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Topics:

Analysis of data from the protocols

• A-not A

• Same-different

• A-not A with sureness

Preliminaries

Before we you get started with the exercises, you need to make sure that you have a rea-
sonably new version of sensR. When you run sessionInfo() you should have at least the
version of the sensR package shown here:

R> sessionInfo()

R version 3.0.1 (2013-05-16)

Platform: x86_64-apple-darwin10.8.0 (64-bit)

locale:

[1] C

attached base packages:

[1] stats graphics grDevices utils datasets methods

[7] base

other attached packages:

[1] sensR_1.2-22 numDeriv_2012.9-1 ordinal_2013.8-25

[4] Matrix_1.0-12 lattice_0.20-15 ucminf_1.1-3

loaded via a namespace (and not attached):

[1] MASS_7.3-28 grid_3.0.1 multcomp_1.2-19 tools_3.0.1

If you don’t have the newest version, you are probably able to get a newer version with the
following command:
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R> install.packages("sensR", repos="http://R-Forge.R-project.org")

Exercise 1

You have conducted an A-not A experiment with 100 subjects. The answers are summarized
in table 1.

Table 1: A-not A data for exercise 1.
Sample Response Total

“A” “not A”
A 57 43 100
Not A 42 58 100

1. Have you shown that the A and not-A products are different?

2. Have you shown that the A and not-A products are similar (using d′ = 0.75 as the
boundary of similarity) at the 5% level?

3. Have you shown that the A and not-A products are similar at the 1% level (again
using d′ = 0.75 as the boundary of similarity)?

Answer to the exercise:

To analyze the data, we use the AnotA function from the sensR package:

R> AnotA(57, 100, 42, 100)

Call: AnotA(x1 = 57, n1 = 100, x2 = 42, n2 = 100)

Results for the A-Not A test:

Estimate Std. Error Lower Upper P-value

d-prime 0.3782676 0.1784076 0.02859508 0.7279402 0.02371745

1. Since the p-value is 0.024, i.e. less than 5%, we can conclude that the products are
significantly different at the 5% level.

2. To evaluate if the products are similar on the 5% level, we can look at the 90%
confidence interval. Here we use the confint method to change the default confidence
level:

R> confint(AnotA(57, 100, 42, 100), level=0.90)

5 % 95 %

threshold -0.03044025 0.3843434

d.prime 0.08538341 0.6723933

since the confidence interval is entirely below d′ = 0.75, we have shown similarity at
this level.

3. We now change the confidence level to 0.98% and reevaluate the confidence interval:

R> confint(AnotA(57, 100, 42, 100), level=0.98)

2



1 % 99 %

threshold -0.11588798 0.4709462

d.prime -0.03567145 0.7946889

Since the upper confidence level is now above d′ = 0.75, we have not shown similarity
at this level.

Exercise 2

It has come to you knowledge that the technicians undertaking the test formulated the
question in the following mannor:

“You are now given two samples and you are asked to determine if these samples are the
same or not. Answer A if you believe the samples are the same and not A if you believe
they are not the same”

As you may realize, these are the instructions for the same-different test rather than the
A-not A test, and we will have to analyze the data assuming the same-different cognitive
decision rule rather than that of the A-not A.

1. Estimate d′ assuming the same-different protocol instead of the the A-not A protocol.
Does the estimate of d′ change? and if so, is it a large difference or a small unimportant
one?

2. What is the p-value of the test of “no product difference”? Compare this to the p-value
obtained using the A-not A test. Has the p-value changed? Is it important?

3. Make a similarity analysis similar to the one for the A-not A analysis. Are there any
differences?

4. At what boundary-of-similarity (d′0) are you able to declare the products ’similar’ at
the 5% level?

Answer to the exercise:

1. We analyze the data with the samediff function:

R> sd1 <- samediff(57, 43, 42, 58)

R> summary(sd1)

Call:

samediff(nsamesame = 57, ndiffsame = 43, nsamediff = 42, ndiffdiff = 58)

Coefficients

Estimate Std. Error Lower Upper P-value

tau 1.1161 0.1198 0.8927 1.3616 <2e-16 ***

delta 1.2268 0.3098 0.3325 1.7659 0.0168 *

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Log Likelihood: -136.3607 AIC: 276.7214
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Here d′ = 1.23 which we should compare to d′ = 0.37 from the A-not A test. This
is a fairly large change. The assumption about which decision rule was used when
generating the data is a really important one when it comes to the interpretation of
d′.

2. The p-value for the “no product difference” test can also be read of the output above
as the p-value for delta — it is p = 0.017. This p-value is not so different from the
p-value from the A-not A test (which was p = 0.024); both are significant on the 5%
level, but not on the 1% level.

3. Since even the same-different estimate of d′ is larger than the similarity limit of 0.75,
the same-different analysis does not indicate similarity at any reasonable level.

4. To compute the similarity boundary, d′0 for the 5% level we want to look at the upper
confidence limit of the 90% CI:

R> confint(sd1, level=0.90)

Lower Upper

0.9% tau 0.9270242 1.320723

0.9% delta 0.5688371 1.685508

This shows that we would be able to declare the products similar at the 5% level, if we
only consider products with d′ ≥ 1.69 as different. However, that is an unreasonable
large boundary of similarity.

Exercise 3

You have conducted a large-scale consumer study using the A-not A with sureness protocol
and obtained the data in the following table.

sureness

prod 1 2 3 4 5 6

ref 10 40 70 50 20 10

test 20 30 20 30 60 40

To get the data into R you may use the following commands:

R> wts <- c(10, 40, 70, 50, 20, 10, 20, 30, 20, 30, 60, 40)

R> dat <- data.frame(sureness = factor(rep(1:6, 2), ordered=TRUE),

+ prod = factor(rep(c("ref", "test"), each = 6)),

+ freq = wts)

R> dat

sureness prod freq

1 1 ref 10

2 2 ref 40

3 3 ref 70

4 4 ref 50

5 5 ref 20

6 6 ref 10

7 1 test 20

8 2 test 30

9 3 test 20
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10 4 test 30

11 5 test 60

12 6 test 40

R> ## Tabulate the data:

R> xtabs(freq ~ prod + sureness, dat)

sureness

prod 1 2 3 4 5 6

ref 10 40 70 50 20 10

test 20 30 20 30 60 40

1. First assume that there i no difference in scale: compute d′ using the clm function.
Also compute the sensitivity and the overlap of the perceptual distributions.

2. Test if the products are different assuming the equal-variances model.

3. Now fit the model that allows for differences in scale/unequal variances for the two
products.

4. Test if the variances are different or whether they can be assumed to be equal.

5. Test if products are different in the unequal-variances model and compare results to
the question 2.

6. Compute d′, the scale-ratio (i.e. the standard deviation of the ’test’ distribution as-
suming the standard deviation of the ’reference’ distribution is 1), the sensitivity and
the overlap of the perceptual distributions.

7. Compare and discuss differences and similarities in d′, sensitivity and distribution
overlap.

Answer to the exercise:

1. We first compute d′ using clm with a probit link:

R> fm1 <- clm(sureness ~ prod, data=dat, weights=freq, link="probit")

R> summary(fm1)

formula: sureness ~ prod

data: dat

link threshold nobs logLik AIC niter max.grad cond.H

probit flexible 400 -685.27 1382.55 4(0) 9.73e-10 2.9e+01

Coefficients:

Estimate Std. Error z value Pr(>|z|)

prodtest 0.4768 0.1058 4.505 6.63e-06 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Threshold coefficients:

Estimate Std. Error z value

1|2 -1.21759 0.10424 -11.681

2|3 -0.47012 0.08196 -5.736
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3|4 0.15118 0.07912 1.911

4|5 0.69946 0.08590 8.143

5|6 1.43929 0.10470 13.747

So here d′ = 0.477 with standard error 0.11.

The sensitivity is given by S = Φ(d′/
√

2) which we compute with

R> pnorm(fm1$beta / sqrt(2))

prodtest

0.6319961

Notice that d′ is stored in the beta element of the fit.

The degree of distribution overlap is given by λ = 2Φ(−d′/2) which we evaluate with

R> 2 * pnorm(-fm1$beta / 2)

prodtest

0.811573

2. To test if products are different, we can either look at the p-value from the Coefficient
table in the summary output above or we can use the anova function to compute the
(more accurate) likelihood ratio test. The p-value from the summary is already highly
significant (p < 0.001) and the likelihood ratio test is not going to change that:

R> ## First estimate the null model:

R> fm0 <- clm(sureness ~ 1, data=dat, weights=freq, link="probit")

R> ## Then compare the models with anova:

R> anova(fm0, fm1)

Likelihood ratio tests of cumulative link models:

formula: link: threshold:

fm0 sureness ~ 1 probit flexible

fm1 sureness ~ prod probit flexible

no.par AIC logLik LR.stat df Pr(>Chisq)

fm0 5 1400.9 -695.45

fm1 6 1382.5 -685.27 20.348 1 6.457e-06 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Here the p-value is even slightly smaller. The conclusion is that d′ is highly significantly
different from zero.

3. To estimate the unequal-variances model, we add prod to the scale formula in clm:

R> fm2 <- clm(sureness ~ prod, scale=~prod, data=dat, weights=freq, link="probit")

R> summary(fm2)

formula: sureness ~ prod

scale: ~prod

data: dat

link threshold nobs logLik AIC niter max.grad cond.H

probit flexible 400 -666.92 1347.84 8(0) 2.53e-10 2.2e+01

Coefficients:
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Estimate Std. Error z value Pr(>|z|)

prodtest 0.6730 0.1525 4.414 1.01e-05 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

log-scale coefficients:

Estimate Std. Error z value Pr(>|z|)

prodtest 0.5290 0.0881 6.004 1.92e-09 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Threshold coefficients:

Estimate Std. Error z value

1|2 -1.60172 0.13752 -11.647

2|3 -0.60572 0.08960 -6.760

3|4 0.17736 0.08315 2.133

4|5 0.89787 0.09875 9.093

5|6 1.95877 0.15409 12.711

4. To test if we really need th unequal-variances model or if the equal-variance model is
sufficient, we compare the two models with anova:

R> anova(fm1, fm2)

Likelihood ratio tests of cumulative link models:

formula: scale: link: threshold:

fm1 sureness ~ prod ~1 probit flexible

fm2 sureness ~ prod ~prod probit flexible

no.par AIC logLik LR.stat df Pr(>Chisq)

fm1 6 1382.5 -685.27

fm2 7 1347.8 -666.92 36.708 1 1.372e-09 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

This test is highly significant, so we must retain the unequal-variances model.

5. To test if products are different, we want to test if both location and scale parameters,
so we compare fm0 and fm2 in an anova test:

R> anova(fm0, fm2)

Likelihood ratio tests of cumulative link models:

formula: scale: link: threshold:

fm0 sureness ~ 1 ~1 probit flexible

fm2 sureness ~ prod ~prod probit flexible

no.par AIC logLik LR.stat df Pr(>Chisq)

fm0 5 1400.9 -695.45

fm2 7 1347.8 -666.92 57.055 2 4.079e-13 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Notice that this is a test on 2 degrees of freedom (one for d′ and one for the scale). As
in question 2 the product test is highly significant, but the p-value is even smaller than
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Figure 1: Perceptual distributions, left: equal variance model, right: unequal variance model.

in the equal-variance model since the unequal-variances model fits these data much
better.

6. d′ was computed in model fm2 adn shown in the summary of that model above; d′ =
0.67. Notice how clm reports the log of the scale component, so we have to take the
antilog to get the scale (actually the scale ratio) itself:

R> exp(0.529)

[1] 1.697234

R> ## alternatively:

R> exp(fm2$zeta)

prodtest

1.697175

The sensitivity is now given as S = Φ(d′/
√

1 + σ2) which we compute with

R> pnorm(fm2$beta, sqrt(1 + exp(fm2$zeta)^2))

prodtest

0.0973413

The distribution overlap can be computed with the overlap function:

R> overlap(fm2$beta, exp(fm2$zeta))

[1] 0.7636128

7. It is interesting to notice that d′ goes up from 0.477 to 0.67 and distrbution overlap
goes down from 0.812 to 0.764 , but that sensitivity goes down from 0.17 to 0.097!
Here d′ and distribution overlap pulls in the same direction, but the sensitivity pulls
in the opposite direction. The perceptual distributions for the two models are shown
in figure 1.
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