
02465: Introduction to reinforcement learning and control

Policy and value iteration

Tue Herlau

DTU Compute, Technical University of Denmark (DTU)

Lecture Schedule

Dynamical programming

1 The finite-horizon decision problem
31 January

2 Dynamical Programming
7 February

3 DP reformulations and introduction to
Control
14 February

Control

4 Discretization and PID control
21 February

5 Direct methods and control by
optimization
28 February

6 Linear-quadratic problems in control
7 March

7 Linearization and iterative LQR
14 March

Reinforcement learning

8 Exploration and Bandits
21 March

9 Policy and value iteration
4 April

10 Monte-carlo methods and TD learning
11 April

11 Model-Free Control with tabular and
linear methods
18 April

12 Eligibility traces and value-function
approximations
25 April

13 Q-learning and deep-Q learning
2 May

Syllabus: https://02465material.pages.compute.dtu.dk/02465public
Help improve lecture by giving feedback on DTU learn
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Reading material:
• [SB18, Chapter 3; 4]

Learning Objectives
• Markov decision process
• Value/action value function and other tools
• Dynamical programming for policy evaluation and control
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Housekeeping
Housekeeping

• Feedback on project 2 in about 2 weeks
• Project 3 is online
• You are all enrolled in chattutor (email at s123456@student.dtu.dk)
• The homework problem next week is slightly longer than usual
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The reinforcement-learning problem
Today: Dynamical programming...again!

Environment
The robot

Actions

Le
ar

ni
ng

State

Dynam
ics

Internal state

The Interpreter

Observation

Cost

• Last time: Exploration and exploitation (+No effects)
• This time: Value functions and recursions (+Known dynamics)
• Next time: The full reinforcement-learning problem
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The reinforcement-learning problem
Markov decision process

• Agent/system interacts at times t = 0, 1, 2, . . .

• Agent observes state St ∈ S
• Agent takes action At ∈ A(St)
• Agent obtains a reward Rt+1 ∈ R; time increments to t + 1

• Dynamics described using conditional probabilities

p (s′, r|s, a) = Pr {St+1 = s′, Rt+1 = r | St = s, At = a}
= Pr {w | s.t. s′ = ft(s, a, w) and r = −gt(s, a, w)}

• If the environments stops we call it episodic

s unf_gridworld.py
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The reinforcement-learning problem
Markov decision process (MDP)

Assumptions in a Markov Decision Process
• S,A(s) are finite
• Markov property

Pr {St+1, Rt+1 | St, At} = Pr {St+1, Rt+1 | S0, A0, . . . , St, At}

• The transition probabilities are stationary (time-independent)

p(st+1, rt+1|st, at) = p(st′+1, rt′+1|st′ , at′)
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The reinforcement-learning problem
Markov decision process (MDP)

Markov Decision Process - practically speaking
• A function that says which actions are available in a given state A(s)
• The transition probability p(s′, r|s, a)
• The initial state s0

• A function which determines
• if a state is non-terminal, st ∈ S
• or terminal, sT /∈ S

• S,A(s) are finite

An episode is S0, A0, R1, S1, A1, R2, . . . , ST−1, AT−1, RT , ST
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The reinforcement-learning problem
Policy

Policy
A policy is a distribution over actions

π(a|s) = Pr {At = a | St = s}

• Policy is time-independent
• Now a Distribution rather than function a = π(s) because we want to explore
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The reinforcement-learning problem
Return and discount

Return
For 0 ≤ γ ≤ 1 and any t we define the accumulated γ-discounted return

Gt
.= Rt+1 + γRt+2 + γ2Rt+3 + · · · =

∞∑

k=0
γkRt+k+1

• Equivalent to:

lim
N→∞

[
γN gN (xN ) +

N∑

k=0
γkgk(sk, ak, wk)

]

• Fancy rationale for γ < 1:
• Don’t worry about the far and uncertain future

• Actual rationale for γ < 1:
• Avoids infinities when γ = 1; simpler convergence theory

• tl;dr: Use γ > 0.9 unless you have good reasons not to.
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Value and action-value function
The state-value function vπ(s) is the expected return starting in s and assuming
actions are selected using π:

vπ(s) = Eπ [Gt|St = s] , At ∼ π(·|St)

The action-value function qπ(s, a) is the expected return starting in s, taking
action a, and then follow π:

qπ(s, a) = Eπ [Gt|St = s, At = a]

Gt
.= Rt+1 + γRt+2 + γ2Rt+3 + · · ·

Note that Jπ(s) = −vπ(s)
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The reinforcement-learning problem
Where we want to end up

Bellman equation Learning algorithm

Bellman expectation equation for vπ

vπ(s) = Eπ [R + γvπ (S′) |s]

Iterative policy evaluation to learn vπ

V (s)← Eπ [R + γV (S′) |s]

Bellman expectation equation for qπ

qπ(s, a) = Eπ [R + γqπ (S′, A′) |s, a]

Iterative policy evaluation to learn qπ

Q(s, a)← Eπ [R + γQ (S′, A′) |s, a]

Policy iteration: Use policy evaluation to estimate vπ or qπ

Improve by acting greedily: π′(s)← arg maxa qπ(s, a)

Bellman optimality equation for v∗

v∗(s) = maxa E [R + γv∗(S′)|s, a]

Value iteration

V (s)← maxa E [R + γV (S′)|s, a]

Bellman optimality equation for q∗

q∗(s, a)=E [R+γ maxa′ q∗(S′, a′)|s, a]

Q-value iteration

Q(s, a)←E [R+γ maxa′ Q(S′, a′)|s, a]

12 DTU Compute Lecture 9 4 April, 2025



The reinforcement-learning problem
Fundamental properties of value function

Fundamental properties of value/action-value functions
• Fundamental recursion

Gt = Rt+1 + γGt+1

• Action-value to value function

vπ(s) = Ea∼π(s) [qπ(s, a)]

• value-function to action-value

qπ(s, a) = E [Rt+1 + γvπ (St+1) |St = s, At = a] (1)
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sutton2018_84
The reinforcement-learning problem
Two first two Bellman equations

Bellman equations
• Recursive decomposition of value function. V : S 7→ R initialized randomly

vπ(s)V (s) =←E [Rt+1 + γvπV (St+1) |St = s]

• Recursive decomposition of action-value function (Q initialized randomly)

qπ(s, a) = Q(s, a)← E [Rt+1 + γqπ(St+1, At+1)Q(St+1, At+1)|St = s, At = a]
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bellmanfirsttwo

The reinforcement-learning problem
Task 1: Evaluate a policy

Iterative policy evaluation
• Given a policy π, initialize V randomly. For all s perform updates:

V (s)←
∑

a

π(a|s)
∑

s′,r

p (s′, r|s, a) [r + γV (s′)]

until terminal condition is met. V (s) will converge to vπ(s)
• Initialize Q randomly. For all s, a perform updates:

Q(s, a)←
∑

s′,r

p (s′, r|s, a)
[

r + γ
∑

a′

π(a′|s′)Q (s′, a′)
]

until terminal condition is met. Q will converge to qπ

s unf_policy_improvement_gridworld.py
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The reinforcement-learning problem
Quiz: Policy evaluation

The environment has a living reward
of R = 1 and if it moves into the wall
it stays in the current state.

The value function vπ for the policy
π(a|s) = 1

4 is is estimated using
Policy Evaluation with γ = 0.9.
What is the value function in the
state indicated by Pacman in the next
step?
a. 3.41
b. 3.39
c. 3.31
d. 3.28
e. Don’t know.
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Optimal value function
The optimal state-value function v∗ is the maximum value function over all policies

v∗(s) = max
π

vπ(s)

The optimal action-value function q∗ is the maximum action-value function over all
policies

q∗(s, a) = max
π

qπ(s, a)

We define a partial ordering over policies as

π ≥ π′ if for all s: vπ(s) ≥ vπ′(s)
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Optimality
Value/action value to policy

• Given any function q : S ×A 7→ R we can define the greedy policy π′ wrt. q

π′(s) = arg max
a

q(s, a)

• Given any function v : S 7→ R we can define greedy policy π′ wrt. v

π′(s) = arg max
a

Es′,r [r + γv(s′)|s, a]
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Optimality
Policy improvement theorem

Policy improvement theorem
Let π and π′ be any pair of deterministic policies such that for all s ∈ S:

qπ

(
s, π′(s)

)
≥ vπ(s) (2)

Then π′ ≥ π meaning for all s ∈ S

vπ′(s) ≥ vπ(s)

Inequality is strict if any inequality in eq. (2) is strict.
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Optimality
Skipped: Proof of policy improvement theorem

vπ(s) ≤ qπ
(
s, π′(s)

)

= E
[
Rt+1 + γvπ (St+1) |St = s, At = π′(s)

]

= Eπ′ [Rt+1 + γvπ (St+1) |St = s]
≤ Eπ′

[
Rt+1 + γqπ

(
St+1, π′ (St+1)

) |St = s
]

= Eπ′
[
Rt+1 + γE

[
Rt+2 + γvπ (St+2) |St+1, At+1 = π′ (St+1)

] |St = s
]

= Eπ′
[
Rt+1 + γRt+2 + γ2vπ (St+2) |St = s

]

≤ Eπ′
[
Rt+1 + γRt+2 + γ2Rt+3 + γ3vπ (St+3) |St = s

]

...
≤ Eπ′

[
Rt+1 + γRt+2 + γ2Rt+3 + γ3Rt+4 + · · · |St = s

]

= vπ′(s)
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Optimality
Idea

Given vπ, define new policy π′ to be greedy with respect to vπ. Then:

vπ(s) = Ea∼π(s) [qπ(s, a)]
≤ max

a
qπ(s, a), True by simple properties of expectations

= qπ(s, a∗), a∗ = arg max
a

qπ(s, a)

= qπ(s, π′(s)), π′ greedy policy wrt. vπ

Observations:
• Being greedy wrt. π means π′ ≥ π by the policy-improvement theorem
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Optimality
Quiz: Optimal action-value function (Exam spring 2023)

Let v∗, q∗ be the optimal value and action-value functions of an MDP, let π
be any policy and finally let vπ and qπ be the value/action-value function
associated with π. Which one of the following statements are true in
general?
a. maxs q∗(s, a) = v∗(a)
b. There is a policy π, a state s and an action a so that q∗(s, a) < qπ(s, a)
c. For all π and a it is true that q∗(s, a) > qπ(s, a)
d. There is a policy π and state s so that maxa q∗(s, a) = vπ(s)
e. Don’t know.
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Optimality
Policy iteration

• Given initial policy π

• Compute vπ using policy evaluation
• Let π′ be greedy policy vrt. vπ

• Repeat until vπ = vπ′

s lecture_09_policy_improvement.py
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Optimality
Policy iteration algorithm

• In each step, the PI theorem guarantees that π ≤ π′

• There is a limited number of policies so improvement cannot continue
• If π = π′, then the policy is in fact optimal

• (it satisfy the Bellman optimality equation as we will see in a moment)
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Optimality
Bellmans optimality equations
Suppose π∗ is the policy corresponding to the optimal value function v∗(s)

v∗(s) = max
a

qπ∗(s, a)

= max
a

E
[
R + vπ∗(S′)|s, a

]

Bellmans optimality equations
• Recursion of optimal value function v∗: Given any V

v∗(s) = V (s)←max
a

E [Rt+1 + γv∗(St+1)V (St+1)|St = s, At = a] (3)

• Recursion of optimal action-value function q∗:

q∗(s, a) = E
[
Rt+1 + γ max

a′
q∗(St+1, a′)|St = s, At = a

]
(4)

• Theorem: v∗ (or q∗) satisfies the above recursions if (and only if) they
corresponds to the optimal value function
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Optimality
Value Iteration
Bellmans optimality equations Value Iteration
• Recursion of optimal value function v∗: Given any V

v∗(s) = V (s)←max
a

E [Rt+1 + γv∗(St+1)V (St+1)|St = s, At = a] (5)

• Recursion of optimal action-value function q∗: Given any Q

q∗(s, a) = Q(s, a)←E
[
Rt+1 + γ max

a′
q∗(St+1, A′

t+1)Q(St+1, At+1)|St = s, At = a
]

(6)

• Theorem: VI converge to optimal v∗ (or q∗)
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Dimitri P Bertsekas and Huizhen Yu.
Distributed asynchronous policy iteration in dynamic programming.
In 2010 48th Annual Allerton Conference on Communication, Control,
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Reinforcement Learning: An Introduction.
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(Freely available online).
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Appendix
Note from lecture 3: Stationary problem = stationary policy

Jk(xk) = min
uk

E [Jk+1 (fk(xk, uk, wk)) + gk (xk, uk, wk)]

Assume the problem is independent of k:

Jk(x) = min
u

E [Jk+1 (f(x, u, w)) + g (x, u, w)]

• It will be true that J0 ≈ J1 ≈ J2 etc.
• Policies will be the same initially π0 ≈ π1 etc.

In fact just iterate to convergence:

J(x)← min
u

E [J (f(x, u, w)) + g (x, u, w)]

This is in fact value iteration
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Appendix
Note from lecture 3: Action-value formulation

Jk(xk) = min
uk

E[Jk+1(fk(xk, uk, wk))+gk (xk, uk, wk)]

We want to remove the green part

Jk(xk) = min
uk

Q(xk, uk)

Q(xk, uk) = E[ Jk+1(fk(xk, uk, wk))︸ ︷︷ ︸
=minuk+1 Q(xk+1,uk+1)

+gk(xk, uk, wk)]

Substituting, the entire equation becomes red:

Q(xk, uk) = E
[
min
uk+1

Q (fk(xk, uk, wk), uk+1) + gk (xk, uk, wk)
]

• Simply VI for Q-functions!
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Appendix
Asynchronous updates

• In synchronous updates, we do
• For each s ∈ S compute:

v′
π(s)← Eπ[R + γvπ(S′)|s]

• When done, set vπ ← v′
π

• In asynchronous updates, we re-use the updated values within one sweep
• For each s ∈ S compute:

vπ(s)← Eπ[R + γvπ(S′)|s]

Both converge: You implement the asynchronous version, but most
analysis is done in the synchronous version. It is also possible to structure
sweeps for efficiency (see [BY10])
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Appendix
Convergence results
We will focus on the value function as the action-value results are very
similar. First we define the operators T and Tπ:

(Tπv)(s) = Eπ
[
R + γv(S′)|s]

(7)
(T v)(s) = max

a
E

[
R + γv(S′)|s, a

]
(8)

If the state space is discrete S = {s1, . . . , sN} we can define the vector

vi = v(si)

then the operators act on these vectors T : RN → RN

Fixed-point theorem
Let T : A 7→ A be a function and A ⊂ Rn a compact subset of Rn. Then if for all
x, z ∈ A

∥T (x)− T (z)∥ ≤ γ∥x− z∥, 0 ≤ γ < 1

then repeatedly applying T to any x will converge to a single, unique fixed point
x∗ = T (x∗)

31 DTU Compute Lecture 9 4 April, 2025

Other subjects
Asynchronous updates

• In synchronous updates, we iterate for all s ∈ S:

v′
π(s)← Eπ[R + γvπ(S′)|s]

then vπ ← v′
π

• In synchronous updates, we re-use the updated values within one sweep

vπ(s)← Eπ[R + γvπ(S′)|s]

Both converge. It is also possible to structure sweeps for efficiency (see
[BY10])
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Other subjects
Existence of solutions to Bellmans equations

• Both the operators T and Tπ are contractions in the max-norm
∥x∥∞ = maxi |xi|. Example:

∥Tπv − Tπw∥∞ = max
i
|Eπ [R + γv(S′)|si]− Eπ [R + γw(S′)|si]| (9)

= max
i

∣∣∣∣∣
∑

s′

p(s′|si, a) (γv(s′)− γw(s′))
∣∣∣∣∣ (10)

≤ γ max
i

∑

s′

p(s′|si, a) |v(s′)− w(s′)| (11)

≤ γ max
i

∑

s′

p(s′|si, a) ∥v −w∥∞ = γ ∥v −w∥∞ (12)

• Consequence: Repeatedly applying Bellmans operators will lead to a single, fixed
point policy T v∗ = v∗ and Tπvπ = vπ

• Therefore, PE/PI converge to vπ. VI also converges, but does it converge to the
maximum?
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Other subjects
VI and maximum

• We know: Value iteration converge to a unique fixed point

v∗ = (T T · · · T )(v)

• Maximum value function is defined as

ṽ(s) = max
π

vπ(s)

• It could be the case that ṽ(s) = vπ(s), ṽ(s′) = vπ′(s′), and neither was equal to
v∗(s), v∗(s′)
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Other subjects
Value iteration solution corresponds to a policy

Show that v∗(s) ≤ ṽ(s)
• Value iteration gives us v∗ as a fixed point
• From v∗ we can construct the action-values

q∗(s, a) = E[R + γv∗(S′)|s, a]

• From these we can define the greedy policy π∗

π∗(s) = arg max
a

q∗(s, a)

• By definition now v∗(s) = (Tv∗)(s) = (Tπ∗v)(s)
• Therefore v∗ is the value function of the policy π∗, and so v∗(s) ≤ ṽ(s) for all s
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Other subjects
Value iteration is optimal

Show that v∗(s) ≥ ṽ(s)
• Assume v∗(s) < ṽπ(s) for a specific s, π

• Let π1 be the greedy policy according to ṽπ. We know that

ṽπ ≤ vπ1

by the policy improvement theorem
• Therefore, v∗(s) < ṽπ(s) ≤ vπ1(s)
• Repeat again to obtain π2 and notice we are doing policy iteration
• Since we are doing policy iteration eventually πk → π∞

• It must be the case vπ∞ is a fixed-point of T , otherwise by the policy
improvement theorem we could select a better (greedy) policy
• Since the fixed point is unique, vπ∞ = v∗, which is a contradiction
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