Technical University of Denmark

Page 1 of 24 pages.
Written examination: 22. June 2023
Course name and number: Introduction to Statistics (02323)
Duration: 4 hours
Aids and facilities allowed: All
The questions were answered by

(student number)

(signature)
$\overline{\text { (table number) }}$

This exam consists of 30 questions of the "multiple choice" type, which are divided between 11 exercises. To answer the questions, you need to fill in the "multiple choice" form on exam.dtu.dk.

5 points are given for a correct "multiple choice" answer, and -1 point is given for a wrong answer. ONLY the following 5 answer options are valid: $1,2,3,4$, or 5 . If a question is left blank or an invalid answer is entered, 0 points are given for the question. Furthermore, if more than one answer option is selected for a single question, which is in fact technically possible in the online system, 0 points are given for the question. The number of points needed to obtain a specific mark or to pass the exam is ultimately determined during censoring.

The final answers should be given by filling in and submitting the form. The table provided here is ONLY an emergency alternative.
Remember to provide your student number if you do hand in on paper.

Exercise	I.1	I.2	II.1	II.2	III.1	III.2	IV.1	IV.2	IV.3	IV.4
Question	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
Answer										

Exercise	V.1	V.2	V.3	VI.1	VI.2	VI.3	VII.1	VII.2	VII.3	VII.4
Question	(11)	(12)	(13)	(14)	(15)	(16)	(17)	(18)	(19)	(20)
Answer										

Exercise	VIII.1	VIII.2	IX.1	IX.2	IX.3	X.1	X.2	X.3	XI.1	XI.2
Question	(21)	(22)	(23)	(24)	(25)	(26)	(27)	(28)	(29)	(30)
Answer										

The exam paper contains 24 pages.

Multiple choice questions: Note that in each question, one and only one of the answer options is correct. Furthermore, not all the suggested answers are necessarily meaningful. Always remember to round your own result to the number of decimals given in the answer options before you choose your answer. Also remember that there may be slight discrepancies between the result of the book's formulas and corresponding built-in functions in R.

Exercise I

A researcher is interested in comparing the average weight gain (in grams) of three different groups of mice fed with three different diets. The data is provided below.

```
group1 <- c(27, 22, 18, 26, 24)
group2 <- c(32, 22, 32, 25, 25)
group3 <- c(29, 25, 30, 30, 24)
```


Question I. 1 (1)

Perform a one-way ANOVA and test the usual null hypothesis of equal treatment means at significance level $\alpha=0.05$. Is there a significant difference in weight gain among the three groups?
$1 \square$ The p-value is 0.03 . The difference between group means is not significant because the p-value is less than 0.05 .
$2 \square$ The p-value is 0.1879 . The difference between group means is not significant because the p-value is greater than 0.05 .
$3 \square$ The p-value is 0.1879 . The difference between group means is significant because the p-value is greater than 0.05 .
$4 \square$ The p-value is 0.3758 . The difference between group means is significant because the p-value is greater than 0.05 .
$5 \square$ The p-value is 0.03 . The difference between group means is significant because the p-value is less than 0.05 .

Question I. 2 (2)

The experiment described above was repeated (same number of mice) by a second researcher who collected a different data set. Again, one-way ANOVA was used to test for significant difference between treatment means. The following ANOVA table was obtained. Please note that some elements have been replaced by question marks.

```
## Analysis of Variance Table
## Response: weight_gain
## Df Sum Sq Mean Sq F value Pr (>F)
## group 2 78.53 39.267 1.069 0.3739
## Residuals ? 440.80 ?
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Which of the following statements is correct?

1$\operatorname{Df}($ Residuals $)=14$ and Mean $S q($ Residuals $)=31.486$.

2$D f($ Residuals $)=15$ and Mean Sq(Residuals) $=29.387$.

3$D f($ Residuals $)=12$ and Mean Sq(Residuals) $=36.733$.

4$D f($ Residuals $)=14$ and Mean Sq(Residuals) $=2.805$.

5Df (Residuals) $=13$ and Mean Sq(Residuals) $=3.021$.

Exercise II

Let the random variable X be normal distributed with mean μ and standard deviation $\sigma=2$, i.e. $X \sim N\left(\mu, 2^{2}\right)$, hence its' pdf is:

Question II. 1 (3)

Let another random variable be defined by the function

$$
Y_{1}=a_{1}+b_{1} \cdot X+b_{2} \cdot X
$$

What is the mean and variance of Y_{1} ?

1$\mathrm{E}\left(Y_{1}\right)=a_{1}+\left(b_{1}+b_{2}\right) \mu$ and $\mathrm{V}\left(Y_{1}\right)=\left(b_{1}+b_{2}\right)^{2} \cdot 4$

2$\mathrm{E}\left(Y_{1}\right)=a_{1}+b_{1}+b_{2}$ and $\mathrm{V}\left(Y_{1}\right)=b_{1}^{2}+b_{2}^{2}$

3$\mathrm{E}\left(Y_{1}\right)=a_{1}+b_{1}+b_{2}$ and $\mathrm{V}\left(Y_{1}\right)=b_{1}+b_{2}$

4$\mathrm{E}\left(Y_{1}\right)=0$ and $\mathrm{V}\left(Y_{1}\right)=b_{1}^{2}+b_{2}^{2}$
$5 \square$ $\mathrm{E}\left(Y_{1}\right)=0$ and $\mathrm{V}\left(Y_{1}\right)=b_{1}+b_{2}$

Question II. 2 (4)

Let another random variable be defined by the function

$$
Y_{2}=\frac{1}{1+\exp \left(a_{2}+b_{2} \cdot X\right)}
$$

where $a_{2}=10$ and $b_{2}=-1$. A plot of this function is:

This function is called the logistic function (or Sigmoid function).
The notation $\mathrm{V}\left(Y_{2} \mid \mu=\mu_{0}\right)$ means the variance of Y_{2} when μ is equal to μ_{0}. E.g. $\mathrm{V}\left(Y_{2} \mid \mu=0\right)$ is the variance of Y_{2} when μ is equal to 0 .

Which one of the following statements is correct?

1$\mathrm{V}\left(Y_{2} \mid \mu=0\right)<\mathrm{V}\left(Y_{2} \mid \mu=10\right)<\mathrm{V}\left(Y_{2} \mid \mu=20\right)$
2$\mathrm{V}\left(Y_{2} \mid \mu=0\right)<\mathrm{V}\left(Y_{2} \mid \mu=20\right)<\mathrm{V}\left(Y_{2} \mid \mu=10\right)$
3$\mathrm{V}\left(Y_{2} \mid \mu=0\right)=\mathrm{V}\left(Y_{2} \mid \mu=20\right)=\mathrm{V}\left(Y_{2} \mid \mu=10\right)$
4$\mathrm{V}\left(Y_{2} \mid \mu=0\right)=\mathrm{V}\left(Y_{2} \mid \mu=20\right)<\mathrm{V}\left(Y_{2} \mid \mu=10\right)$
$5 \square$$\mathrm{V}\left(Y_{2} \mid \mu=20\right)<\mathrm{V}\left(Y_{2} \mid \mu=10\right)<\mathrm{V}\left(Y_{2} \mid \mu=0\right)$

Exercise III

In a statistics class with 589 students, all students have taken an exam with two parts each lasting 2 hours. The instructors of the class are interested in evaluating whether the two exams parts have been equally difficult by comparing the mean scores in the two parts.

Question III. 1 (5)

What test should the instructors apply in order to evaluate whether the mean scores of the two exam parts are equal?

1A one-way ANOVAAn F-test with 2 and 589 degrees of freedom
$3 \square$A two-sample t-test assuming equal variances in the two groups

4A two-sample t-test with a pooled variance

5A paired t-test

Question III. 2 (6)

One of the instructors gives the same course (and the same exam) at a different university, where 240 students are enrolled in the course and subsequently take the exam. Some summary statistics concerning the exam results are given in the below table:

	University A	University B
Students	589	240
Average score	736.4	769.9
Variance of score	169.1	402.7

When calculating the 90% confidence interval, not assuming equal variances in the two groups, for the difference in mean scores, the instructor has to use a quantile from a t-distribution. The instructor has to use which quantile of the t-distribution with how many degrees of freedom?

1The 10% quantile of the t-distribution with 323.93 degrees of freedomThe 90% quantile of the t-distribution with 829 degrees of freedom The 90% quantile of the t-distribution with 323.93 degrees of freedom The 95% quantile of the t-distribution with 829 degrees of freedom The 95% quantile of the t-distribution with 323.93 degrees of freedom

Exercise IV

On April 141912 the passenger ship Titanic hit an iceberg and sank the following day. The table below shows the number of survivors and total number of passengers distributed on different passenger categories.

Class	1st	2nd	3rd	Crew	Total
Survived	202	117	178	212	709
Total	325	285	706	885	2201

Question IV. 1 (7)

Based on the table above, what is a 95% confidence interval for the probability of survival (regardless of passenger category) given the data?

1[0.66, 0.70]
$2 \square$ [0.30, 0.34]

3[0.45, 0.50]

4[0.46, 0.49]

5[0.66, 0.69]

Question IV. 2 (8)

Is there a statistical significant difference in the survival probability between the crew and the 3rd class passengers, using a 5% significance level (both the argument and the conclusion should be correct)?

1Yes, since the test statistics for the relevant test is -1.67 No, since the test statistics for the relevant test is 0.66

3Yes, since the test statistics for the relevant test is 1.67

4No, since the p-value for the relevant test is 0.41

5No, since the p-value for the relevant test is 0.56

Question IV. 3 (9)

Considering the entire table, what is the relevant observed test statistics (q), critical value $(C V)$, and conclusion for a test of the hypothesis that the survival probability is the same across all classes, using significance level $\alpha=0.05$?
$1 \square q=187.1, C V=7.8$, hence there is a significant difference
2$q=84.37, C V=15.5$, hence there is a significant difference

3$q=84.37, C V=7.8$, hence there is a significant difference

4$q=187.1, C V=15.5$, hence there is not a significant difference
$5 \square$ $q=84.37, C V=7.8$, hence there is not a significant difference

Question IV. 4 (10)
We wish to test if the probability of survival of 1st class passengers differs by more than 20 procentage points compared to the average of all other passengers, which of the following statements regarding that is correct (using significance level $\alpha=0.05$)?Since $\hat{p}_{1 s t}-\hat{p}_{\text {rest }}=0.35$ there is a significant difference and it is greater than 0.2The relevant confidence interval is $[0.29,0.41]$, and hence the survival probability of 1 st class passengers is at least 20 procentage point higher than the survival probability of other passengers0.2 is not included in the relevant confidence interval, which is [0.29, 0.41], and hence there is not a significant differenceThe relevant confidence interval is $[0.33,0.37]$, and hence the survival probability of 1 st class passengers is at least 20 procentage points higher than the survival probability of other passengers 0.2 is not included in the relevant confidence interval, which is $[0.33,0.37]$, and hence there is not a significant difference

Exercise V

A school class with 20 children are collecting trash on a beach, it is assumed that the mean value of the collected trash is $1 \mathrm{~kg} /$ child with a standard deviation of $0.2 \mathrm{~kg} /$ child.

Question V. 1 (11)

If the amount of trash collected by each child is assumed independent, what is the standard deviation (σ) of all the collected trash then?

1$\sigma=4.0 \mathrm{~kg}$

2$\sigma=0.8 \mathrm{~kg}$

3$\sigma=0.18 \mathrm{~kg}$

4$\sigma=2.0 \mathrm{~kg}$

5$\sigma=0.89 \mathrm{~kg}$

Question V. 2 (12)

After they returned, one of the children had collected 21 items, of which 6 were made of plastic. She is now asked to pick 5 items at random to be discussed. What is the probability that 3 of those are made of plastic?

10.103

20.247

30.119

40.023

50.052

Question V. 3 (13)

On average, 32% of the trash found is made of plastic. Another child collected 18 items, what is the chance that 3 of those items are made of plastic?

10.082

20.100

3 0.124

40.876

50.958

Exercise VI

The quality assurance department at a candy factory has taken a random sample of 26 chocolate bars of a certain brand. Each chocolate bar in the sample is weighted, and it is found that the average weight is 200.3 grams and the observed standard deviation is 0.75 grams.

Question VI. 1 (14)

What is the 95% confidence interval for the standard deviation?

1[0.346, 1.072]
$2 \square$ [0.588, 1.035]
$3 \square$ [0.611, 0.981]

4[0.447, 1.053]

5[0.462, 1.038]

Question VI. 2 (15)

The candy factory wants to test the null-hypothesis $\mathcal{H}_{0}: \mu=200$ grams (against a two-sided alternative) using a t-test. Which of the following statements is correct based on the hypothesis test? (Both the argument and the conclusion must be correct)
$1 \square$ Using a significance level of 5%, the null-hypothesis is rejected since the test statistic is greater than $t_{0.975}(26)$
$2 \square$ Using a significance level of 5%, the null-hypothesis is accepted since the test statistic is greater than $t_{0.975}(26)$

Using a significance level of 5%, the null-hypothesis is rejected since the test statistic is greater than $t_{0.975}(25)$

Using a significance level of 10%, the null-hypothesis is accepted since the test statistic is greater than $t_{0.95}(25)$ Using a significance level of 10%, the null-hypothesis is rejected since the test statistic is greater than $t_{0.95}(25)$

Question VI. 3 (16)

To further investigate the mean weight of the chocolate bars, the candy factory is also planning another experiment. The quality assurance department wants to detect a difference in mean weight of 0.3 grams (against a two-sided alternative hypothesis) while using 0.75 grams as a guess of the standard deviation. Furthermore, the quality assurance department wants to keep both the Type I and the Type II error rates at (or below) 5%. What is the minimum number of chocolate bars to be included in the experiment in order to meet the criteria set by the department?

110 or 12 depending on whether you apply the normal approximation68 or 70 depending on whether you apply the normal approximation82 or 84 depending on whether you apply the normal approximation

497 or 98 depending on whether you apply the normal approximation

5162 or 164 depending on whether you apply the normal approximation

Exercise VII

CO_{2} concentration is an important factor for well-being in the indoor environment, the figure below shows hourly CO_{2} concentration [ppm] during a one week period in one room of a dwelling. The variance of the natural logarithm of the CO_{2}-concentration is 0.137 .

As an initial analysis the CO_{2} concentration is modeled as a function of time of day using the model

$$
Y_{i}=\beta_{0}+x_{1, i} \beta_{1}+x_{2, i} \beta_{2}+\epsilon_{i}
$$

where Y_{i} is the natural logarithm of CO_{2} concentration at time $i, \epsilon_{i} \sim N\left(0, \sigma^{2}\right)$ and iid., and

$$
\begin{aligned}
& x_{1, i}=\sin \left(2 \pi \frac{h_{i}}{24}\right) \\
& x_{2, i}=\cos \left(2 \pi \frac{h_{i}}{24}\right),
\end{aligned}
$$

where h_{i} is the hour of day for observation i.
The model is fitted and the result is reported below (some numbers are replaced by characters);

```
Call:
lm(formula = y ~ x1 + x2)
Residuals:
\begin{tabular}{rrrrr} 
Min & 1Q & Median & 3Q & Max \\
-0.59619 & -0.09527 & 0.03135 & 0.12898 & 0.42424
\end{tabular}
```

Coefficients:

```
    Estimate Std. Error t value Pr(>|t|)
(Intercept) 6.43959 0.01468 t1 pv1
x1 0.40303 0.02076 t2 pv2
x2 0.20019 0.02076 t3 pv3
Signif. codes: 0 '***' 0.001 '**'0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: Sig on 165 degrees of freedom
Multiple R-squared: R2, Adjusted R-squared: 0.7369
F-statistic: 234.9 on 2 and 165 DF, p-value: < 2.2e-16
```


Question VII. 1 (17)

What is the total number of observations used for the estimation?

1165

2166
$3 \square$164

4167

5168

Question VII. 2 (18)

What is the order of the p-values ($\mathrm{pv} 1, \mathrm{pv} 2$, and pv 3) in the R-summary above?

1$\mathrm{pv} 2<\mathrm{pv} 3<\mathrm{pv} 1$

2pv1<pv2<pv3

3pv1<pv3<pv2

4$\mathrm{pv} 3<\mathrm{pv} 1<\mathrm{pv} 2$

5$\mathrm{pv} 1<\mathrm{pv} 2=\mathrm{pv} 3$

As part of the model validation the figure below is created. The plot show
A) Histogram of y (log- CO_{2} concentration)
B) Residuals as a function of the fitted values using the model
C) Normal quantile-quantile plot of the residuals from the model
D) Residuals from the model as a function of hour of day

Question VII. 3 (19)

Based on the plots in the figure, which of the following statements is correct (both the statement and figure reference should be correct)?

1Based on figure A we should consider log-transforming the outcome

2The residuals seems to be independent (figure C)

3The normality assumption is clearly violated (figure A)

4The residuals seems to be normally distributed (figure B)

5There are still systematic effects related to time of day (figure D)

Question VII. 4 (20)

If x 1 and x 2 was removed from the model (so a constant mean model), what would the standard error related to the estimate of β_{0} then be (hint: the variance of the outcomes is given above)?

10.0147

20.00990

30.00734

40.0208

50.0106

Exercise VIII

14 days of whole-sale electricity prices and wind power forecasts have been collected in order to assess the effect of the wind production on electricity prices in some electricity market. Assume data follows a linear regression with normally distributed errors:

$$
Y_{i}=\beta_{0}+\beta_{1} \cdot x_{i}+\varepsilon_{i}, \text { where } \varepsilon_{i} \sim N\left(0, \sigma^{2}\right) \text { and iid }
$$

```
wind <- c(1063, 1450, 879, 1980, 406, 1542, 1212,
    1157, 1730, 1105, 775, 856, 802, 851)
elpris <- c(26.84, 24.87, 21.65, 13.26, 24.49, 21.90, 23.29,
    22.47, 19.26, 27.86, 27.96, 20.85, 21.83, 34.04)
```


Question VIII. 1 (21)

What is the 99% confidence interval for the effect of wind power forecast on eletricity price $\left(\beta_{1}\right)$?
$1 \square$ [-0.0148, 0.0017]

2[-0.0124, -0.0007]

3[-0.0066, 0.0027]

5[21.16, 40.87]

4We have insufficient information to determine this.

Question VIII. 2 (22)

What is the 95% prediction interval for the electricity price when the wind power forecast is 1000 MWh?
$1 \square$[0.70, 12.41]
2[11.41, 37.50]

3[15.15, 33.76]

4[21.95, 26.97]

5[23.98, 38.05]

Exercise IX

A sample was taken from a population with mean μ and standard deviation σ. The histogram of the sample is

Histogram of \mathbf{x}

Question IX. 1 (23)

How many observations are in the sample?

16

214

322

428

5This cannot be determined with the information provided.

Question IX. 2 (24)

Which one of the following conclusions can be drawn with given information?

1The sample mean is 10 .

2The sample standard deviation is 4 .

3$25 \%$ of the observations in the sample are below 6 .

4The Inter Quantile Range (IQR) is 5 .
$5 \square$All observations in the sample are below or equal 12.

Question IX. 3 (25)

Which of the following distributions is used when calculating the usual confidence interval for the population mean μ ?

1A χ^{2}-distribution
$2 \square$ An F-distribution
$3 \square$The exponential distribution

4A t-distribution

5The Poisson distribution

Exercise X

After a multiple choice exam in the introductory statistics course at DTU the teachers wanted to investigate the scores of different groups.

One question they would like to answer were: Were the students better at answering the first half of the exam (i.e. Question 1 to 15) than the last half (Question 16 to 30).

Let xfirst be a vector with students' scores in the first half of the exam and similarly xlast the students' scores for the second half of the exam. The observed differences in score between the last and the first half for all passed students is calculated and showed with a boxplot by:

```
x <- xlast - xfirst
boxplot(x, ylab="Difference in score between first and last half")
```


Question X. 1 (26)

Which one of the following conclusions is wrong based on the information presented by the box-plot?
$1 \square$ More than half of the students in the sample had a negative difference in scores.

2More than 20% of the students in the sample had a positive difference in scores.

3At least one student in the sample had a difference higher than 40 points in scores.

4$60 \%$ of the students in the sample had a positive difference in scores.

5 No student in the sample had a difference in scores higher than 50 points.

Question X. 2 (27)

The teachers want to test the null hypothesis

$$
H_{0}: \mu=0,
$$

where μ is the mean of the difference in scores between first and last part. They want to test without making any assumption of the distribution of the population where the sample was taken from.

The following code was run:

```
k <- 10000
simsamples <- replicate(k, sample(x, replace = TRUE))
quantile(apply(simsamples, 2, mean), c(0.05, 0.95))
## 5% 95%
## -6.54 -1.21
quantile(apply(simsamples, 2, mean), c(0.025, 0.975))
## 2.5% 97.5%
## -7.05 -0.77
quantile(apply(simsamples, 2, mean), c(0.005, 0.995))
## 0.5% 99.5%
## -8.09 0.23
```

Which one of the following answers is correct?
\square On a significance level $\alpha=0.1$ a significant difference in scores between the first and last half is detected.

On a significance level $\alpha=0.025$ a significant difference in scores between the first and last half is detected.

3On a significance level $\alpha=0.01$ a significant difference in scores between the first and last half is detected. No conclusion can be made, the calculations don't meet the requirements, since in the calculations a normal distribution is assumed.
$5 \square$ None of the answers above are correct.

Question X. 3 (28)

The teachers wanted to investigate if the difference in score between the first and the second part of the exam differs according to the total score for a student. In order to investigate this the students were divided into two groups: one group that had a low total score and another group that had a high total score.

The score differences for low scoring students were stored in xlow and for high scoring students in xhigh.

The following code was executed:

```
k <- 10000
sim.xlow.samples <- replicate(k, sample(xlow, replace = TRUE))
sim.xhigh.samples <- replicate(k, sample(xhigh, replace = TRUE))
sim.xlow.means <- apply(sim.xlow.samples, 2, mean)
sim.xhigh.means <- apply(sim.xhigh.samples, 2, mean)
sim.dif.means <- apply(sim.xhigh.samples, 2, mean) -
    apply(sim.xlow.samples, 2, mean)
quantile(sim.xlow.means, c(0.025, 0.975))
## 2.5% 97.5%
## -9.23 -2.94
quantile(sim.xhigh.means, c(0.025, 0.975))
## 2.5% 97.5%
## -3.11 1.92
quantile(sim.dif.means, c(0.025, 0.975))
## 2.5% 97.5%
## 1.41 9.56
```

Which of the following conclusions is correct about the difference in mean of the two groups at significance level $\alpha=0.05$ (both conclusion and argument must be correct)?

1A significant difference between the two groups is not detected, since their one-sample confidence intervals overlap.

2\square A significant difference between the two groups is detected, since their one-sample confidence intervals overlap.

3A significant difference between the two groups is detected, since the one-sample confidence interval of one group includes zero, but that of the other groups' does not.

4A significant difference between the two groups is detected, since the confidence interval for the difference in mean doesn't include zero.
$5 \square$ None of the above conclusions are correct.

Exercise XI

Question XI. 1 (29)

Karl eats muesli in the morning, however he is picky and don't like raisins. Assuming that raisins appear at random (ie. can be described by a Poisson process), and that Karl's muesli portion contains 4 raisins on average, what is the probability that Karl's portion contains no raisins?

10.001
$2 \square$ 0.018

30.183

40.250

50.368

Question XI. 2 (30)

Karl's sister Karoline loves raisins and eats a muesli portion double the size of Karl's. What is the probability that her portion contains five or more raisins?

10.092

20.099

30.191

40.809

50.900

The exam is finished. Enjoy the summer!

