3Kjs7O/C5tLRUkjRnzhxVVFTo5MmTKi0tVUtLi4YMGaLHHntMv/zlL4OO8corrygmJkYzZsxQe3u78vLytHz58l6eCoBQXb1ysnr1aqWnp0d4NldcuHBBx44d0/DhwxUfHx/p6Ui6cjVn9uzZRl1pAvo6i9/v90d6EqHy+XxyOBzyer2y2+2Rng4QtT7++GNlZmaqrq5OY8eOjfR0jMV/JyA8Qvn95m/xAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDghB0pNTY2mT5+u5ORkWSwWbdiwIWh7a2urSkpKNHToUMXHxysjI0MrVqwIGnPx4kW53W7deuutGjhwoGbMmKGWlpZenQgAAOg7Qg6UtrY2jRkzRsuWLet2e2lpqbZt26bVq1eroaFBCxYsUElJiTZt2hQYs3DhQm3evFlr165VdXW1mpubVVRU1POzAAAAfUpsqDvk5+crPz//C7fv3r1bc+bM0eTJkyVJ8+bN0x/+8Ad9+OGH+v73vy+v16s33nhDlZWVeuCBByRJK1euVHp6uvbs2aMJEyb07EwAAECfEfZ7UO69915t2rRJ//73v+X3+/Xee+/p0KFDys3NlSTV1dWps7NTOTk5gX3S0tKUmpqq2trabo/Z3t4un88XtAAAgL4r7IHy6quvKiMjQ0OHDlVcXJymTJmiZcuWadKkSZIkj8ejuLg4JSYmBu03ePBgeTyebo9ZXl4uh8MRWFJSUsI9bQAAYJDrEih79uzRpk2bVFdXp5dffllut1t///vfe3zMsrIyeb3ewNLU1BTGGQMAANOEfA/Kl7lw4YKefvpprV+/XgUFBZKkb3/729q3b5+WLl2qnJwcuVwudXR06OzZs0FXUVpaWuRyubo9rtVqldVqDedUAQCAwcJ6BaWzs1OdnZ2KiQk+bL9+/dTV1SVJyszMVP/+/bV9+/bA9sbGRh0/flxZWVnhnA4AAIhSIV9BaW1t1ZEjRwKfjx49qn379snpdCo1NVXf/e53tWjRIsXHx2vYsGGqrq7WH//4R/3ud7+TJDkcDhUXF6u0tFROp1N2u13z589XVlYWT/AAEeAaaFH82UNSM+9t/CLxZw/JNdAS6WkAN5WQA2Xv3r3Kzs4OfC4tLZUkzZkzRxUVFVqzZo3Kyso0a9YsnTlzRsOGDdNvfvMb/fSnPw3s88orrygmJkYzZsxQe3u78vLytHz58jCcDoBQ/SQzTuk1P5FqIj0Tc6Xryn8nADeOxe/3+yM9iVD5fD45HA55vV7Z7fZITweIWh9//LEKvnuPdmysVHpaWqSnY6yGgwf1wIM/0rvVezV27NhITweIWqH8fof1JlkA0cfT6teFxDul5O9EeirGuuDpkqc16v6/HBDV+EdnAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYJyQA6WmpkbTp09XcnKyLBaLNmzYELTdYrF0u7z00kuBMWfOnNGsWbNkt9uVmJio4uJitba29vpkAABA3xByoLS1tWnMmDFatmxZt9tPnjwZtLz55puyWCyaMWNGYMysWbN04MABVVVVacuWLaqpqdG8efN6fhYAAKBPiQ11h/z8fOXn53/hdpfLFfR548aNys7O1je/+U1JUkNDg7Zt26aPPvpI99xzjyTp1Vdf1dSpU7V06VIlJyeHOiUAANDHXNd7UFpaWvTuu++quLg4sK62tlaJiYmBOJGknJwcxcTE6IMPPrie0wEAAFEi5CsooVi1apVsNpuKiooC6zwej5KSkoInERsrp9Mpj8fT7XHa29vV3t4e+Ozz+a7PhAEAgBGu6xWUN998U7NmzdKAAQN6dZzy8nI5HI7AkpKSEqYZAgAAE123QNm1a5caGxv1+OOPB613uVw6depU0LpLly7pzJkz19y/clVZWZm8Xm9gaWpqul7TBgAABrhugfLGG28oMzNTY8aMCVqflZWls2fPqq6uLrBux44d6urq0vjx47s9ltVqld1uD1oAAEDfFfI9KK2trTpy5Ejg89GjR7Vv3z45nU6lpqZKunKPyNq1a/Xyyy9fs396erqmTJmiJ554QitWrFBnZ6dKSkr08MMP8wQPAACQ1IMrKHv37tXdd9+tu+++W5JUWlqqu+++W0uWLAmMWbNmjfx+vx555JFuj/HnP/9ZaWlp+t73vqepU6fqvvvu0+uvv97DUwAAAH1NyFdQJk+eLL/f/6Vj5s2b96UvXnM6naqsrAz1qwEAwE2Cv8UDAACMQ6AAAADjECgAAMA4BAoAADDOdX3VPQCznT9/XpL08ccfR3gm/+fChQs6duyYhg8frvj4+EhPR9KVP3IK4MYiUICb2MGDByVJTzzxRIRnEh1sNlukpwDcNAgU4CZWWFgoSUpLS1NCQkJkJ/P/NDQ0aPbs2Vq9erXS09MjPZ0Am82mO+64I9LTAG4aBApwE7vtttuu+XtZpkhPT9fYsWMjPQ0AEcJNsgAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDixkZ4AgL7h/PnzOnjwYK+P09DQEPS/4ZCWlqaEhISwHQ/A9UegAAiLgwcPKjMzM2zHmz17dtiOVVdXp7Fjx4bteACuv5ADpaamRi+99JLq6up08uRJrV+/XoWFhUFjGhoatHjxYlVXV+vSpUvKyMjQX/7yF6WmpkqSLl68qKeeekpr1qxRe3u78vLytHz5cg0ePDgsJwXgxktLS1NdXV2vj3PhwgUdO3ZMw4cPV3x8fBhmdmVuAKJLyIHS1tamMWPG6Mc//rGKioqu2f6vf/1L9913n4qLi/Xcc8/JbrfrwIEDGjBgQGDMwoUL9e6772rt2rVyOBwqKSlRUVGR/vGPf/TubABETEJCQtiuUkycODEsxwEQvSx+v9/f450tlmuuoDz88MPq37+//vSnP3W7j9fr1aBBg1RZWamZM2dKunJpOD09XbW1tZowYcJXfq/P55PD4ZDX65Xdbu/p9AEAwA0Uyu93WJ/i6erq0rvvvqs777xTeXl5SkpK0vjx47Vhw4bAmLq6OnV2dionJyewLi0tTampqaqtre32uO3t7fL5fEELAADou8IaKKdOnVJra6teeOEFTZkyRX/729/0gx/8QEVFRaqurpYkeTwexcXFKTExMWjfwYMHy+PxdHvc8vJyORyOwJKSkhLOaQMAAMOE/QqKJD344INauHChvvOd7+gXv/iFpk2bphUrVvT4uGVlZfJ6vYGlqakpXFMGAAAGCutjxrfddptiY2OVkZERtD49PV3vv/++JMnlcqmjo0Nnz54NuorS0tIil8vV7XGtVqusVms4pwoAAAwW1isocXFxGjdunBobG4PWHzp0SMOGDZMkZWZmqn///tq+fXtge2Njo44fP66srKxwTgcAAESpkK+gtLa26siRI4HPR48e1b59++R0OpWamqpFixbpoYce0qRJk5Sdna1t27Zp8+bN2rlzpyTJ4XCouLhYpaWlcjqdstvtmj9/vrKysr7WEzwAAKDvC/kx4507dyo7O/ua9XPmzFFFRYUk6c0331R5eblOnDihu+66S88995wefPDBwNirL2p76623gl7U9kX/xPPfeMwYAIDoE8rvd6/egxIpBAoAANEnYu9BAQAACAcCBQAAGIdAAQAAxiFQAACAccL6orYb5ep9vfxNHgAAosfV3+2v83xOVAbKuXPnJIm/yQMAQBQ6d+6cHA7Hl46JyseMu7q61NzcLJvNJovFEunpAAgjn8+nlJQUNTU18RoBoI/x+/06d+6ckpOTFRPz5XeZRGWgAOi7eM8RAImbZAEAgIEIFAAAYBwCBYBRrFarfvWrX8lqtUZ6KgAiiHtQAACAcbiCAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECwAg1NTWaPn26kpOTZbFYtGHDhkhPCUAEESgAjNDW1qYxY8Zo2bJlkZ4KAANE5R8LBND35OfnKz8/P9LTAGAIrqAAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOPwFA8AI7S2turIkSOBz0ePHtW+ffvkdDqVmpoawZkBiAT+mjEAI+zcuVPZ2dnXrJ8zZ44qKipu/IQARBSBAgAAjMM9KAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOP8L5WtKm3SYpOxAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Adding an outlier to the data:\n", "plt.boxplot(np.append(x, [235]))\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": 63, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAqQAAAFfCAYAAACY+97uAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAkaUlEQVR4nO3dcWyU92H/8Y8N9vlc7o5cgjksbKAlqW3BWHBQcGg62JDBoTSOiZakkNLVC5VyJgUipLnK6LZKc5cl2x8RTdoqhXSMkVHFkBCazQrUpsM0zaVUmNomrDDc2mdro34OG8c2+Pv7g3H93WwSn33m6zu/X9Kj6J7ne9/7PlL70ecennucZowxAgAAACxJt70AAAAATG0UUgAAAFhFIQUAAIBVFFIAAABYRSEFAACAVRRSAAAAWEUhBQAAgFXTbS9gLIaGhtTe3i6Px6O0tDTbywGQgowxunLlinJzc5Wennrf3clRABMtnhxNykLa3t6uvLw828sAMAW0tbVp7ty5tpeRcOQogNtlNDmalIXU4/FIunGCXq/X8moApKJIJKK8vLxo3qQachTARIsnR5OykN785yWv10uQAphQqfrP2eQogNtlNDmaejdGAQAAIKlQSAEAAGAVhRQAAABWUUgBAABgFYUUAAAAVlFIAQAAYFVSPvYJiMf169d14sQJdXR0aM6cOXrwwQc1bdo028sCAAD/iyukSGlvvPGGFi5cqFWrVulLX/qSVq1apYULF+qNN96wvTQAAPC/KKRIWW+88YYeffRRLV68WI2Njbpy5YoaGxu1ePFiPfroo5RSAAAmiTRjjLG9iHhFIhH5fD45jsNfGMGIrl+/roULF2rx4sU6dOiQ0tN//91raGhI5eXlampq0ocffsg/32NEqZ4zqX5+AOyLJ2e4hxQp6cSJE7p48aL+5V/+JaaMSlJ6erqqq6v1wAMP6MSJE1q5cqWdRQLAJHD16lW1tLR84ri+vj5dvHhR8+fPl9vtHtXcBQUFys7OHu8SMQVQSJGSOjo6JEmLFi0a8fjN/TfHAcBU1dLSouLi4gmZOxQKaenSpRMyN1ILhRQpac6cOZKkpqYmLV++fNjxpqammHEAMFUVFBQoFAp94rjm5mZt2rRJ+/btU2Fh4ajnBkaDQoqU9OCDD2r+/Pn627/92xHvIa2pqdGCBQv04IMPWlwlANiXnZ0d11XMwsJCrnoi4fiVPVLStGnT9OKLL+rIkSMqLy+P+ZV9eXm5jhw5ohdeeIEfNAEAMAlwhRQpq6KiQj/60Y/07LPP6oEHHojuX7BggX70ox+poqLC4uoAAMBNFFKktIqKCj388MP8pSYAACYxCilS3rRp03i0EwAAkxj3kAIAAMAqCikAAACsopACAADAKgopAAAArKKQAgAAwCoKKQAAAKyikAIAAMAqCikAAACsiquQ1tTUaNmyZfJ4PMrJyVF5eblaW1tjxnzta1/TZz7zGbndbs2aNUsPP/ywWlpaYsZcunRJ69atU3Z2tnJycrRz505du3Zt/GcDAJMcOQoAw8VVSOvr6xUMBnXq1CnV1dVpcHBQpaWl6u3tjY4pLi7Wnj171NzcrH/7t3+TMUalpaW6fv26JOn69etat26dBgYGdPLkSb322mvau3evdu3aldgzA4BJiBwFgBGYcejq6jKSTH19/S3H/PKXvzSSzPnz540xxhw9etSkp6ebcDgcHfPyyy8br9dr+vv7R/W5juMYScZxnPEsHwBu6XblDDmKZBEKhYwkEwqFbC8FSSKenBnXPaSO40iS/H7/iMd7e3u1Z88eLViwQHl5eZKkxsZGLV68WLNnz46OW7NmjSKRiM6ePTviPP39/YpEIjEbAKQCchQAxvGjpqGhIW3btk0rVqzQokWLYo595zvf0YwZMzRjxgz9+Mc/Vl1dnTIzMyVJ4XA4JkQlRV+Hw+ERP6umpkY+ny+63QxlAEhm5CgA3DDmQhoMBtXU1KQDBw4MO7Zx40b94he/UH19ve655x796Z/+qT766KMxL7K6ulqO40S3tra2Mc8FAJMFOQoAN0wfy5uqqqp05MgRNTQ0aO7cucOO3/wGfvfdd2v58uW64447VFtbqyeeeEKBQEDvvfdezPjOzk5JUiAQGPHzXC6XXC7XWJYKAJMSOQoAvxfXFVJjjKqqqlRbW6tjx45pwYIFo3qPMUb9/f2SpJKSEp05c0ZdXV3RMXV1dfJ6vSoqKopz+QCQXMhRABguriukwWBQ+/fv1+HDh+XxeKL3Kvl8Prndbv3617/W66+/rtLSUs2aNUu/+c1v9O1vf1tut1sPPfSQJKm0tFRFRUV68skn9fzzzyscDuu5555TMBjk2zuAlEeOAsBwcV0hffnll+U4jlauXKk5c+ZEt9dff12SlJWVpRMnTuihhx7SwoUL9dhjj8nj8ejkyZPKycmRJE2bNk1HjhzRtGnTVFJSok2bNunLX/6y/uZv/ibxZwcAkww5CgDDxXWF1Bjzscdzc3N19OjRT5xn3rx5oxoHAKmGHAWA4fhb9gAAALCKQgoAAACrKKQAAACwikIKAAAAqyikAAAAsIpCCgAAAKsopAAAALCKQgoAAACrKKQAAACwikIKAAAAqyikAAAAsIpCCgAAAKsopAAAALCKQgoAAACrKKQAAACwikIKAAAAqyikAAAAsIpCCgAAAKsopAAAALCKQgoAAACrKKQAAACwikIKAAAAqyikAAAAsIpCCgAAAKsopAAAALCKQgoAAACrKKQAAACwKq5CWlNTo2XLlsnj8SgnJ0fl5eVqbW2NHr98+bK2bt2qz372s3K73crPz9czzzwjx3Fi5rl06ZLWrVun7Oxs5eTkaOfOnbp27VpizggAJjFyFACGi6uQ1tfXKxgM6tSpU6qrq9Pg4KBKS0vV29srSWpvb1d7e7teeOEFNTU1ae/evXrnnXdUWVkZneP69etat26dBgYGdPLkSb322mvau3evdu3aldgzA4BJiBwFgBGYcejq6jKSTH19/S3H/Ou//qvJzMw0g4ODxhhjjh49atLT0004HI6Oefnll43X6zX9/f2j+lzHcYwk4zjOeJYPALd0u3KGHEWyCIVCRpIJhUK2l4IkEU/OjOse0pv/hOT3+z92jNfr1fTp0yVJjY2NWrx4sWbPnh0ds2bNGkUiEZ09e3bEOfr7+xWJRGI2AEgF5CgAjONHTUNDQ9q2bZtWrFihRYsWjTjmv//7v/Wtb31LW7Zsie4Lh8MxISop+jocDo84T01NjXw+X3TLy8sb67IBYNIgRwHghjEX0mAwqKamJh04cGDE45FIROvWrVNRUZH+6q/+aqwfI0mqrq6W4zjRra2tbVzzAcBkQI4CwA3Tx/KmqqoqHTlyRA0NDZo7d+6w41euXNHatWvl8XhUW1urjIyM6LFAIKD33nsvZnxnZ2f02EhcLpdcLtdYlgoAkxI5CgC/F9cVUmOMqqqqVFtbq2PHjmnBggXDxkQiEZWWliozM1NvvvmmsrKyYo6XlJTozJkz6urqiu6rq6uT1+tVUVHRGE8DAJIDOQoAw8V1hTQYDGr//v06fPiwPB5P9F4ln88nt9sdDdGrV69q3759MTfOz5o1S9OmTVNpaamKior05JNP6vnnn1c4HNZzzz2nYDDIt3cAKY8cBYARxPPzfUkjbnv27DHGGHP8+PFbjrlw4UJ0nosXL5qysjLjdrvNXXfdZZ599tno40wS/RgBABiLicoZchTJisc+IV7x5ExcV0iNMR97fOXKlZ84RpLmzZuno0ePxvPRAJASyFEAGI6/ZQ8AAACrKKQAAACwikIKAAAAqyikAAAAsIpCCgAAAKsopAAAALCKQgoAAACrKKQAAACwikIKAAAAqyikAAAAsIpCCgAAAKsopAAAALCKQgoAAACrKKQAAACwikIKAAAAqyikAAAAsIpCCgAAAKsopAAAALCKQgoAAACrKKQAAACwikIKAAAAqyikAAAAsIpCCgAAAKsopAAAALCKQgoAAACrKKQAAACwikIKAAAAq+IqpDU1NVq2bJk8Ho9ycnJUXl6u1tbWmDHf+973tHLlSnm9XqWlpam7u3vYPJcvX9bGjRvl9Xo1c+ZMVVZWqqenZ1wnAgDJgBwFgOHiKqT19fUKBoM6deqU6urqNDg4qNLSUvX29kbHXL16VWvXrtU3vvGNW86zceNGnT17VnV1dTpy5IgaGhq0ZcuWsZ8FACQJchQARmDGoaury0gy9fX1w44dP37cSDK/+93vYvb/6le/MpLMz3/+8+i+H//4xyYtLc389re/HdXnOo5jJBnHccazfAC4pduVM+QokkUoFDKSTCgUsr0UJIl4cmZc95A6jiNJ8vv9o35PY2OjZs6cqfvuuy+6b/Xq1UpPT9fPfvazEd/T39+vSCQSswFAKiBHAWAcP2oaGhrStm3btGLFCi1atGjU7wuHw8rJyYnZN336dPn9foXD4RHfU1NTI5/PF93y8vLGumwAmDTIUQC4YcyFNBgMqqmpSQcOHEjkekZUXV0tx3GiW1tb24R/JgBMNHIUAG6YPpY3VVVVRW+inzt3blzvDQQC6urqitl37do1Xb58WYFAYMT3uFwuuVyusSwVACYlchQAfi+uK6TGGFVVVam2tlbHjh3TggUL4v7AkpISdXd3KxQKRfcdO3ZMQ0NDuv/+++OeDwCSCTkKAMPFdYU0GAxq//79Onz4sDweT/ReJZ/PJ7fbLenGvU3hcFjnz5+XJJ05c0Yej0f5+fny+/0qLCzU2rVr9dRTT+mVV17R4OCgqqqq9Pjjjys3NzfBpwcAkws5CgAjiOfn+5JG3Pbs2RMd881vfvMTx/zP//yPeeKJJ8yMGTOM1+s1f/Znf2auXLky6nXwuBIAE22icoYcRbLisU+IVzw5k2aMMbep+yZMJBKRz+eT4zjyer22lwMgBaV6zqT6+SHxPvjgAxUXFysUCmnp0qW2l4MkEE/O8LfsAQAAYBWFFAAAAFZRSAEAAGAVhRQAAABWUUgBAABgFYUUAAAAVlFIAQAAYBWFFAAAAFZRSAEAAGAVhRQAAABWUUgBAABgFYUUAAAAVlFIAQAAYBWFFAAAAFZRSAEAAGAVhRQAAABWUUgBAABgFYUUAAAAVlFIAQAAYBWFFAAAAFZRSAEAAGAVhRQAAABWUUgBAABgFYUUAAAAVlFIAQAAYBWFFAAAAFZRSAEAAGBVXIW0pqZGy5Ytk8fjUU5OjsrLy9Xa2hoz5qOPPlIwGNSdd96pGTNmaMOGDers7IwZc+nSJa1bt07Z2dnKycnRzp07de3atfGfDQBMcuQoAAwXVyGtr69XMBjUqVOnVFdXp8HBQZWWlqq3tzc6Zvv27Xrrrbd08OBB1dfXq729XRUVFdHj169f17p16zQwMKCTJ0/qtdde0969e7Vr167EnRUATFLkKACMwIxDV1eXkWTq6+uNMcZ0d3ebjIwMc/DgweiY5uZmI8k0NjYaY4w5evSoSU9PN+FwODrm5ZdfNl6v1/T394/qcx3HMZKM4zjjWT4A3NLtyhlyFMkiFAoZSSYUCtleCpJEPDkzrntIHceRJPn9fklSKBTS4OCgVq9eHR1TUFCg/Px8NTY2SpIaGxu1ePFizZ49OzpmzZo1ikQiOnv27Iif09/fr0gkErMBQCogRwFgHD9qGhoa0rZt27RixQotWrRIkhQOh5WZmamZM2fGjJ09e7bC4XB0zP8fojeP3zw2kpqaGvl8vuiWl5c31mUDwKRBjgLADWMupMFgUE1NTTpw4EAi1zOi6upqOY4T3dra2ib8MwFgopGjAHDD9LG8qaqqSkeOHFFDQ4Pmzp0b3R8IBDQwMKDu7u6Yb/ednZ0KBALRMe+9917MfDd/PXpzzP/lcrnkcrnGslQAmJTIUQD4vbiukBpjVFVVpdraWh07dkwLFiyIOV5cXKyMjAy9++670X2tra26dOmSSkpKJEklJSU6c+aMurq6omPq6urk9XpVVFQ0nnMBgEmPHAWA4eK6QhoMBrV//34dPnxYHo8neq+Sz+eT2+2Wz+dTZWWlduzYIb/fL6/Xq61bt6qkpETLly+XJJWWlqqoqEhPPvmknn/+eYXDYT333HMKBoN8eweQ8shRABhBPD/flzTitmfPnuiYvr4+8/TTT5s77rjDZGdnm0ceecR0dHTEzHPx4kVTVlZm3G63ueuuu8yzzz5rBgcHR70OHlcCYKJNVM6Qo0hWPPYJ8YonZ9KMMea2t+BxikQi8vl8chxHXq/X9nJg0dWrV9XS0vKJ4/r6+nTx4kXNnz9fbrd7VHMXFBQoOzt7vEtEkkr1nEn180PiffDBByouLlYoFNLSpUttLwdJIJ6cGdOPmoDJoqWlRcXFxRMyN6ELAMDtQSFFUisoKFAoFPrEcc3Nzdq0aZP27dunwsLCUc8NAAAmHoUUSS07Ozuuq5iFhYVc9QQAYJIZ158OBQAAAMaLQgoAAACrKKQAAACwikIKAAAAqyikAAAAsIpCCgAAAKsopAAAALCKQgoAAACrKKQAAACwikIKAAAAqyikAAAAsIpCCgAAAKsopAAAALCKQgoAAACrKKQAAACwikIKAAAAqyikAAAAsIpCCgAAAKsopAAAALCKQgoAAACrKKQAAACwikIKAAAAqyikAAAAsIpCCgAAAKviLqQNDQ1av369cnNzlZaWpkOHDsUc7+zs1Fe+8hXl5uYqOztba9eu1Ycffhgz5qOPPlIwGNSdd96pGTNmaMOGDers7BzXiQBAsiBHASBW3IW0t7dXS5Ys0e7du4cdM8aovLxcv/71r3X48GH94he/0Lx587R69Wr19vZGx23fvl1vvfWWDh48qPr6erW3t6uiomJ8ZwIASYIcBYD/w4yDJFNbWxt93draaiSZpqam6L7r16+bWbNmme9///vGGGO6u7tNRkaGOXjwYHRMc3OzkWQaGxtH9bmO4xhJxnGc8SwfU0goFDKSTCgUsr0UJInblTPkKJIFOYp4xZMzCb2HtL+/X5KUlZUV3Zeeni6Xy6Wf/vSnkqRQKKTBwUGtXr06OqagoED5+flqbGy85byRSCRmA4BURI4CmIoSWkhvBmJ1dbV+97vfaWBgQH/3d3+n3/zmN+ro6JAkhcNhZWZmaubMmTHvnT17tsLh8Ijz1tTUyOfzRbe8vLxELhsAJg1yFMBUlNBCmpGRoTfeeEPnzp2T3+9Xdna2jh8/rrKyMqWnj/2jqqur5ThOdGtra0vgqgFg8iBHAUxF0xM9YXFxsU6fPi3HcTQwMKBZs2bp/vvv13333SdJCgQCGhgYUHd3d8y3+87OTgUCgRHndLlccrlciV4qJrEPP/xQV65cSdh8zc3NMf9NFI/Ho7vvvjuhcwLkKBKBHEUySXghvcnn80m68X+I999/X9/61rck3QjajIwMvfvuu9qwYYMkqbW1VZcuXVJJSclELQdJ5MMPP9Q999wzIXNv2rQp4XOeO3eOMMWEIEcxVuQokk3chbSnp0fnz5+Pvr5w4YJOnz4tv9+v/Px8HTx4ULNmzVJ+fr7OnDmjr3/96yovL1dpaamkGwFbWVmpHTt2yO/3y+v1auvWrSopKdHy5csTd2ZIWje/0e/bt0+FhYUJmbOvr08XL17U/Pnz5Xa7EzJnc3OzNm3alNArEJgayFFMNHIUySbuQvr+++9r1apV0dc7duyQJG3evFl79+5VR0eHduzYoc7OTs2ZM0df/vKX9Zd/+Zcxc/zjP/6j0tPTtWHDBvX392vNmjX6zne+M85TQaopLCzU0qVLEzbfihUrEjYXMB7kKG4XchTJIu5CunLlShljbnn8mWee0TPPPPOxc2RlZWn37t0jPhQaAFIdOQoAsfhb9gAAALCKQgoAAACrKKQAAACwikIKAAAAqyikAAAAsIpCCgAAAKsopAAAALCKQgoAAACrKKQAAACwikIKAAAAqyikAAAAsIpCCgAAAKsopAAAALCKQgoAAACrKKQAAACwikIKAAAAqyikAAAAsIpCCgAAAKsopAAAALCKQgoAAACrKKQAAACwikIKAAAAqyikAAAAsIpCCgAAAKsopAAAALCKQgoAAACrKKQAAACwKu5C2tDQoPXr1ys3N1dpaWk6dOhQzPGenh5VVVVp7ty5crvdKioq0iuvvBIz5qOPPlIwGNSdd96pGTNmaMOGDers7BzXiQBAsiBHASBW3IW0t7dXS5Ys0e7du0c8vmPHDr3zzjvat2+fmpubtW3bNlVVVenNN9+Mjtm+fbveeustHTx4UPX19Wpvb1dFRcXYzwIAkgg5CgCxpsf7hrKyMpWVld3y+MmTJ7V582atXLlSkrRlyxZ997vf1XvvvacvfvGLchxHr776qvbv368//uM/liTt2bNHhYWFOnXqlJYvXz5szv7+fvX390dfRyKReJcNAJMGOQoAsRJ+D+kDDzygN998U7/97W9ljNHx48d17tw5lZaWSpJCoZAGBwe1evXq6HsKCgqUn5+vxsbGEeesqamRz+eLbnl5eYleNgBMGuQogKkm4YX0pZdeUlFRkebOnavMzEytXbtWu3fv1uc//3lJUjgcVmZmpmbOnBnzvtmzZyscDo84Z3V1tRzHiW5tbW2JXjYATBrkKICpJu5/sv8kL730kk6dOqU333xT8+bNU0NDg4LBoHJzc2O+zcfD5XLJ5XIleKUAMDmRowCmmoQW0r6+Pn3jG99QbW2t1q1bJ0n6gz/4A50+fVovvPCCVq9erUAgoIGBAXV3d8d8u+/s7FQgEEjkcpDEAjPS5O4+J7VP3ieTubvPKTAjzfYykGLIUSQKOYpkktBCOjg4qMHBQaWnx/6Pf9q0aRoaGpIkFRcXKyMjQ++++642bNggSWptbdWlS5dUUlKSyOUgiX2tOFOFDV+TGmyv5NYKdWOdQCKRo0gUchTJJO5C2tPTo/Pnz0dfX7hwQadPn5bf71d+fr7+6I/+SDt37pTb7da8efNUX1+vH/7wh/qHf/gHSZLP51NlZaV27Nghv98vr9errVu3qqSkZMRfhmJq+m5oQI/t2qvCggLbS7ml5pYWfffFL+mLtheCpEOO4nYgR5FUTJyOHz9uJA3bNm/ebIwxpqOjw3zlK18xubm5Jisry3z2s581L774ohkaGorO0dfXZ55++mlzxx13mOzsbPPII4+Yjo6OUa/BcRwjyTiOE+/ykQRCoZCRZEKhkO2lfKxkWSfGZiJzhhzFREuWfEqWdWJs4smZuK+Qrly5UsaYWx4PBALas2fPx86RlZWl3bt33/Kh0ACQyshRAIg1ee90BgAAwJRAIQUAAIBVFFIAAABYRSEFAACAVRRSAAAAWEUhBQAAgFUUUgAAAFhFIQUAAIBVFFIAAABYRSEFAACAVRRSAAAAWEUhBQAAgFUUUgAAAFhFIQUAAIBVFFIAAABYRSEFAACAVRRSAAAAWEUhBQAAgFUUUgAAAFhFIQUAAIBVFFIAAABYRSEFAACAVRRSAAAAWEUhBQAAgFUUUgAAAFhFIQUAAIBVcRfShoYGrV+/Xrm5uUpLS9OhQ4dijqelpY24/f3f/310zOXLl7Vx40Z5vV7NnDlTlZWV6unpGffJAEAyIEcBIFbchbS3t1dLlizR7t27Rzze0dERs/3gBz9QWlqaNmzYEB2zceNGnT17VnV1dTpy5IgaGhq0ZcuWsZ8FACQRchQAYk2P9w1lZWUqKyu75fFAIBDz+vDhw1q1apU+/elPS5Kam5v1zjvv6Oc//7nuu+8+SdJLL72khx56SC+88IJyc3PjXRIAJBVyFABiTeg9pJ2dnXr77bdVWVkZ3dfY2KiZM2dGQ1SSVq9erfT0dP3sZz8bcZ7+/n5FIpGYDQCmAnIUwFQwoYX0tddek8fjUUVFRXRfOBxWTk5OzLjp06fL7/crHA6POE9NTY18Pl90y8vLm8hlA8CkQY4CmAomtJD+4Ac/0MaNG5WVlTWueaqrq+U4TnRra2tL0AoBYHIjRwFMBXHfQzpaJ06cUGtrq15//fWY/YFAQF1dXTH7rl27psuXLw+7b+oml8sll8s1UUsFgEmJHAUwVUzYFdJXX31VxcXFWrJkScz+kpISdXd3KxQKRfcdO3ZMQ0NDuv/++ydqOQCQdMhRAFNF3FdIe3p6dP78+ejrCxcu6PTp0/L7/crPz5ckRSIRHTx4UC+++OKw9xcWFmrt2rV66qmn9Morr2hwcFBVVVV6/PHH+WUogCmBHAWAWHFfIX3//fd177336t5775Uk7dixQ/fee6927doVHXPgwAEZY/TEE0+MOMc///M/q6CgQH/yJ3+ihx56SJ/73Of0ve99b4ynAADJhRwFgFhxXyFduXKljDEfO2bLli0f+4Bmv9+v/fv3x/vRAJASyFEAiMXfsgcAAIBVFFIAAABYNWGPfQLG6urVq5KkDz74IGFz9vX16eLFi5o/f77cbndC5mxubk7IPACQaOQokg2FFJNOS0uLJOmpp56yvJLR8Xg8tpcAADHIUSQbCikmnfLycklSQUGBsrOzEzJnc3OzNm3apH379qmwsDAhc0o3QvTuu+9O2HwAkAjkKJINhRSTzl133aU///M/n5C5CwsLtXTp0gmZGwAmC3IUyYYfNQEAAMAqCikAAACsopACAADAKgopAAAArKKQAgAAwCoKKQAAAKyikAIAAMAqCikAAACsopACAADAKgopAAAArKKQAgAAwCoKKQAAAKyikAIAAMAqCikAAACsopACAADAKgopAAAArKKQAgAAwCoKKQAAAKyikAIAAMAqCikAAACsmm57AcB4XL16VS0tLZ84rrm5Oea/o1FQUKDs7Owxrw0AkgE5iknBxKm+vt584QtfMHPmzDGSTG1t7bAxv/rVr8z69euN1+s12dnZ5r777jP/9V//FT3e19dnnn76aeP3+82nPvUpU1FRYcLh8KjX4DiOkWQcx4l3+UgxoVDISJqQLRQK2T49WDSROUOOYjIhRzFR4smZuK+Q9vb2asmSJfrqV7+qioqKYcf/8z//U5/73OdUWVmpv/7rv5bX69XZs2eVlZUVHbN9+3a9/fbbOnjwoHw+n6qqqlRRUaH/+I//iHc5mOIKCgoUCoU+cVxfX58uXryo+fPny+12j3puYCKQo5hMyFFMBmnGGDPmN6elqba2VuXl5dF9jz/+uDIyMvRP//RPI77HcRzNmjVL+/fv16OPPipJamlpUWFhoRobG7V8+fJP/NxIJCKfzyfHceT1ese6fAC4pduVM+QogFQVT84k9EdNQ0NDevvtt3XPPfdozZo1ysnJ0f33369Dhw5Fx4RCIQ0ODmr16tXRfQUFBcrPz1djY+OI8/b39ysSicRsAJCKyFEAU1FCC2lXV5d6enr07W9/W2vXrtW///u/65FHHlFFRYXq6+slSeFwWJmZmZo5c2bMe2fPnq1wODzivDU1NfL5fNEtLy8vkcsGgEmDHAUwFSX8CqkkPfzww9q+fbv+8A//UH/xF3+hL3zhC3rllVfGPG91dbUcx4lubW1tiVoyAEwq5CiAqSihj3266667NH36dBUVFcXsLyws1E9/+lNJUiAQ0MDAgLq7u2O+3Xd2dioQCIw4r8vlksvlSuRSAWBSIkcBTEUJvUKamZmpZcuWqbW1NWb/uXPnNG/ePElScXGxMjIy9O6770aPt7a26tKlSyopKUnkcgAg6ZCjAKaiuK+Q9vT06Pz589HXFy5c0OnTp+X3+5Wfn6+dO3fqscce0+c//3mtWrVK77zzjt566y395Cc/kST5fD5VVlZqx44d8vv98nq92rp1q0pKSkb1y1AASHbkKAD8H/E+5PT48eMjPvx28+bN0TGvvvqqWbhwocnKyjJLliwxhw4dipnj5gOd77jjDpOdnW0eeeQR09HRMeo18EBnABNtInOGHAUwFcSTM+N6DqktPD8PwERL9ZxJ9fMDYJ+155ACAAAA8aKQAgAAwKqEPvbpdrl5lwF/aQTARLmZL0l4V9OokKMAJlo8OZqUhfTKlSuSxF8aATDhrly5Ip/PZ3sZCUeOArhdRpOjSfmjpqGhIbW3t8vj8SgtLc32cpAEIpGI8vLy1NbWxg84MCrGGF25ckW5ublKT0+9u5vIUcSLHEW84snRpCykQLz4RTEAjA85iomUel/7AQAAkFQopAAAALCKQoopweVy6Zvf/KZcLpftpQBAUiJHMZG4hxQAAABWcYUUAAAAVlFIAQAAYBWFFAAAAFZRSAEAAGAVhRQAAABWUUiR0hoaGrR+/Xrl5uYqLS1Nhw4dsr0kAEgq5ChuBwopUlpvb6+WLFmi3bt3214KACQlchS3w3TbCwAmUllZmcrKymwvAwCSFjmK24ErpAAAALCKQgoAAACrKKQAAACwikIKAAAAqyikAAAAsIpf2SOl9fT06Pz589HXFy5c0OnTp+X3+5Wfn29xZQCQHMhR3A5pxhhjexHARPnJT36iVatWDdu/efNm7d279/YvCACSDDmK24FCCgAAAKu4hxQAAABWUUgBAABgFYUUAAAAVlFIAQAAYBWFFAAAAFZRSAEAAGAVhRQAAABWUUgBAABgFYUUAAAAVlFIAQAAYBWFFAAAAFb9P47q4BJ2jG8EAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(8,4))\n", "ax1.boxplot(np.append(x, [235]))\n", "ax2.boxplot(np.append(x, [235]), whis=(0,100))\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Working with data - dataframes" ] }, { "cell_type": "code", "execution_count": 64, "metadata": {}, "outputs": [], "source": [ "# import the Pandas library\n", "import pandas as pd " ] }, { "cell_type": "code", "execution_count": 65, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
malesfemales
0152159.0
1171166.0
2173168.0
3173168.0
4178171.0
5179171.0
6180172.0
7180172.0
8182173.0
9182174.0
10182175.0
11185175.0
12185175.0
13185175.0
14185175.0
15185177.0
16186178.0
17187NaN
18190NaN
19190NaN
20192NaN
21192NaN
22197NaN
\n", "
" ], "text/plain": [ " males females\n", "0 152 159.0\n", "1 171 166.0\n", "2 173 168.0\n", "3 173 168.0\n", "4 178 171.0\n", "5 179 171.0\n", "6 180 172.0\n", "7 180 172.0\n", "8 182 173.0\n", "9 182 174.0\n", "10 182 175.0\n", "11 185 175.0\n", "12 185 175.0\n", "13 185 175.0\n", "14 185 175.0\n", "15 185 177.0\n", "16 186 178.0\n", "17 187 NaN\n", "18 190 NaN\n", "19 190 NaN\n", "20 192 NaN\n", "21 192 NaN\n", "22 197 NaN" ] }, "execution_count": 65, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Make a DataFrame:\n", "data = pd.DataFrame({\n", " 'males': [152, 171, 173, 173, 178, 179, 180, 180, 182, 182, 182, 185, \n", " 185 ,185, 185, 185 ,186 ,187 ,190 ,190, 192, 192, 197], \n", " 'females':[159, 166, 168 ,168 ,171 ,171 ,172, 172, 173, 174 ,175 ,175,\n", " 175, 175, 175, 177, 178, np.nan,np.nan,np.nan,np.nan,np.nan,np.nan]\n", "})\n", "data" ] }, { "cell_type": "code", "execution_count": 66, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n" ] } ], "source": [ "print(type(data))" ] }, { "cell_type": "code", "execution_count": 67, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 67, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAGdCAYAAAA44ojeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAnXElEQVR4nO3df1RU54H/8c8AIwIKCP5AqiCJPYFEQ5R0FaNRFFGMVAK2iXGzprW1m6jdSH5ssSfu2nTDNtWYNmti65qfW2NX19Ko0cqmIBrBKCtdTZUGSoKpgEmMTADFQe73jyzzXVZUBmacR3i/zvGQuffO43M7Xnj3zuWOzbIsSwAAAAbx8/UEAAAA/i8CBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxAnw9ge5oa2vT6dOnNXDgQNlsNl9PBwAAdIFlWfriiy8UHR0tP7+rnyO5IQPl9OnTGjlypK+nAQAAuuHUqVMaMWLEVbe5IQNl4MCBkr7cwdDQUB/PBt7mdDq1d+9epaWlyW63+3o6ADyI47tvcTgcGjlypOvn+NXckIHS/rZOaGgogdIHOJ1OBQcHKzQ0lG9gQC/D8d03deXyDC6SBQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGOeG/LBA9B7Nzc06efLkVbdpPN+ig8eqNGjwEQ0ICrzmmPHx8QoODvbUFAEAPkCgwKdOnjyppKSkLm37bBfHLCsr0/jx47s/KQCAzxEo8Kn4+HiVlZVddZuK2nPK2XpMz31jrG4ZHt6lMQEANzYCBT4VHBx8zbMdfh99psD955UwJlF3xEZep5kBAHyJi2QBAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHLcDpbi4WBkZGYqOjpbNZlN+fn6H9fX19XrooYcUHR2t4OBgzZ49Wx988EGHbS5cuKClS5cqMjJSAwYMUHZ2turr63u0IwAAoPdwO1CampqUmJio9evXX7bOsixlZmbqz3/+s37729/q6NGjio2NVWpqqpqamlzbrVixQjt27NDWrVu1b98+nT59WllZWT3bEwAA0GsEuPuE9PR0paend7rugw8+UGlpqY4fP67bbrtNkvTSSy8pKipKb775pr7zne+ooaFBmzZt0ubNmzV9+nRJ0iuvvKKEhASVlpZq4sSJPdgdAADQG7gdKFfT0tIiSerfv79rmZ+fnwIDA3XgwAF95zvfUVlZmZxOp1JTU13bxMfHKyYmRiUlJZ0GSktLi2tsSXI4HJIkp9Mpp9PpyV2AgVpbW11feb2B3qX9mObY7hvceZ09GijtoZGbm6tf/OIXCgkJ0bp16/Txxx+rtrZWklRXV6d+/fopPDy8w3OHDRumurq6TsfNy8vT6tWrL1u+d+9eBQcHe3IXYKBTjZIUoNLSUv3luK9nA8AbCgoKfD0FXAfNzc1d3tajgWK327V9+3YtXrxYERER8vf3V2pqqtLT02VZVrfHzc3NVU5Ojuuxw+HQyJEjlZaWptDQUE9MHQb7Q81Z6dgRTZw4UYkxEb6eDgAPcjqdKigo0MyZM2W32309HXhZ+zsgXeHRQJGkpKQklZeXq6GhQRcvXtSQIUM0YcIE3XnnnZKkqKgoXbx4UefOnetwFqW+vl5RUVGdjhkYGKjAwMDLltvtdv5B9wEBAQGur7zeQO/E9/O+wZ3X2Gv3QQkLC9OQIUP0wQcf6MiRI5o3b56kLwPGbrfrnXfecW1bUVGhmpoaJScne2s6AADgBuL2GZTGxkZVVla6HldXV6u8vFwRERGKiYnR1q1bNWTIEMXExOjYsWP6u7/7O2VmZiotLU3Sl+GyePFi5eTkKCIiQqGhoVq+fLmSk5P5DR4AACCpG4Fy5MgRpaSkuB63XxuyaNEivfrqq6qtrVVOTo7q6+s1fPhw/c3f/I2eeuqpDmOsW7dOfn5+ys7OVktLi2bNmqUXX3yxh7sCAAB6C5vVk6tXfcThcCgsLEwNDQ1cJNsHlH/0mTJfKlX+wxN1R2ykr6cDwIOcTqfefvttzZkzh2tQ+gB3fn7zWTwAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAME6AryeA3q360yY1tbT2aIyqT5pcXwMCev5PNiQwQHGDQ3o8DgDAewgUeE31p01KWVPksfEe23bMY2MVPj6NSAEAgxEo8Jr2MyfP33eHRg8d0P1xzrdoZ1GJ5k5LVkhQYI/mVHmmUY/+urzHZ3UAAN5FoMDrRg8doDFfCev2851Op+qGSONjB8lut3twZgAAU3GRLAAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjcB8UeJUtwKFqR4X8+nf/Rm2tra063XpaJ86e6PGt7qsdjbIFOHo0BgDA+wgUeJU9/JBWvveMR8Z6cc+LHhnHHj5D0hyPjAUA8A4CBV7lPDdBa+95QDf34Fb3ra2tevfAu7pr8l09PoNSdaZR3/9VVY/GAAB4H4ECr7JaQxUXeotujezZre6rA6qVEJHQ41vdt11okNX6SY/GAAB4HxfJAgAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4bgdKcXGxMjIyFB0dLZvNpvz8/A7rGxsbtWzZMo0YMUJBQUG69dZbtWHDhg7bXLhwQUuXLlVkZKQGDBig7Oxs1dfX92hHAABA7+F2oDQ1NSkxMVHr16/vdH1OTo727Nmjf/u3f9OJEyf06KOPatmyZXrrrbdc26xYsUI7duzQ1q1btW/fPp0+fVpZWVnd3wsAANCrBLj7hPT0dKWnp19x/cGDB7Vo0SJNmzZNkrRkyRL94he/0Hvvvaevf/3ramho0KZNm7R582ZNnz5dkvTKK68oISFBpaWlmjhxYvf2BAAA9BpuB8q1TJo0SW+99Za+/e1vKzo6WkVFRfrTn/6kdevWSZLKysrkdDqVmprqek58fLxiYmJUUlLSaaC0tLSopaXF9djhcEiSnE6nnE6np3cBHtLa2ur62pPXqf25nnitPTUnAJ7hyeMb5nPndfZ4oLzwwgtasmSJRowYoYCAAPn5+Wnjxo26++67JUl1dXXq16+fwsPDOzxv2LBhqqur63TMvLw8rV69+rLle/fuVXBwsKd3AR5yqlGSAnTgwAF9NKDn4xUUFPR4DE/PCYBneOL4hvmam5u7vK1XAqW0tFRvvfWWYmNjVVxcrKVLlyo6OrrDWRN35ObmKicnx/XY4XBo5MiRSktLU2hoqKemDg97/7RDa46VavLkybotuvuvk9PpVEFBgWbOnCm73W7EnAB4hiePb5iv/R2QrvBooJw/f14rV67Ub37zG91zzz2SpNtvv13l5eVas2aNUlNTFRUVpYsXL+rcuXMdzqLU19crKiqq03EDAwMVGBh42XK73c4/aIMFBAS4vnridfLE6+3pOQHwDL6f9w3uvMYeDZT2a0L8/Dr+cpC/v7/a2tokSUlJSbLb7XrnnXeUnZ0tSaqoqFBNTY2Sk5M9OR342HnnJUnS8b809GicpvMtOvKJFPXR5woJujxU3VF5prFHzwcAXB9uB0pjY6MqKytdj6urq1VeXq6IiAjFxMRo6tSpeuKJJxQUFKTY2Fjt27dPr7/+up577jlJUlhYmBYvXqycnBxFREQoNDRUy5cvV3JyMr/B08tU/U8M/GD7MQ+MFqA3Kg97YJwvhQR6/N1NAIAHuf1d+siRI0pJSXE9br82ZNGiRXr11Ve1ZcsW5ebmauHChTp79qxiY2P1T//0T/rbv/1b13PWrVsnPz8/ZWdnq6WlRbNmzdKLL77ogd2BSdJu+/Itu5uHDlCQ3b/b41TUNuixbce0dv5Y3TI8rMfzCgkMUNzgkB6PAwDwHptlWZavJ+Euh8OhsLAwNTQ0cJFsH1D+0WfKfKlU+Q9P1B2xkb6eDgAPcjqdevvttzVnzhyuQekD3Pn5zWfxAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADAOt9MEAHhFc3OzTp48edVtGs+36OCxKg0afEQDuvBRFvHx8XyKfR9BoAAAvOLkyZNKSkrq0rbPdnHMsrIyjR8/vvuTwg2DQAEAeEV8fLzKysquuk1F7TnlbD2m574xVrcMD+/SmOgbCBQAgFcEBwdf82yH30efKXD/eSWMSeSjLNABF8kCAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAME6ArycAALgxVX/apKaW1h6NUfVJk+trQEDPfySFBAYobnBIj8eB7xEoAAC3VX/apJQ1RR4b77Ftxzw2VuHj04iUXoBAAQC4rf3MyfP33aHRQwd0f5zzLdpZVKK505IVEhTYozlVnmnUo78u7/FZHZiBQAEAdNvooQM05ith3X6+0+lU3RBpfOwg2e12D84MNzoukgUAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcPosHANAttgCHqh0V8uvf/Q8LbG1t1enW0zpx9oQCAnr2I6na0ShbgKNHY8AcBAoAoFvs4Ye08r1nPDLWi3te9Mg49vAZkuZ4ZCz4FoECAOgW57kJWnvPA7p5aM/OoLx74F3dNfmuHp9BqTrTqO//qqpHY8AcBAoAoFus1lDFhd6iWyPDuj2G0+lUdUC1EiISZLfbezSftgsNslo/6dEYMAcXyQIAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADAOn8UDn2pubtbJkyevuk1F7Tm11FXqxPEgtX0Wfs0x4+PjFRwc7KEZAujMeeclSdLxvzT0aJym8y068okU9dHnCgkK7NFYlWcae/R8mIVAgU+dPHlSSUlJXdr2gde6NmZZWZnGjx/fg1kBuJaq/4mBH2w/5oHRAvRG5WEPjPOlkEB+tPUGvIrwqfj4eJWVlV11m8bzLdpVWKJ7UpI1oAv/Dys+Pt5T0wNwBWm3RUmSbh46QEF2/26PU1HboMe2HdPa+WN1y/Dufypyu5DAAMUNDunxOPA9AgU+FRwcfM2zHU6nU59/ekbJf3Vnjz+OHYBnRIT00/1/FdPjcVpbWyVJNw8J0Ziv9DxQ0Hu4fZFscXGxMjIyFB0dLZvNpvz8/A7rbTZbp39++tOfurY5e/asFi5cqNDQUIWHh2vx4sVqbOS9QwAA8CW3A6WpqUmJiYlav359p+tra2s7/Hn55Zdls9mUnZ3t2mbhwoV6//33VVBQoJ07d6q4uFhLlizp/l4AAIBexe23eNLT05Wenn7F9VFRUR0e//a3v1VKSopuuukmSdKJEye0Z88eHT58WHfeeack6YUXXtCcOXO0Zs0aRUdHuzslAADQy3j1GpT6+nrt2rVLr732/3/9oqSkROHh4a44kaTU1FT5+fnp0KFDuvfeey8bp6WlRS0tLa7HDodD0pfXJjidTi/uAUzQ/hrzWgO9T/s1KK2trRzjfYA7r7FXA+W1117TwIEDlZWV5VpWV1enoUOHdpxEQIAiIiJUV1fX6Th5eXlavXr1Zcv37t3L/S76kIKCAl9PAYCHnWqUpACVlpbqL8d9PRt4W3Nzc5e39WqgvPzyy1q4cKH69+/fo3Fyc3OVk5PjeuxwODRy5EilpaUpNDS0p9OE4ZxOpwoKCjRz5kx+iwfoZf5Qc1Y6dkQTJ05UYkyEr6cDL2t/B6QrvBYo+/fvV0VFhX796193WB4VFaUzZ850WNba2qqzZ89edv1Ku8DAQAUGXn7/C7vdzg+sPoTXG+h9AgICXF85vns/d15jr30Wz6ZNm5SUlKTExMQOy5OTk3Xu3LkON+f6/e9/r7a2Nk2YMMFb0wEAADcQt8+gNDY2qrKy0vW4urpa5eXlioiIUEzMlzftcTgc2rp1q9auXXvZ8xMSEjR79mx997vf1YYNG+R0OrVs2TLdf//9/AYPAACQ1I0zKEeOHNG4ceM0btw4SVJOTo7GjRunVatWubbZsmWLLMvSggULOh3jV7/6leLj4zVjxgzNmTNHkydP1i9/+ctu7gIAAOht3D6DMm3aNFmWddVtlixZctUbr0VERGjz5s3u/tUAAKCP8No1KAAAAN1FoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjBPh6AgCA3qm5uVknT5686jYVtefUUlepE8eD1PZZ+DXHjI+PV3BwsIdmCJMRKAAArzh58qSSkpK6tO0Dr3VtzLKyMo0fP74Hs8KNgkABAHhFfHy8ysrKrrpN4/kW7Sos0T0pyRoQFNilMdE3ECgAAK8IDg6+5tkOp9Opzz89o+S/ulN2u/06zQw3Ai6SBQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcdwOlOLiYmVkZCg6Olo2m035+fmXbXPixAl9/etfV1hYmEJCQvS1r31NNTU1rvUXLlzQ0qVLFRkZqQEDBig7O1v19fU92hEAANB7uB0oTU1NSkxM1Pr16ztdX1VVpcmTJys+Pl5FRUX67//+bz311FPq37+/a5sVK1Zox44d2rp1q/bt26fTp08rKyur+3sBAAB6lQB3n5Cenq709PQrrv/hD3+oOXPm6Nlnn3Utu/nmm13/3dDQoE2bNmnz5s2aPn26JOmVV15RQkKCSktLNXHiRHenBAAAehm3A+Vq2tratGvXLj355JOaNWuWjh49qri4OOXm5iozM1OSVFZWJqfTqdTUVNfz4uPjFRMTo5KSkk4DpaWlRS0tLa7HDodDkuR0OuV0Oj25CzBQ+2vMaw30PhzffYs7r7NHA+XMmTNqbGzUP//zP+vHP/6xfvKTn2jPnj3KyspSYWGhpk6dqrq6OvXr10/h4eEdnjts2DDV1dV1Om5eXp5Wr1592fK9e/cqODjYk7sAgxUUFPh6CgC8hOO7b2hubu7yth4/gyJJ8+bN04oVKyRJd9xxhw4ePKgNGzZo6tSp3Ro3NzdXOTk5rscOh0MjR45UWlqaQkNDez5xGM3pdKqgoEAzZ86U3W739XQAeBDHd9/S/g5IV3g0UAYPHqyAgADdeuutHZYnJCTowIEDkqSoqChdvHhR586d63AWpb6+XlFRUZ2OGxgYqMDAwMuW2+12/kH3IbzeQO9y6dIlHTx4UMXFxQoJCVFKSor8/f19PS14kTvfwz16H5R+/frpa1/7mioqKjos/9Of/qTY2FhJUlJSkux2u9555x3X+oqKCtXU1Cg5OdmT0wEAGGr79u0aPXq0Zs6cqeeee04zZ87U6NGjtX37dl9PDYZw+wxKY2OjKisrXY+rq6tVXl6uiIgIxcTE6IknntB9992nu+++WykpKdqzZ4927NihoqIiSVJYWJgWL16snJwcRUREKDQ0VMuXL1dycjK/wQMAfcD27ds1f/58zZ07V2+88YY+/vhjjRgxQs8++6zmz5+vbdu2cesJSJabCgsLLUmX/Vm0aJFrm02bNlmjR4+2+vfvbyUmJlr5+fkdxjh//rz1yCOPWIMGDbKCg4Ote++916qtre3yHBoaGixJVkNDg7vTxw3o4sWLVn5+vnXx4kVfTwVAD7W2tlqjRo2yMjIyrEuXLnU4vi9dumRlZGRYcXFxVmtrq6+nCi9w5+e3zbIsy4d91C0Oh0NhYWFqaGjgItk+wOl06u2339acOXO4BgW4wRUVFSklJcV1W4n/e3yXlJRo0qRJKiws1LRp03w9XXiYOz+/+SweAMB1U1tbK0kaM2ZMp+vbl7dvh76LQAEAXDfDhw+XJB0/frzT9e3L27dD30WgAACumylTpmjUqFF65plnXPfOatfW1qa8vDzFxcVpypQpPpohTEGgAACuG39/f61du1Y7d+5UZmamSktLdf78eZWWliozM1M7d+7UmjVruB8KPHujNgAAriUrK0vbtm3TY489prvvvtu1PC4ujl8xhguBAgC47rKysjRv3jwVFhZq9+7dSk9P506y6IBAAQD4hL+/v6ZOnaqmpiZNnTqVOEEHXIMCAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADAOgQKjXbp0Sfv27VNxcbH27dunS5cu+XpKAIDrgECBsbZv367Ro0dr5syZeu655zRz5kyNHj1a27dv9/XUAABeRqDASNu3b9f8+fM1duxY7d+/X2+++ab279+vsWPHav78+UQKAPRyBAqMc+nSJT322GOaO3eu8vPzNWHCBAUFBWnChAnKz8/X3Llz9fjjj/N2DwD0YgQKjLN//359+OGHWrlypfz8Ov4T9fPzU25urqqrq7V//34fzRAA4G0ECoxTW1srSRozZkyn69uXt28HAOh9CBQYZ/jw4ZKk48ePd7q+fXn7dgCA3odAgXGmTJmiUaNG6ZlnnlFbW1uHdW1tbcrLy1NcXJymTJnioxkCALyNQIFx/P39tXbtWu3cuVOZmZkqLS3V+fPnVVpaqszMTO3cuVNr1qyRv7+/r6cKAPCSAF9PAOhMVlaWtm3bpscee0x33323a3lcXJy2bdumrKwsH84OAOBtBAqMlZWVpXnz5qmwsFC7d+9Wenq6UlJSOHMCAH0AgQKj+fv7a+rUqWpqatLUqVOJEwDoI7gGBQAAGIdAAQAAxiFQAACAcQgUAABgHLcDpbi4WBkZGYqOjpbNZlN+fn6H9Q899JBsNluHP7Nnz+6wzdmzZ7Vw4UKFhoYqPDxcixcvVmNjY492BAAA9B5uB0pTU5MSExO1fv36K24ze/Zs1dbWuv68+eabHdYvXLhQ77//vgoKCrRz504VFxdryZIl7s8eAAD0Sm7/mnF6errS09Ovuk1gYKCioqI6XXfixAnt2bNHhw8f1p133ilJeuGFFzRnzhytWbNG0dHR7k4JAAD0Ml65D0pRUZGGDh2qQYMGafr06frxj3+syMhISVJJSYnCw8NdcSJJqamp8vPz06FDh3TvvfdeNl5LS4taWlpcjx0OhyTJ6XTK6XR6YxdgkPbXmNca6H04vvsWd15njwfK7NmzlZWVpbi4OFVVVWnlypVKT09XSUmJ/P39VVdXp6FDh3acRECAIiIiVFdX1+mYeXl5Wr169WXL9+7dq+DgYE/vAgxVUFDg6ykA8BKO776hubm5y9t6PFDuv/9+13+PHTtWt99+u26++WYVFRVpxowZ3RozNzdXOTk5rscNDQ2KiYlRcnKyBg4c2OM5w2xOp1OFhYVKSUmR3W739XQAeBDHd9/yxRdfSJIsy7rmtl6/1f1NN92kwYMHq7KyUjNmzFBUVJTOnDnTYZvW1ladPXv2itetBAYGKjAw0PW4/S2euLg4700cAAB4xRdffKGwsLCrbuP1QPn444/12Wefafjw4ZKk5ORknTt3TmVlZUpKSpIk/f73v1dbW5smTJjQpTGjo6N16tQpDRw4UDabzWtzhxkcDodGjhypU6dOKTQ01NfTAeBBHN99i2VZ+uKLL7r0CzFuB0pjY6MqKytdj6urq1VeXq6IiAhFRERo9erVys7OVlRUlKqqqvTkk09q9OjRmjVrliQpISFBs2fP1ne/+11t2LBBTqdTy5Yt0/3339/l3+Dx8/PTiBEj3J06bnChoaF8AwN6KY7vvuNaZ07a2ayuvBH0vxQVFSklJeWy5YsWLdJLL72kzMxMHT16VOfOnVN0dLTS0tL09NNPa9iwYa5tz549q2XLlmnHjh3y8/NTdna2fv7zn2vAgAHuTAV9hMPhUFhYmBoaGvgGBvQyHN+4ErcDBbje+AYG9F4c37gSPosHxgsMDNQ//MM/dLhQGkDvwPGNK+EMCgAAMA5nUAAAgHEIFAAAYBwCBQAAGIdAwQ3loYceUmZmpq+nAfQJlmVpyZIlioiIkM1mU3l5uU/m8eGHH/r074dveP1OsgCAG9OePXv06quvqqioyPWxJcD1QqAAADpVVVWl4cOHa9KkSb6eCvog3uKB10ybNk3Lly/Xo48+qkGDBmnYsGHauHGjmpqa9K1vfUsDBw7U6NGjtXv3bknSpUuXtHjxYsXFxSkoKEi33HKLfvazn13172hra1NeXp7rOYmJidq2bZtr/eeff66FCxdqyJAhCgoK0le/+lW98sorXt1voDd46KGHtHz5ctXU1Mhms2nUqFHXPN6Kiopks9n0u9/9TuPGjVNQUJCmT5+uM2fOaPfu3UpISFBoaKgeeOABNTc3u563Z88eTZ48WeHh4YqMjNTcuXNVVVV11fkdP35c6enpGjBggIYNG6YHH3xQn376qWv9tm3bNHbsWAUFBSkyMlKpqalqamry/P9Q8BoCBV712muvafDgwXrvvfe0fPlyPfzww/rGN76hSZMm6b/+67+UlpamBx98UM3NzWpra9OIESO0detW/fGPf9SqVau0cuVK/fu///sVx8/Ly9Prr7+uDRs26P3339eKFSv013/919q3b58k6amnntIf//hH7d69WydOnNBLL73EaWqgC372s5/pRz/6kUaMGKHa2lodPnz4msdbu3/8x3/Uv/zLv+jgwYM6deqUvvnNb+r555/X5s2btWvXLu3du1cvvPCCa/umpibl5OToyJEjeuedd+Tn56d7771XbW1tnc7t3Llzmj59usaNG6cjR45oz549qq+v1ze/+U1JUm1trRYsWKBvf/vbOnHihIqKipSVlSVu+3WDsQAvmTp1qjV58mTX49bWViskJMR68MEHXctqa2stSVZJSUmnYyxdutTKzs52PV60aJE1b948y7Is68KFC1ZwcLB18ODBDs9ZvHixtWDBAsuyLCsjI8P61re+5aldAvqUdevWWbGxsZZlde14KywstCRZ//mf/+lan5eXZ0myqqqqXMu+973vWbNmzbri3/vJJ59Ykqxjx45ZlmVZ1dXVliTr6NGjlmVZ1tNPP22lpaV1eM6pU6csSVZFRYVVVlZmSbI+/PDDbu87fI9rUOBVt99+u+u//f39FRkZqbFjx7qWtX+I5JkzZyRJ69ev18svv6yamhqdP39eFy9e1B133NHp2JWVlWpubtbMmTM7LL948aLGjRsnSXr44YeVnZ3tOluTmZnJ++lAN3TleGv3v4/7YcOGKTg4WDfddFOHZe+9957r8QcffKBVq1bp0KFD+vTTT11nTmpqajRmzJjL5vKHP/xBhYWFnX7AbFVVldLS0jRjxgyNHTtWs2bNUlpamubPn69BgwZ1b+fhEwQKvMput3d4bLPZOiyz2WySvryWZMuWLXr88ce1du1aJScna+DAgfrpT3+qQ4cOdTp2Y2OjJGnXrl36yle+0mFd++d6pKen66OPPtLbb7+tgoICzZgxQ0uXLtWaNWs8to9AX9CV463d/z3GO/s+8L/fvsnIyFBsbKw2btyo6OhotbW1acyYMbp48eIV55KRkaGf/OQnl60bPny4/P39VVBQoIMHD7reTvrhD3+oQ4cOKS4uzr0dh88QKDDGu+++q0mTJumRRx5xLbvahXK33nqrAgMDVVNTo6lTp15xuyFDhmjRokVatGiRpkyZoieeeIJAAdzU1ePNXZ999pkqKiq0ceNGTZkyRZJ04MCBqz5n/Pjx+o//+A+NGjVKAQGd/xiz2Wy66667dNddd2nVqlWKjY3Vb37zG+Xk5Hhs7vAuAgXG+OpXv6rXX39dv/vd7xQXF6c33nhDhw8fvuL/4xk4cKAef/xxrVixQm1tbZo8ebIaGhr07rvvKjQ0VIsWLdKqVauUlJSk2267TS0tLdq5c6cSEhKu854BN76uHG/dMWjQIEVGRuqXv/ylhg8frpqaGv3gBz+46nOWLl2qjRs3asGCBXryyScVERGhyspKbdmyRf/6r//qutg2LS1NQ4cO1aFDh/TJJ59w7N9gCBQY43vf+56OHj2q++67TzabTQsWLNAjjzzi+jXkzjz99NMaMmSI8vLy9Oc//1nh4eEaP368Vq5cKUnq16+fcnNz9eGHHyooKEhTpkzRli1brtcuAb3KtY637vDz89OWLVv0/e9/X2PGjNEtt9yin//855o2bdoVnxMdHa13331Xf//3f6+0tDS1tLQoNjZWs2fPlp+fn0JDQ1VcXKznn39eDodDsbGxWrt2rdLT07s9T1x/Nsvi964AAIBZuA8KAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOP8P/NczQWF7XfUAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# The DataFrame has a direct method for making a boxplot:\n", "data.boxplot()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Reading data from an external file\n", "\n", "It is very important to learn how to read data from other files. In practice one will never type all the data into Python by hand!" ] }, { "cell_type": "code", "execution_count": 68, "metadata": {}, "outputs": [], "source": [ "csv_data= pd.read_csv(\"studentheights.csv\", sep=';')" ] }, { "cell_type": "code", "execution_count": 69, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n" ] } ], "source": [ "print(type(csv_data))" ] }, { "cell_type": "code", "execution_count": 70, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
HeightGender
0152male
1171male
2173male
3173male
4178male
\n", "
" ], "text/plain": [ " Height Gender\n", "0 152 male\n", "1 171 male\n", "2 173 male\n", "3 173 male\n", "4 178 male" ] }, "execution_count": 70, "metadata": {}, "output_type": "execute_result" } ], "source": [ "csv_data.head()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Notice that this DataFrame is differently structured compared to the one from above (which had columns: \"males\" and \"females\").\n", "\n", "If we wnt to do a boxplot by gender, we need to include the \"by=..\" argument:" ] }, { "cell_type": "code", "execution_count": 73, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 73, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjgAAAHNCAYAAAATwgHBAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAA9hAAAPYQGoP6dpAABBdUlEQVR4nO3deVyU5f7/8fewyCogpgKpSGJi4UqllIq4Y5qIZmWLnqN5TrmUy6n0tNkpPaW2HLO9pPJYfTUzWzStwCW10tQ0l8Q0LRFXIBZxYK7fHx3m1wQqCArcvJ6PBw+5r/u6r/ncM8zM23u1GWOMAAAALMStqgsAAACobAQcAABgOQQcAABgOQQcAABgOQQcAABgOQQcAABgOQQcAABgOQQcAABgOQQcAABgOQQcoJqy2Wx69NFHq7oMy0tNTZXNZlNqaupZ+z366KOy2Ww6duzYxSmsGirrcwVUBwQc1DrJycmy2WwuPw0bNlR8fLyWLVtW1eVV2I4dO/Too49q//79VV0KKuCjjz7SgAED1KhRI9WpU0fBwcHq2rWrZs+erezs7KouD6j2PKq6AKCqPPbYY4qIiJAxRhkZGUpOTla/fv300UcfqX///lVd3nnbsWOHpk2bpm7duqlZs2ZVXQ7KyeFwaOTIkUpOTlbr1q119913q0mTJvrtt9+0fv16Pfjgg/r000/1xRdfVHWpQLVGwEGtlZCQoKuuuso5PXLkSDVq1EjvvPNOjQ44F1NhYaEcDofq1KlT1aVYxlNPPaXk5GRNmDBBs2fPls1mc8675557lJ6errfeeqsKK6w8ubm58vPzq+oyYFHsogL+JygoSD4+PvLwcM39ubm5mjRpkpo0aSIvLy+1bNlSs2bNkjFGkpSfn6+oqChFRUUpPz/fudyJEycUGhqqa6+9VkVFRZKkESNGyN/fXz/99JP69OkjPz8/hYWF6bHHHnOOdzabN29WQkKCAgIC5O/vrx49emjDhg3O+cnJybrxxhslSfHx8c5dcOc6ZmLhwoW64oor5O3trejoaH3wwQcaMWKEyxag/fv3y2azadasWXr22WfVvHlzeXl5aceOHZKkL7/8Ul26dJGfn5+CgoI0cOBA7dy50+Vx/jxmseLjW/7IZrNp7Nix+u9//6uWLVvK29tbMTExWr16dYnlf/31V/31r39Vo0aN5OXlpSuvvFJvvPFGiX6//PKLEhMT5efnp4YNG2rChAkqKCg463PzZ8eOHdPQoUMVEBCg+vXr65577tGpU6ec8+Pi4tS2bdtSl23ZsqX69OlzxrHz8vL05JNP6sorr9TMmTNLPCeSFBoaqvvvv79E+/z58xUTEyMfHx8FBwfr5ptv1sGDB136dOvWTdHR0dqxY4fi4+Pl6+urSy+9VE899VSJ8crzXH399dfq27evAgMD5evrq7i4OH311VcufYpf4x07dmjYsGGqV6+eOnfufMbnAqgotuCg1srKytKxY8dkjNGRI0c0Z84c5eTk6LbbbnP2McbohhtuUEpKikaOHKl27drps88+0z/+8Q/9+uuveuaZZ+Tj46M333xT1113nf75z3/q6aefliSNGTNGWVlZSk5Olru7u3PMoqIi9e3bV506ddJTTz2l5cuX65FHHlFhYaEee+yxM9b7ww8/qEuXLgoICNB9990nT09Pvfzyy+rWrZtWrVqljh07qmvXrho/frz+85//aOrUqWrVqpUkOf8tzSeffKKbbrpJrVu31owZM3Ty5EmNHDlSl156aan9582bp1OnTmn06NHy8vJScHCwPv/8cyUkJOiyyy7To48+qvz8fM2ZM0fXXXedvvvuu/PeVbZq1Sq99957Gj9+vLy8vPTCCy+ob9+++uabbxQdHS1JysjIUKdOnZyBqEGDBlq2bJlGjhyp7Oxs3XvvvZJ+D6I9evTQgQMHNH78eIWFhentt9/Wl19+Wa6ahg4dqmbNmmnGjBnasGGD/vOf/+jkyZPOrSq333677rzzTm3fvt1ZoyR9++23+vHHH/Xggw+ecey1a9cqMzNTkydPdvmbOZcnnnhCDz30kIYOHapRo0bp6NGjmjNnjrp27arNmzcrKCjI2ffkyZPq27evkpKSNHToUC1atEj333+/WrdurYSEhHI/V19++aUSEhIUExOjRx55RG5ubpo3b566d++uNWvW6JprrnHpf+ONN6pFixaaPn16mUI9cN4MUMvMmzfPSCrx4+XlZZKTk136LlmyxEgyjz/+uEv7kCFDjM1mM2lpac62KVOmGDc3N7N69WqzcOFCI8k8++yzLssNHz7cSDLjxo1ztjkcDnP99debOnXqmKNHjzrbJZlHHnnEOZ2YmGjq1Klj9u7d62w7dOiQqVu3runatauzrfixU1JSyvR8tG7d2jRu3Nj89ttvzrbU1FQjyYSHhzvb9u3bZySZgIAAc+TIEZcx2rVrZxo2bGiOHz/ubNu6datxc3Mzd9xxh8v6/3HMYo888oj588dR8euyceNGZ9vPP/9svL29zaBBg5xtI0eONKGhoebYsWMuy998880mMDDQ5OXlGWOMefbZZ40k83//93/OPrm5uSYyMrJMz1dxjTfccINL+913320kma1btxpjjMnMzDTe3t7m/vvvd+k3fvx44+fnZ3Jycs74GM8995yRZJYsWeLSXlhYaI4ePery43A4jDHG7N+/37i7u5snnnjCZZlt27YZDw8Pl/a4uDgjybz11lvOtoKCAhMSEmIGDx7sbCvrc+VwOEyLFi1Mnz59nPUYY0xeXp6JiIgwvXr1KvH83XLLLWdcf6AysYsKtdbcuXO1cuVKrVy5UvPnz1d8fLxGjRqlxYsXO/t8+umncnd31/jx412WnTRpkowxLmddPfroo7ryyis1fPhw3X333YqLiyuxXLGxY8c6fy/e8nD69Gl9/vnnpfYvKirSihUrlJiYqMsuu8zZHhoaqmHDhmnt2rXndWbNoUOHtG3bNt1xxx3y9/d3tsfFxal169alLjN48GA1aNDAOZ2enq4tW7ZoxIgRCg4Odra3adNGvXr10qefflruuorFxsYqJibGOd20aVMNHDhQn332mYqKimSM0fvvv68BAwbIGKNjx445f/r06aOsrCx99913kn5/LUNDQzVkyBDneL6+vho9enS5ahozZozL9Lhx45zjS1JgYKAGDhyod955x7mFoqioSO+9955zl8+ZFL+Gf3wtJGnbtm1q0KCBy8/x48clSYsXL5bD4dDQoUNd1j8kJEQtWrRQSkqKy1j+/v4uWynr1Kmja665Rj/99JOzrazP1ZYtW7Rnzx4NGzZMx48fdz52bm6uevToodWrV8vhcLgs8/e///2M6w9UJnZRoda65pprXA4yvuWWW9S+fXuNHTtW/fv3V506dfTzzz8rLCxMdevWdVm2eJfPzz//7GyrU6eO3njjDV199dXy9vbWvHnzSj2Gws3NzSWkSNLll18uSWc8tfvo0aPKy8tTy5YtS8xr1aqVHA6HDh48qCuvvLJsK/8/xfVHRkaWmBcZGekMB38UERFR6hhnqu2zzz4774NJW7RoUaLt8ssvV15eno4ePSo3NzdlZmbqlVde0SuvvFLqGEeOHHHWGRkZWeI1Ka3u8tTUvHlzubm5ubx2d9xxh9577z2tWbNGXbt21eeff66MjAzdfvvtZx27+O8sJyfHpT0yMlIrV66UJL311lt6++23nfP27NkjY0ypz5UkeXp6ukw3bty4xHNQr149ff/9987psj5Xe/bskSQNHz78jOuUlZWlevXqOaf//PcDXCgEHOB/3NzcFB8fr+eee0579uwpd1iQpM8++0ySdOrUKe3Zs8eSH+Y+Pj7nvWxpgU+S8yDs8ireOnDbbbed8Uu2TZs25zV2WZW2Tn369FGjRo00f/58de3aVfPnz1dISIh69ux51rGioqIkSdu3b9fAgQOd7f7+/s5l165d67KMw+GQzWbTsmXLSj1u589bg850bI85j+Nhip//mTNnql27dqX2+fPjV+TvBygPAg7wB4WFhZL+//+gw8PD9fnnn+u3335z2Yqza9cu5/xi33//vR577DH95S9/0ZYtWzRq1Cht27ZNgYGBLo/hcDj0008/ObfaSNKPP/4oSWc8GLdBgwby9fXV7t27S8zbtWuX3Nzc1KRJE0lnDhGlKa4/LS2txLzS2s42xplqu+SSS5xbb+rVq6fMzMwS/f64JeyPircQ/NGPP/4oX19f526yunXrqqio6JzhITw8XNu3b5cxxuU5Kq3us/lzcE1LS5PD4XB57dzd3TVs2DAlJyfrySef1JIlS3TnnXee88DhLl26KDAwUO+++66mTJkiN7dzH0XQvHlzGWMUERHh8jdVEWV9rpo3by5JCggIOOfzD1xsHIMD/I/dbteKFStUp04d5y6ofv36qaioSM8//7xL32eeeUY2m8151ondbteIESMUFham5557TsnJycrIyNCECRNKfaw/jmeM0fPPPy9PT0/16NGj1P7u7u7q3bu3PvzwQ5ddIRkZGVqwYIE6d+6sgIAASXKGidKCxJ+FhYUpOjpab731lstukVWrVmnbtm3nXF76/Tigdu3a6c0333R5zO3bt2vFihXq16+fs6158+bKyspy2R2Snp6uDz74oNSx169f77Kb7ODBg/rwww/Vu3dvubu7y93dXYMHD9b777+v7du3l1j+6NGjzt/79eunQ4cOadGiRc62vLy8M+7aOpO5c+e6TM+ZM0eSnH8LxW6//XadPHlSf/vb30qcnXcmvr6+uu+++7R9+3Y98MADpW5V+XNbUlKS3N3dNW3atBLzjDHOY3XKo6zPVUxMjJo3b65Zs2aV2K0muT7/wMXGFhzUWsuWLXNuiTly5IgWLFigPXv26IEHHnCGhQEDBig+Pl7//Oc/tX//frVt21YrVqzQhx9+qHvvvdf5P9jHH39cW7Zs0RdffKG6deuqTZs2evjhh/Xggw9qyJAhLl/y3t7eWr58uYYPH66OHTtq2bJl+uSTTzR16lSXg3f/7PHHH9fKlSvVuXNn3X333fLw8NDLL7+sgoICl+uYtGvXTu7u7nryySeVlZUlLy8vde/eXQ0bNix13OnTp2vgwIG67rrr9Je//EUnT57U888/r+jo6FK/tEozc+ZMJSQkKDY2ViNHjnSeJh4YGOhyP62bb75Z999/vwYNGqTx48crLy9PL774oi6//PJSj/eJjo5Wnz59XE4Tl6Rp06Y5+/z73/9WSkqKOnbsqDvvvFNXXHGFTpw4oe+++06ff/65Tpw4IUm688479fzzz+uOO+7Qpk2bFBoaqrffflu+vr5lWsdi+/bt0w033KC+fftq/fr1mj9/voYNG1bi2jft27dXdHS0Fi5cqFatWqlDhw5lGv+BBx7Qzp07NXPmTK1YsUKDBw9W48aNdfLkSX333XdauHChGjZsKG9vb0m/h8bHH39cU6ZM0f79+5WYmKi6detq3759+uCDDzR69GhNnjy5XOtY1ufKzc1Nr732mhISEnTllVfqL3/5iy699FL9+uuvSklJUUBAgD766KNyPTZQaari1C2gKpV2mri3t7dp166defHFF11OdzXGmN9++81MmDDBhIWFGU9PT9OiRQszc+ZMZ79NmzYZDw8Pl1O/jfn91N6rr77ahIWFmZMnTxpjfj9N2s/Pz+zdu9f07t3b+Pr6mkaNGplHHnnEFBUVuSyvP50mbowx3333nenTp4/x9/c3vr6+Jj4+3qxbt67EOr766qvmsssuM+7u7mU6Bfrdd981UVFRxsvLy0RHR5ulS5eawYMHm6ioKGef4tPEZ86cWeoYn3/+ubnuuuuMj4+PCQgIMAMGDDA7duwo0W/FihUmOjra1KlTx7Rs2dLMnz//jKeJjxkzxsyfP9+0aNHCeHl5mfbt25e6LhkZGWbMmDGmSZMmxtPT04SEhJgePXqYV155xaXfzz//bG644Qbj6+trLrnkEnPPPfeY5cuXl+s08R07dpghQ4aYunXrmnr16pmxY8ea/Pz8Upd56qmnjCQzffr0s45dmg8++MD069fPNGjQwHh4eJigoCDTuXNnM3PmTJOZmVmi//vvv286d+5s/Pz8jJ+fn4mKijJjxowxu3fvdvaJi4szV155ZYllSzt9vzzP1ebNm01SUpKpX7++8fLyMuHh4Wbo0KHmiy++cPYpfv7+eCkE4EKyGcOVloCLZcSIEVq0aFGZt4xUpXbt2qlBgwbOs3cuNpvNpjFjxpTYPViTPPfcc5owYYL279+vpk2bVnU5QK3CMThALWe3250HVxdLTU3V1q1b1a1bt6opygKMMXr99dcVFxdHuAGqAMfgALXcr7/+qp49e+q2225TWFiYdu3apZdeekkhISHV5qJsI0aMUGpq6hmvE3SuZS/mVrPc3FwtXbpUKSkp2rZtmz788MOL8rgAXLEFB6jl6tWrp5iYGL322msaN26ckpOTdf3112vt2rWqX79+ucZKTk6WzWbTxo0bS51ffLPH6igvL0+PPvroOW9Mei5Hjx7VsGHDtHDhQk2dOlU33HBD5RQIoFzYggNcRMnJyUpOTq7qMlwEBgbqvffeq+oySvjj4YGvvvpqiUv+V7a8vDzn2VkV2TXXrFkzbiIJVAMEHADV3p9vNwAA58IuKgBVav78+YqJiZGPj4+Cg4N188036+DBgy59RowYUeIqz8ePH9ftt9+ugIAABQUFafjw4dq6datsNlupW8l+/fVXJSYmyt/fXw0aNNDkyZOdt4jYv3+/8xpE06ZNk81mk81mc7mGD4CahS04ACpdVlaWjh07VqLdbre7TD/xxBN66KGHNHToUI0aNUpHjx7VnDlz1LVrV23evFlBQUGlju9wODRgwAB98803uuuuuxQVFaUPP/zwjPejKioqUp8+fdSxY0fNmjVLn3/+uWbPnq3mzZvrrrvuUoMGDfTiiy/qrrvu0qBBg5SUlCTpwt/HCsAFVKVX4QFgKaVdRPHPP8UXmtu/f79xd3c3TzzxhMsY27ZtMx4eHi7tf74Q3fvvv28kmWeffdbZVlRUZLp3724kmXnz5rksK8k89thjLo/Tvn17ExMT45w+evRoqRdXBFAzsQUHQKWbO3duqTd+nDRpknO30OLFi+VwODR06FCXrT0hISFq0aKFUlJSNHXq1FLHX758uTw9PXXnnXc629zc3DRmzBh9+eWXpS7z51Peu3Tporfffrvc6wagZiDgAKh011xzja666qoS7fXq1XOGmT179sgYoxYtWpQ6xtkOLP75558VGhpa4t5IkZGRpfb39vYucZ+vevXq6eTJk2ddDwA1FwEHQJVwOByy2WxatmyZ3N3dS8z39/evtMcqbXwA1kbAAVAlmjdvLmOMIiIiSt2ddTbh4eFKSUlRXl6ey1actLS0867HZrOd97IAqh9OEwdQJZKSkuTu7q5p06aVuDCeMUbHjx8/47J9+vSR3W7Xq6++6mxzOByaO3fueddTHJQyMzPPewwA1QdbcABUiebNm+vxxx/XlClTtH//fiUmJqpu3brat2+fPvjgA40ePVqTJ08uddnExERdc801mjRpktLS0hQVFaWlS5fqxIkTks5va4yPj4+uuOIKvffee7r88ssVHBys6OjoantrCQBnxxYcAFXmgQce0Pvvvy83NzdNmzZNkydP1tKlS9W7d++z3sPJ3d1dn3zyiW666Sa9+eab+uc//6mwsDDnFhxvb+/zque1117TpZdeqgkTJuiWW27RokWLzmscAFXPZv68bRgAaqglS5Zo0KBBWrt2ra677rqqLgdAFSLgAKiR8vPz5ePj45wuKipS7969tXHjRh0+fNhlHoDah2NwANRI48aNU35+vmJjY1VQUKDFixdr3bp1mj59OuEGAFtwANRMCxYs0OzZs5WWlqZTp04pMjJSd911l8aOHVvVpQGoBgg4AADAcjiLCgAAWA4BBwAAWE6NPMjY4XDo0KFDqlu3LpdXBwCgljDG6LffflNYWJjc3M6+jaZGBpxDhw6pSZMmVV0GAACoAgcPHlTjxo3P2qdGBpy6detK+n0FAwICqrgaXGx2u10rVqxQ79695enpWdXlALiIeP/XbtnZ2WrSpIkzB5xNjQw4xbulAgICCDi1kN1ul6+vrwICAviAA2oZ3v+Qyna/OQ4yBgAAlkPAAQAAlkPAAQAAlkPAAQAAlkPAAQAAlkPAAQAAlkPAAQAAlkPAAQAAlkPAAQAAlkPAAQAAlkPAAQAAlkPAAQAAllMjb7YJALCevLw87dq166x9cvILtG7bXtW7ZKP8fbzOOWZUVJR8fX0rq0TUIAQcAEC1sGvXLsXExJSp71NlHHPTpk3q0KHD+ReFGouAAwCoFqKiorRp06az9tmdnqmJC7fp6Rtbq2VoUJnGRO1EwAEAVAu+vr7n3Nri9vNxea3JV6votmoXXv8iVYaaiIOMAQCA5RBwAACA5RBwAACA5RBwAACA5RBwAACA5RBwAACA5RBwAACA5RBwAACA5RBwAACA5RBwAACA5RBwAACA5RBwAACA5RBwAACA5RBwAACA5RBwAACA5RBwAACA5RBwAACA5RBwAACA5RBwAACA5RBwAACA5RBwAACA5RBwAACA5RBwAACA5RBwAACA5RBwAACA5RBwAACA5RBwAACA5RBwAACA5RBwAACA5RBwAACA5RBwAACA5RBwAACA5RBwAACA5RBwAACA5RBwAACA5RBwAACA5RBwAACA5RBwAACA5RBwAACA5RBwAACA5RBwAACA5RBwAACA5RBwAACA5RBwAACA5ZQ74KxevVoDBgxQWFiYbDablixZ4jI/IyNDI0aMUFhYmHx9fdW3b1/t2bPHpc+pU6c0ZswY1a9fX/7+/ho8eLAyMjIqtCIAAADFyh1wcnNz1bZtW82dO7fEPGOMEhMT9dNPP+nDDz/U5s2bFR4erp49eyo3N9fZb8KECfroo4+0cOFCrVq1SocOHVJSUlLF1gQAAOB/PMq7QEJCghISEkqdt2fPHm3YsEHbt2/XlVdeKUl68cUXFRISonfeeUejRo1SVlaWXn/9dS1YsEDdu3eXJM2bN0+tWrXShg0b1KlTpwqsDgAAwHkEnLMpKCiQJHl7ezvb3Nzc5OXlpbVr12rUqFHatGmT7Ha7evbs6ewTFRWlpk2bav369aUGnIKCAufYkpSdnS1JstvtstvtlbkKqAGKX3Nee6D2KSwsdP7LZ0DtU57XvFIDTnFQmTJlil5++WX5+fnpmWee0S+//KL09HRJ0uHDh1WnTh0FBQW5LNuoUSMdPny41HFnzJihadOmlWhfsWKFfH19K3MVUIOsXLmyqksAcJEdzJEkD23YsEG/bq/qanCx5eXllblvpQYcT09PLV68WCNHjlRwcLDc3d3Vs2dPJSQkyBhz3uNOmTJFEydOdE5nZ2erSZMm6t27twICAiqjdNQgdrtdK1euVK9eveTp6VnV5QC4iLYeOCFt26hOnTqpbdPgqi4HF1nxHpyyqNSAI0kxMTHasmWLsrKydPr0aTVo0EAdO3bUVVddJUkKCQnR6dOnlZmZ6bIVJyMjQyEhIaWO6eXlJS8vrxLtnp6efMHVYrz+QO3j4eHh/Jf3f+1Tntf8gl0HJzAwUA0aNNCePXu0ceNGDRw4UNLvAcjT01NffPGFs+/u3bt14MABxcbGXqhyAABALVLuLTg5OTlKS0tzTu/bt09btmxRcHCwmjZtqoULF6pBgwZq2rSptm3bpnvuuUeJiYnq3bu3pN+Dz8iRIzVx4kQFBwcrICBA48aNU2xsLGdQAQCASlHugLNx40bFx8c7p4uPjRk+fLiSk5OVnp6uiRMnKiMjQ6Ghobrjjjv00EMPuYzxzDPPyM3NTYMHD1ZBQYH69OmjF154oYKrAgAA8DubqcjRv1UkOztbgYGBysrK4iDjWshut+vTTz9Vv3792AcP1DJbfj6uxBc3aMldndQuvH5Vl4OLrDzf/9yLCgAAWA4BBwAAWA4BBwAAWA4BBwAAWA4BBwAAWA4BBwAAWA4BBwAAWA4BBwAAWA4BBwAAWA4BBwAAWA4BBwAAWA4BBwAAWA4BBwAAWA4BBwAAWA4BBwAAWA4BBwAAWA4BBwAAWI5HVRcAALC+fcdylVtQWOFx9h7Ndf7r4VHxrzA/Lw9FXOJX4XFQ/RBwAAAX1L5juYqflVqpY05atK3SxkqZ3I2QY0EEHADABVW85ebZm9opsqF/xcbKL9DHqevVv1us/Hy8KjRW2pEc3fvelkrZsoTqh4ADALgoIhv6K/rSwAqNYbfbdbiB1CG8njw9PSupMlgRBxkDAADLIeAAAADLIeAAAADLIeAAAADLIeAAAADLIeAAAADLIeAAAADL4To4AIALzuaRrX3Zu+XmXbEL/RUWFupQ4SHtPLGzwrdq2JedI5tHdoXGQPVFwAEAXHCeQV9r6jfTK228F5a/UCnjeAb1kNSvUsZC9ULAAQBccPbMjpp9/TA1r+CtGgoLC/XV2q90XefrKrwFZ++RHI3/794KjYHqi4ADALjgTGGAIgJa6or6Fb9Vwz6PfWoV3KrCt2pwnMqSKTxaoTFQfXGQMQAAsBwCDgAAsBwCDgAAsBwCDgAAsBwCDgAAsBwCDgAAsBwCDgAAsBwCDgAAsBwCDgAAsBwCDgAAsBwCDgAAsBwCDgAAsBwCDgAAsBwCDgAAsBwCDgAAsBwCDgAAsBwCDgAAsBwCDgAAsBwCDgAAsBwCDgAAsBwCDgAAsBwCDgAAsBwCDgAAsBwCDgAAsBwCDgAAsBwCDgAAsBwCDgAAsBwCDgAAsBwCDgAAsBwCDgAAsJxyB5zVq1drwIABCgsLk81m05IlS1zm5+TkaOzYsWrcuLF8fHx0xRVX6KWXXnLpc+rUKY0ZM0b169eXv7+/Bg8erIyMjAqtCAAAQLFyB5zc3Fy1bdtWc+fOLXX+xIkTtXz5cs2fP187d+7Uvffeq7Fjx2rp0qXOPhMmTNBHH32khQsXatWqVTp06JCSkpLOfy0AAAD+wKO8CyQkJCghIeGM89etW6fhw4erW7dukqTRo0fr5Zdf1jfffKMbbrhBWVlZev3117VgwQJ1795dkjRv3jy1atVKGzZsUKdOnc5vTQAAAP6n3AHnXK699lotXbpUf/3rXxUWFqbU1FT9+OOPeuaZZyRJmzZtkt1uV8+ePZ3LREVFqWnTplq/fn2pAaegoEAFBQXO6ezsbEmS3W6X3W6v7FVANVf8mvPaAzVDYWGh89+Kvm8r8/1fmXXh4ijP61TpAWfOnDkaPXq0GjduLA8PD7m5uenVV19V165dJUmHDx9WnTp1FBQU5LJco0aNdPjw4VLHnDFjhqZNm1aifcWKFfL19a3sVUANsXLlyqouAUAZHMyRJA+tXbtWP/tXzpiV8f6/EHXhwsrLyytz3wsScDZs2KClS5cqPDxcq1ev1pgxYxQWFuay1aY8pkyZookTJzqns7Oz1aRJE/Xu3VsBAQGVVTpqCLvdrpUrV6pXr17y9PSs6nIAnMMPh7I1a9sGde7cWVeGVewzuzLf/5VZFy6O4j04ZVGpASc/P19Tp07VBx98oOuvv16S1KZNG23ZskWzZs1Sz549FRISotOnTyszM9NlK05GRoZCQkJKHdfLy0teXl4l2j09PfmCq8V4/YGawW5skqRdGbny8KjY105ufoE2HpVCDuXIz6fk90J57D9xSpLk4eHBZ0kNUZ7XqVIDTvExMW5uridnubu7y+FwSJJiYmLk6empL774QoMHD5Yk7d69WwcOHFBsbGxllgMAqAb2HsmRJD2weFsljeiht9O+raSxJD+vSt+ZgWqg3K9qTk6O0tLSnNP79u3Tli1bFBwcrKZNmyouLk7/+Mc/5OPjo/DwcK1atUpvvfWWnn76aUlSYGCgRo4cqYkTJyo4OFgBAQEaN26cYmNjOYMKACyo95W/b51v3tBfPp7uFRprd3qWJi3aptlDWqtlaGCFa/Pz8lDEJX4VHgfVT7kDzsaNGxUfH++cLj42Zvjw4UpOTta7776rKVOm6NZbb9WJEycUHh6uJ554Qn//+9+dyzzzzDNyc3PT4MGDVVBQoD59+uiFF16ohNUBAFQ3wX51dPM1TStlrOIzn5o38FP0pRUPOLCucgecbt26yRhzxvkhISGaN2/eWcfw9vbW3Llzz3ixQAAAgIrgXlQAAMByCDgAAMByCDgAAMByCDgAAMByCDgAAMByCDgAAMByuHwjqpW8vDzt2rXrrH1y8gu0btte1btko/zLcKn2qKgobsoKALUMAQfVyq5duxQTE1Omvk+VccxNmzapQ4cO518UAKDGIeCgWomKitKmTZvO2md3eqYmLtymp29srZahQWUaEwBQuxBwUK34+vqec2uL28/H5bUmX62i26pdeP2LVBkAoCbhIGMAAGA5BBwAAGA5BBwAAGA5BBwAAGA5BBwAAGA5BBwAAGA5BBwAAGA5BBwAAGA5BBwAAGA5BBwAAGA5BBwAAGA5BBwAAGA5BBwAAGA5BBwAAGA5BBwAAGA5BBwAAGA5BBwAAGA5BBwAAGA5HlVdAGqPfcdylVtQWOFx9h7Ndf7r4VHxP2E/Lw9FXOJX4XEAANUHAQcXxb5juYqflVqpY05atK3SxkqZ3I2QAwAWQsDBRVG85ebZm9opsqF/xcbKL9DHqevVv1us/Hy8KjRW2pEc3fvelkrZsgQAqD4IOLioIhv6K/rSwAqNYbfbdbiB1CG8njw9PSupMgCAlXCQMQAAsBwCDgAAsBwCDgAAsBwCDgAAsBwCDgAAsBwCDgAAsBwCDgAAsBwCDgAAsBwCDgAAsBwCDgAAsBwCDgAAsBzuRYWLxuaRrX3Zu+XmXbGbbRYWFupQ4SHtPLFTHh4V+xPel50jm0d2hcYAAFQ/BBxcNJ5BX2vqN9MrbbwXlr9QKeN4BvWQ1K9SxgIAVA8EHFw09syOmn39MDVvWPEtOF+t/UrXdb6uwltw9h7J0fj/7q3QGACA6oeAg4vGFAYoIqClrqgfWKFx7Ha79nnsU6vgVvL09KzQWI5TWTKFRys0BgCg+uEgYwAAYDkEHAAAYDkEHAAAYDkEHAAAYDkEHAAAYDkEHAAAYDkEHAAAYDkEHAAAYDkEHAAAYDkEHAAAYDncqgEXRb69SJK0/desCo+Vm1+gjUelkJ9Pys/Hq0JjpR3JqXA9ACpHXl6edu3addY+u9MzVXA4TTu3+8hxPOicY0ZFRcnX17eSKkRNQsDBRbH3f0HigcXbKmlED72d9m0ljSX5efFWAKrarl27FBMTU6a+w94s25ibNm1Shw4dKlAVaio+1XFR9L4yRJLUvKG/fDzdKzTW7vQsTVq0TbOHtFbL0IrduFP6PdxEXOJX4XEAVExUVJQ2bdp01j45+QX6JGW9ro+PlX8ZtuBGRUVVVnmoYQg4uCiC/ero5muaVspYhYWFkqTmDfwUfWnFAw6A6sHX1/ecW1vsdrtOHjui2Guukqen50WqDDURBxkDAADLKXfAWb16tQYMGKCwsDDZbDYtWbLEZb7NZiv1Z+bMmc4+J06c0K233qqAgAAFBQVp5MiRysnhYE8AAFA5yh1wcnNz1bZtW82dO7fU+enp6S4/b7zxhmw2mwYPHuzsc+utt+qHH37QypUr9fHHH2v16tUaPXr0+a8FAADAH5T7GJyEhAQlJCSccX5ISIjL9Icffqj4+HhddtllkqSdO3dq+fLl+vbbb3XVVVdJkubMmaN+/fpp1qxZCgsLKzFmQUGBCgoKnNPZ2dmSft8Xa7fby7sKqOGKj8EpLCzk9QdqmeL3PO/92qk8r/sFPcg4IyNDn3zyid588/+fz7d+/XoFBQU5w40k9ezZU25ubvr66681aNCgEuPMmDFD06ZNK9G+YsUKrm9QCx3MkSQPbdiwQb9ur+pqAFSFlStXVnUJqAJ5eXll7ntBA86bb76punXrKikpydl2+PBhNWzY0LUIDw8FBwfr8OHDpY4zZcoUTZw40TmdnZ2tJk2aqHfv3goICLgwxaPa2nrghLRtozp16qS2TYOruhwAF5HdbtfKlSvVq1cvzqKqhYr34JTFBQ04b7zxhm699VZ5e3tXaBwvLy95eZW83oGnpyd/4LWQh4eH819ef6B24vO/dirPa37BAs6aNWu0e/duvffeey7tISEhOnLkiEtbYWGhTpw4UeL4HQAAgPNxwa6D8/rrrysmJkZt27Z1aY+NjVVmZqbL1Sq//PJLORwOdezY8UKVAwAAapFyb8HJyclRWlqac3rfvn3asmWLgoOD1bTp71eqzc7O1sKFCzV79uwSy7dq1Up9+/bVnXfeqZdeekl2u11jx47VzTffXOoZVAAAAOVV7i04GzduVPv27dW+fXtJ0sSJE9W+fXs9/PDDzj7vvvuujDG65ZZbSh3jv//9r6KiotSjRw/169dPnTt31iuvvHKeqwAAAOCq3FtwunXrJmPMWfuMHj36rBfuCw4O1oIFC8r70AAAAGXCvagAAIDlEHAAAIDlEHAAAIDlEHAAAIDlEHAAAIDlEHAAAIDlEHAAAIDlEHAAAIDlEHAAAIDlEHAAAIDlEHAAAIDlEHAAAIDlEHAAAIDlEHAAAIDlEHAAAIDlEHAAAIDlEHAAAIDlEHAAAIDlEHAAAIDlEHAAAIDlEHAAAIDleFR1AcAf5eXladeuXWftszs9UwWH07Rzu48cx4POOWZUVJR8fX0rqUIAQE1AwEG1smvXLsXExJSp77A3yzbmpk2b1KFDhwpUBQCoaQg4qFaioqK0adOms/bJyS/QJynrdX18rPx9vMo0JgCgdiHgoFrx9fU959YWu92uk8eOKPaaq+Tp6XmRKgMA1CQcZAwAACyHgAMAACyHgAMAACyHgAMAACyHgAMAACyHgAMAACyHgAMAACyHgAMAACyHgAMAACyHgAMAACyHgAMAACyHgAMAACyHgAMAACyHgAMAACyHgAMAACyHgAMAACyHgAMAACyHgAMAACyHgAMAACyHgAMAACyHgAMAACyHgAMAACyHgAMAACyHgAMAACyHgAMAACyHgAMAACyHgAMAACyHgAMAACyHgAMAACyHgAMAACyHgAMAACyHgAMAACyHgAMAACyHgAMAACyHgAMAACyHgAMAACyn3AFn9erVGjBggMLCwmSz2bRkyZISfXbu3KkbbrhBgYGB8vPz09VXX60DBw445586dUpjxoxR/fr15e/vr8GDBysjI6NCKwIAAFCs3AEnNzdXbdu21dy5c0udv3fvXnXu3FlRUVFKTU3V999/r4ceekje3t7OPhMmTNBHH32khQsXatWqVTp06JCSkpLOfy0AAAD+wKO8CyQkJCghIeGM8//5z3+qX79+euqpp5xtzZs3d/6elZWl119/XQsWLFD37t0lSfPmzVOrVq20YcMGderUqbwlAQAAuCh3wDkbh8OhTz75RPfdd5/69OmjzZs3KyIiQlOmTFFiYqIkadOmTbLb7erZs6dzuaioKDVt2lTr168vNeAUFBSooKDAOZ2dnS1JstvtstvtlbkKqAGKX3Nee6D24f1fu5Xnda/UgHPkyBHl5OTo3//+tx5//HE9+eSTWr58uZKSkpSSkqK4uDgdPnxYderUUVBQkMuyjRo10uHDh0sdd8aMGZo2bVqJ9hUrVsjX17cyVwE1yMqVK6u6BABVhPd/7ZSXl1fmvpW+BUeSBg4cqAkTJkiS2rVrp3Xr1umll15SXFzceY07ZcoUTZw40TmdnZ2tJk2aqHfv3goICKh44ahR7Ha7Vq5cqV69esnT07OqywFwEfH+r92K9+CURaUGnEsuuUQeHh664oorXNpbtWqltWvXSpJCQkJ0+vRpZWZmumzFycjIUEhISKnjenl5ycvLq0S7p6cnf+C1TFFRkdatW6fVq1fLz89P8fHxcnd3r+qyAFxkfP7XTuV5zSv1Ojh16tTR1Vdfrd27d7u0//jjjwoPD5ckxcTEyNPTU1988YVz/u7du3XgwAHFxsZWZjmwmMWLFysyMlK9evXS008/rV69eikyMlKLFy+u6tIAANVMubfg5OTkKC0tzTm9b98+bdmyRcHBwWratKn+8Y9/6KabblLXrl0VHx+v5cuX66OPPlJqaqokKTAwUCNHjtTEiRMVHBysgIAAjRs3TrGxsZxBhTNavHixhgwZov79++vtt9/WL7/8osaNG+upp57SkCFDtGjRIi41AAD4/0w5paSkGEklfoYPH+7s8/rrr5vIyEjj7e1t2rZta5YsWeIyRn5+vrn77rtNvXr1jK+vrxk0aJBJT08vcw1ZWVlGksnKyipv+aiBCgsLTbNmzcyAAQNMUVGROX36tFmyZIk5ffq0KSoqMgMGDDARERGmsLCwqksFcIH98f2P2qc83/82Y4ypwnx1XrKzsxUYGKisrCwOMq4FUlNTFR8f77yMgN1u16effqp+/frJ09NT69ev17XXXquUlBR169atqssFcAH9+f2P2qU83//ciwrVXnp6uiQpOjq61PnF7cX9AAAg4KDaCw0NlSRt37691PnF7cX9AAAg4KDa69Kli5o1a6bp06c7r7VUzOFwaMaMGYqIiFCXLl2qqEIAQHVDwEG15+7urtmzZ+vjjz9WYmKiNmzYoPz8fG3YsEGJiYn6+OOPNWvWLK6HAwBwqtQL/QEXSlJSkhYtWqRJkyapa9euzvaIiAhOEQcAlEDAQY2RlJSkgQMHKiUlRcuWLVNCQgJXMgYAlIqAgxrF3d1dcXFxys3NVVxcHOEGAFAqjsEBAACWQ8ABAACWQ8ABAACWQ8ABAACWQ8ABAACWQ8ABAACWQ8ABAACWQ8ABAACWQ8ABAACWQ8ABAACWQ8ABAACWQ8ABAACWQ8ABAACWQ8ABAACWQ8ABAACWQ8ABAACWQ8ABAACWQ8ABAACWQ8ABAACWQ8ABAACWQ8ABAACWQ8ABAACWQ8ABAACWQ8ABAACWQ8ABAACWQ8ABAACWQ8ABAACWQ8ABAACWQ8ABAACWQ8ABAACWQ8ABAACWQ8ABAACWQ8ABAACWQ8ABAACWQ8ABAACWQ8ABAACWQ8ABAACWQ8ABAACWQ8ABAACWQ8ABANQIRUVFWrVqlVavXq1Vq1apqKioqktCNUbAAQBUe4sXL1ZkZKR69eqlp59+Wr169VJkZKQWL15c1aWhmiLgAACqtcWLF2vIkCFq3bq11qxZo3feeUdr1qxR69atNWTIEEIOSkXAAQBUW0VFRZo0aZL69++vJUuWqGPHjvLx8VHHjh21ZMkS9e/fX5MnT2Z3FUog4AAAqq01a9Zo//79mjp1qtzcXL+y3NzcNGXKFO3bt09r1qypogpRXRFwAADVVnp6uiQpOjq61PnF7cX9gGIEHABAtRUaGipJ2r59e6nzi9uL+wHFCDgAgGqrS5cuatasmaZPny6Hw+Eyz+FwaMaMGYqIiFCXLl2qqEJUVwQcAEC15e7urtmzZ+vjjz9WYmKiNmzYoPz8fG3YsEGJiYn6+OOPNWvWLLm7u1d1qahmPKq6AAAAziYpKUmLFi3SpEmT1LVrV2d7RESEFi1apKSkpCqsDtUVAQcAUO0lJSVp4MCBSklJ0bJly5SQkKD4+Hi23OCMCDgAgBrB3d1dcXFxys3NVVxcHOEGZ8UxOAAAwHIIOAAAwHIIOAAAwHIIOAAAwHLKHXBWr16tAQMGKCwsTDabTUuWLHGZP2LECNlsNpefvn37uvQ5ceKEbr31VgUEBCgoKEgjR45UTk5OhVYEAACgWLkDTm5urtq2bau5c+eesU/fvn2Vnp7u/HnnnXdc5t9666364YcftHLlSn388cdavXq1Ro8eXf7qAQAASlHu08QTEhKUkJBw1j5eXl4KCQkpdd7OnTu1fPlyffvtt7rqqqskSXPmzFG/fv00a9YshYWFlbckAAAAFxfkOjipqalq2LCh6tWrp+7du+vxxx9X/fr1JUnr169XUFCQM9xIUs+ePeXm5qavv/5agwYNKjFeQUGBCgoKnNPZ2dmSJLvdLrvdfiFWAdVY8WvOaw/UPrz/a7fyvO6VHnD69u2rpKQkRUREaO/evZo6daoSEhK0fv16ubu76/Dhw2rYsKFrER4eCg4O1uHDh0sdc8aMGZo2bVqJ9hUrVsjX17eyVwE1xMqVK6u6BABVhPd/7ZSXl1fmvpUecG6++Wbn761bt1abNm3UvHlzpaamqkePHuc15pQpUzRx4kTndFZWlpo2barY2FjVrVu3wjWjZrHb7UpJSVF8fLw8PT2ruhwAFxHv/9rtt99+kyQZY87Z94LfquGyyy7TJZdcorS0NPXo0UMhISE6cuSIS5/CwkKdOHHijMfteHl5ycvLyzldvIsqIiLiwhUOAACqpd9++02BgYFn7XPBA84vv/yi48ePKzQ0VJIUGxurzMxMbdq0STExMZKkL7/8Ug6HQx07dizTmGFhYTp48KDq1q0rm812wWpH9ZSdna0mTZro4MGDCggIqOpyAFxEvP9rN2OMfvvttzKdkFTugJOTk6O0tDTn9L59+7RlyxYFBwcrODhY06ZN0+DBgxUSEqK9e/fqvvvuU2RkpPr06SNJatWqlfr27as777xTL730kux2u8aOHaubb765zGdQubm5qXHjxuUtHRYTEBDABxxQS/H+r73OteWmmM2UZUfWH6Smpio+Pr5E+/Dhw/Xiiy8qMTFRmzdvVmZmpsLCwtS7d2/961//UqNGjZx9T5w4obFjx+qjjz6Sm5ubBg8erP/85z/y9/cvTymopbKzsxUYGKisrCw+4IBahvc/yqrcAQeoanzAAbUX73+UFfeiQo3j5eWlRx55xOXAcwC1A+9/lBVbcAAAgOWwBQcAAFgOAQcAAFgOAQcAAFgOAQcXlDFGo0ePVnBwsGw2m7Zs2VIldezfv79KHx/AhTVixAglJiZWdRmoRi74lYxRuy1fvlzJyclKTU113rYDAIALjYCDC2rv3r0KDQ3VtddeW9WlAABqEXZR4YIZMWKExo0bpwMHDshms6lZs2ZyOByaMWOGIiIi5OPjo7Zt22rRokXOZVJTU2Wz2fTZZ5+pffv28vHxUffu3XXkyBEtW7ZMrVq1UkBAgIYNG6a8vDzncsuXL1fnzp0VFBSk+vXrq3///tq7d+9Z69u+fbsSEhLk7++vRo0a6fbbb9exY8cu2PMB4HfdunXTuHHjdO+996pevXpq1KiRXn31VeXm5uovf/mL6tatq8jISC1btkySVFRUpJEjRzo/N1q2bKnnnnvurI9xrs8aWB8BBxfMc889p8cee0yNGzdWenq6vv32W82YMUNvvfWWXnrpJf3www+aMGGCbrvtNq1atcpl2UcffVTPP/+81q1bp4MHD2ro0KF69tlntWDBAn3yySdasWKF5syZ4+yfm5uriRMnauPGjfriiy/k5uamQYMGyeFwlFpbZmamunfvrvbt22vjxo1avny5MjIyNHTo0Av6nAD43ZtvvqlLLrlE33zzjcaNG6e77rpLN954o6699lp999136t27t26//Xbl5eXJ4XCocePGWrhwoXbs2KGHH35YU6dO1f/93/+dcfyyftbAwgxwAT3zzDMmPDzcGGPMqVOnjK+vr1m3bp1Ln5EjR5pbbrnFGGNMSkqKkWQ+//xz5/wZM2YYSWbv3r3Otr/97W+mT58+Z3zco0ePGklm27Ztxhhj9u3bZySZzZs3G2OM+de//mV69+7tsszBgweNJLN79+7zXl8A5xYXF2c6d+7snC4sLDR+fn7m9ttvd7alp6cbSWb9+vWljjFmzBgzePBg5/Tw4cPNwIEDjTFl+6yB9XEMDi6atLQ05eXlqVevXi7tp0+fVvv27V3a2rRp4/y9UaNG8vX11WWXXebS9s033zin9+zZo4cfflhff/21jh075txyc+DAAUVHR5eoZevWrUpJSSn1Bq979+7V5Zdffn4rCaBM/vged3d3V/369dW6dWtnW/ENmo8cOSJJmjt3rt544w0dOHBA+fn5On36tNq1a1fq2OX5rIF1EXBw0eTk5EiSPvnkE1166aUu8/58XxlPT0/n7zabzWW6uO2Pu58GDBig8PBwvfrqqwoLC5PD4VB0dLROnz59xloGDBigJ598ssS80NDQ8q0YgHIr7T395/e99PuxNO+++64mT56s2bNnKzY2VnXr1tXMmTP19ddflzp2eT5rYF0EHFw0V1xxhby8vHTgwAHFxcVV2rjHjx/X7t279eqrr6pLly6SpLVr1551mQ4dOuj9999Xs2bN5OHB2wCozr766itde+21uvvuu51tZzuJ4EJ91qBm4ZMdF03dunU1efJkTZgwQQ6HQ507d1ZWVpa++uorBQQEaPjw4ec1br169VS/fn298sorCg0N1YEDB/TAAw+cdZkxY8bo1Vdf1S233KL77rtPwcHBSktL07vvvqvXXntN7u7u51ULgMrXokULvfXWW/rss88UERGht99+W99++60iIiJK7X+hPmtQsxBwcFH961//UoMGDTRjxgz99NNPCgoKUocOHTR16tTzHtPNzU3vvvuuxo8fr+joaLVs2VL/+c9/1K1btzMuExYWpq+++kr333+/evfurYKCAoWHh6tv375yc+PkQqA6+dvf/qbNmzfrpptuks1m0y233KK7777beRp5aS7EZw1qFpsxxlR1EQAAAJWJ/6oCAADLIeAAAADLIeAAAADLIeAAAADLIeAAAADLIeAAAADLIeAAAADLIeAAAADLIeAAOG/dunWTzWaTzWbTli1bqrocSVJqaqpsNpsyMzMrPFbxugUFBVV4LAAXFwEHQIXceeedSk9PV3R0tLPt/fffV/fu3VWvXj35+PioZcuW+utf/6rNmzdXYaXll56ermeffbaqywBwHgg4ACrE19dXISEhzruy33///brpppvUrl07LV26VLt379aCBQt02WWXacqUKVVcbdmcPn1akhQSEqLAwMAqrgbA+SDgAKg0GzZs0FNPPaWnn35aTz/9tLp06aKmTZsqJiZGDz74YImbI3744Yfq0KGDvL29ddlll2natGkqLCx0zrfZbHrttdc0aNAg+fr6qkWLFlq6dKnLGJ9++qkuv/xy+fj4KD4+Xvv37y9R19q1a9WlSxf5+PioSZMmGj9+vHJzc53zmzVrpn/961+64447FBAQoNGjR1fuEwPgoiPgAKg077zzjvz9/XX33XeXOt9mszl/X7Nmje644w7dc8892rFjh15++WUlJyfriSeecFlm2rRpGjp0qL7//nv169dPt956q06cOCFJOnjwoJKSkjRgwABt2bJFo0aN0gMPPOCy/N69e9W3b18NHjxY33//vd577z2tXbtWY8eOdek3a9YstW3bVps3b9ZDDz1UGU8HgKpkAOA8xcXFmXvuucc53bdvX9OmTRuXPrNnzzZ+fn7On8zMTGOMMT169DDTp0936fv222+b0NBQ57Qk8+CDDzqnc3JyjCSzbNkyY4wxU6ZMMVdccYXLGPfff7+RZE6ePGmMMWbkyJFm9OjRLn3WrFlj3NzcTH5+vjHGmPDwcJOYmFjqOs6bN88EBgae45kAUN14VHG+AmBxf/3rX3XDDTfo66+/1m233SZjjCRp69at+uqrr1y22BQVFenUqVPKy8uTr6+vJKlNmzbO+X5+fgoICNCRI0ckSTt37lTHjh1dHi82NtZleuvWrfr+++/13//+19lmjJHD4dC+ffvUqlUrSdJVV11ViWsNoKoRcABUmhYtWmjt2rWy2+3y9PSUJAUFBSkoKEi//PKLS9+cnBxNmzZNSUlJJcbx9vZ2/l48TjGbzSaHw1HmmnJycvS3v/1N48ePLzGvadOmzt/9/PzKPCaA6o+AA6DS3HLLLZozZ45eeOEF3XPPPWft26FDB+3evVuRkZHn/XitWrUqcdDxhg0bSjzOjh07KvQ4AGoeAg6AShMbG6tJkyZp0qRJ+vnnn5WUlKQmTZooPT1dr7/+umw2m9zcfj+34eGHH1b//v3VtGlTDRkyRG5ubtq6dau2b9+uxx9/vEyP9/e//12zZ8/WP/7xD40aNUqbNm1ScnKyS5/7779fnTp10tixYzVq1Cj5+flpx44dWrlypZ5//vnKfgoAVBOcRQWgUs2aNUsLFizQ5s2b1b9/f7Vo0UI33nijHA6H1q9fr4CAAElSnz599PHHH2vFihW6+uqr1alTJz3zzDMKDw8v82M1bdpU77//vpYsWaK2bdvqpZde0vTp0136tGnTRqtWrdKPP/6oLl26qH379nr44YcVFhZWqesNoHqxmeIj/gCgnLp166Z27dpZ+mq/ycnJuvfeeyvl1g8ALh4CDoDz1q1bN61bt0516tTR+vXr1bp166ouqVL5+/ursLBQ3t7eBByghiHgADhvv/76q/Lz8yX9vruoTp06VVxR5UpLS5Mkubu7KyIiooqrAVAeBBwAAGA5HGQMAAAsh4ADAAAsh4ADAAAsh4ADAAAsh4ADAAAsh4ADAAAsh4ADAAAsh4ADAAAs5/8B5wErZncEuEwAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "csv_data.boxplot(by='Gender')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "See the book for more plots (scatterplots, pie charts etc.)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [] } ], "metadata": { "kernelspec": { "display_name": "pernille", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.11.5" } }, "nbformat": 4, "nbformat_minor": 2 }