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02465: Introduction to reinforcement learning and control

Policy and value iteration
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Reading material:
® [SB18, Chapter 3; 4]

Learning Objectives

® Markov decision process
® Value/action value function and other tools

® Dynamical programming for policy evaluation and control
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Today: Dynamical programming...again! =
Observation
Cost
O}
> i 2%,
£ The Interpreter Environment "%,
Ky The robot Qo
<
~ \
S
/| Internal statew

T Adions __— states

® Last time: Exploration and exploitation (+No effects)
® This time: Value functions and recursions (+Known dynamics)

® Next time: The full reinforcement-learning problem
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Lecture Schedule =
Dynamical programming Reinforcement learning
@ The finite-horizon decision problem @ Exploration and Bandits
31 January 21 March
@ Dynamical Programming © Policy and value iteration
7 February 4 April
© DP reformulations and introduction to @ Monte-carlo methods and TD learning
Control 11 April i
14 February @® Model-Free Control with tabular and
Control linear methods
@ Discretization and PID control 18 April .
21 February ® Eligibility traces and value-function
@ Direct methods and control by approximations
optimization 25 Aprl .
28 February ® Q-learning and deep-Q learning
@ Linear-quadratic problems in control 2 May
7 March
@ Linearization and iterative LQR
14 March
Syliacbus: https://02465material .pages.compute.dtu.dk/02465public
Help improve lecture by giving feedback on DTU learn
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Housekeeping =
® Feedback on project 2 in about 2 weeks
® Project 3 is online
® You are all enrolled in chattutor (email at s123456@student.dtu.dk)
® The homework problem next week is slightly longer than usual
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Markov decision process =
® Agent/system interacts at times t = 0,1,2,...
® Agent observes state S; € S
® Agent takes action A, € A(S;)
® Agent obtains a reward R, € R; time increments to ¢ + 1
® Dynamics described using conditional probabilities
p(s'rls,a) =Pr{Sis1 =5, Riy1 =71 S = s, Ay = a}
=Pr{w|st. s = fi(s,a,w) and r = —g,(s,a,w)}
® |f the environments stops we call it episodic
[+ ] unf_gridworld.py
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Markov decision process (MDP)

n

Assumptions in a Markov Decision Process

® S, A(s) are finite
® Markov property

Pr{Si+1, Riy1 | Se, A} = Pr{Sis1, Rey1 | So, Ao, ..., S, A}
® The transition probabilities are stationary (time-independent)

P(St41,Te41]5t, ar) = p(sp1,Te 1 |sy, av)

Markov decision process (MDP)
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Markov Decision Process - practically speaking

® A function that says which actions are available in a given state A(s)

® The transition probability p(s’,|s, a)

® The initial state sg

® A function which determines

® if a state is non-terminal, s, € S

® or terminal, sp ¢ S

® S, A(s) are finite

An episode is S(}, Ao, Rl, 5’] 5 Al, R27 ce

, 571, Ar—1, R, ST
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Policy =

A policy is a distribution over actions

w(als) =Pr{A; =al| S, = s}

® Policy is time-independent

® Now a Distribution rather than function a = 7(s) because we want to explore
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Return and discount =

For 0 <~ <1 and any ¢ we define the accumulated v-discounted return

o
Gy =Ryp1 +YRip2 + 7V Rigs + -+ = Z'7'A.Rl,+k+l

k=0

® Equivalent to:

N

i H'\- ".A A\ Sk o e
Jim gn(@n) + > 7 ok, ax,wr)

® Fancy rationale for v < 1:

k=0

® Don't worry about the far and uncertain future

® Actual rationale for v < 1:

® Avoids infinities when v = 1; simpler convergence theory

e tlidr: Use v > 0.9 unless you have good reasons not to.
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Value and action-value function

The state-value function v, (s) is the expected return starting in s and assuming
actions are selected using 7:

(8) = Er [Ge|S: = s8], Ay ~7(:|Sh)

The action-value function ¢, (s, a) is the expected return starting in s, taking
action a, and then follow 7:

Gr(s,a) = Ex [Gy|S; = s, Ay = a]

Gy = Rysy +YRiso + 7V Rigs + -
Note that Jx(s) = —vx(s)
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Where we want to end up =

Bellman equation

Learning algorithm

Bellman expectation equation for v

vr(s) = Ex [R+ 7o (') |s]

Iterative policy evaluation to learn vy

V(s) « Ex [R+4V (8") 3]

Bellman expectation equation for g

Gn(s,a) = Ex [R+vq= (', A") |s,a]

Iterative policy evaluation to learn g

Q(s,a) « Ex [R+1Q (S, A) |s,q]

Policy iteration: Use policy evaluation to estimate v or gx

Improve by acting greedily:

©'(s) < argmax, q=(s,a)

Bellman optimality equation for v

v« (s) = maxq E [R + yv«(5')]s, a]

Value iteration

V(s) ¢ maxqa E[R+~V(5')]s,a]

Bellman optimality equation for g.

ax(s,a)=E[R+vymax,s q«(S’,a’)|s,a]
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Q-value iteration

Q(s,a)+E[R+ymax, Q(S’,a’)|s,a]

Lecture 9
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vz (se) = E[Ris1 +7Grsa|s -Z|:l-',.;~",'
Two first two Bellman equations

n

Fundamental properties of value function

Fundamental properties of value/action-value functions

e Fundamental recursion ® Recursive decomposition of value function. V : § — R initialized randomly
Gy = Ri1 +7G1

Bellman equations

r(8)V(s) = < E[Ri1 + 702V (Se41) |Se = 3]
® Action-value to value function
® Recursive decomposition of action-value function (Q initialized randomly)
Uz (8) = Eqnn(s) [4n (s, )]
gr(s,a) = Q(s,a) < E[Ris1 + vqr(St41, At+1)Q(St41. Ar1)|Se = s, Ay = a

® value-function to action-value

qr(s,a) = E[Rip1 + Y0r (Se41) [Se = 5, Ar = d] (1)

50w
expected U= (5

rewards 1y, N
o o oul)

7 5 s
s sh sy
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Task 1: Evaluate a policy Quiz: Policy evaluation

Iterative policy evaluation

® Given a policy 7, initialize V' randomly. For all s perform updates:

V(s) < > wlals) Y p(s,rls,a) [r+V (s))]

The value function v, for the policy
m(als) = i is is estimated using
Policy Evaluation with v = 0.9.
What is the value function in the

. . L h state indicated by Pacman in the next
until terminal condition is met. V (s) will converge to v.(s)

step?
® |nitialize @ randomly. For all s,a perform updates: a. 3.41
Q(s,a) + Zp (s',r]s,a) |7+~ Z w(d'|s)Q (s',a") b.3.39
s'r a c. 331
d. 3.28

until terminal condition is met. @ will converge to ¢,

o
. - e. Don't know.
O unf_policy_improvement_gridworld.py The environment has a living reward
of R =1 and if it moves into the wall
it stays in the current state.
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= Value/action value to policy s

Optimal value function

The optimal state-value function v, is the maximum value function over all policies . . . . ,

® Given any function ¢ : S x A — R we can define the greedy policy 7’ wrt. ¢

v, (s) = max vy (s)
™

7'(s) = argmax q(s, a)
a
The optimal action-value function g is the maximum action-value function over all

policies ® Given any function v : S — R we can define greedy policy 7’ wrt. v
q«(s,a) = max g (s,a)

7'(s) = argmax Ey . [r +yv(s')]s, a]
We define a partial ordering over policies as

m > 7' if for all st v (s) > v (s)
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Policy improvement theorem

Policy improvement theorem

Let 7 and 7’ be any pair of deterministic policies such that for all s € S:
4 (5,7(5)) = va(s) (@)
Then 7’ > 7 meaning for all s € S
v () > vx(s)

Inequality is strict if any inequality in eq. (2) is strict.

=
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Skipped: Proof of policy improvement theorem

vn(8) < gr (5,7(s))
=E [Ri41 4+ yvr (Si41) [Se = s, Ay = 7' (s)]
=Er [Res1 + y0r (Se41) [Se = 3]
< Er [Ri1 + Y4n (Se41, 7 (Si41)) |Se = 5]
=Ex [Ris1 +7E [Risa + v0r (Sig2) [Seg1, Arpr = 7 (Si41)] S = 8]
=En [Rt+1 +YRit2 + 7 vx (Si42) | = S]
< Ew |Rig1 + YRig2 + Y Reys + 7Pvx (Seqs) 1S = S]

<Ex [Rt+1 +YRis2 + ¥V Ris + VP Rpga + -+ | = S]
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Idea =

Given v, define new policy 7’ to be greedy with respect to v,. Then:

vr(s) = ]Ea~7r(s) [qW(SV a)]
< max qr(s,a), True by simple properties of expectations

= ga(s,0"), a* = argmaxq,(s,a)
a

=qr(s,7'(s)), = greedy policy wrt. v

Observations:

® Being greedy wrt. ™ means 7’ > 7 by the policy-improvement theorem
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Quiz: Optimal action-value function (Exam spring 2023) =

Let v, g. be the optimal value and action-value functions of an MDP, let 7
be any policy and finally let v, and ¢, be the value/action-value function
associated with . Which one of the following statements are true in
general?

a. max; ¢«(s,a) = v.(a)

b. There is a policy 7, a state s and an action a so that ¢.(s,a) < ¢z (s,a)
c. For all 7 and a it is true that ¢.(s,a) > ¢x(s,a)

d. There is a policy m and state s so that max, ¢.(s,a) = vx(s)

e. Don't know.

22 DTU Compute Lecture 9 4 April, 2025

=]
=
=

"

Policy iteration

starting
Var

® Given initial policy 7

® Compute v, using policy evaluation
e Let 7’ be greedy policy vrt. v,

® Repeat until v; = v,

[+ ] lecture_09_policy_improvement.py
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Policy iteration algorithm

luation) for estima

1. Initializ
V(s) € R and #(s) € A(s) arbitrarily for all s € §
2. Policy Evaluation 3. Policy Improvement
Loop: — T~ policy-stable  true
A0 For each s € 8
Loop for each s € §: old-action +
v V(s)
V(s) & Xy 08y v]5,7(5)) [r + 4V ()]
A« max(A, |v - V(s)]) If policy-stable,
until A < 6 return V = v, 4
\_/

® In each step, the Pl theorem guarantees that = < 7’
® There is a limited number of policies so improvement cannot continue
e |f 7 =7/, then the policy is in fact optimal

® (it satisfy the Bellman optimality equation as we will see in a moment)
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Bellmans optimality equations

n

Suppose T, is the policy corresponding to the optimal value function v, (s)

v.(s) = max gy, (s,a)
a

= maxE [R+ vr, (5)|s,a]

Bellmans optimality equations

® Recursion of optimal value function v,.: Given any V
v, (8) = V(5) 4—1n(ellx]E[R,+1 + 0. (Se41)V(Se41)|Se = s, A, =a]  (3)
® Recursion of optimal action-value function ¢.:

4(s,a) = B | Repr + v max @:(Se41,0")|Sp = 5, Ay = (l] (4)

® Theorem: v, (or g.) satisfies the above recursions if (and only if) they
corresponds to the optimal value function
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Value Iteration

Bellmans optimality equations Value Iteration

® Recursion of optimal value function v,.: Given any V
vi(s) =V (s) ¢ 111§1x]E [Rit1 + i (Se41)V (S141)|Se = s, Ay = d] (5)

n

® Recursion of optimal action-value function ¢.: Given any @

4x(s,a) = Q(s.a) < E |Rip1 +7 max @ (St41, A1) Q(Seg1, Apin)|Se = 5, Ay =

[
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[3 Dimitri P Bertsekas and Huizhen Yu.
Distributed asynchronous policy iteration in dynamic programming.
In 2010 48th Annual Allerton Conference on Communication, Control,
and Computing (Allerton), pages 1368-1375. IEEE, 2010.

[@ Richard S. Sutton and Andrew G. Barto.
Reinforcement Learning: An Introduction.
The MIT Press, second edition, 2018.
(Freely available online).

(6)
® Theorem: VI converge to optimal v, (or ¢.)
)
Value Iteration, for estimating 7 ~ 7.
Algorithm parameter: a small threshold § > 0 determining accuracy of estimation
Initialize V(s), for all 5 € §*, arbitrarily except that V(terminal) = 0
Loop:
| Aeo
| Loop for each s € 8:
| veV(s)
| V(s)  max, Xy, p(ss 7], a) [r + AV ()]
| Acmax(A,[v—V(s)])
until A < 0
Output a deterministic policy, 7 ~ ., such that
7(s) = argmax, 3., p(s',7|s,a) [r + 7V (s")]
OB ST G869 vi v.py Lecture 9 4 April, 2025

Note from lecture 3: Stationary problem = stationary policy =

Ji(zr) = II&ikn]E [Jk+1 (Fre(@ry wg, wi)) + gr (T, wg, wi))
Assume the problem is independent of k:

Ji(x) = min B [Jkt1 (f(z,u,w)) + g (@, u, w)]

® It will be true that Jy = J; = J5 etc.
® Policies will be the same initially 7o ~ 7 etc.

In fact just iterate to convergence:
J(2)  minE[J (f(z,u,w)) + g (,u,w0)]
This is in fact value iteration
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Note from lecture 3: Action-value formulation =
Ji(xg) = nq}in E[Js1 ([ (g, wi, w))+gk (g, wg, wy)]
We want to remove the green part
Ji(2),) = min Q(xg, uy)
s
Q(zg,u) = E[ Jpp1 (fr(@p, wp, wi)) +gx @k, wg, wy)]
[ —
:"‘i““k+1 Q(Tp1,Uk41)
Substituting, the entire equation becomes red:
Q(zp,u) =E }Lniu Q (fr(@p, up, wr), ugs1) + gr (g, g, W)
k+1
® Simply VI for Q-functions!
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Asynchronous updates

® |n synchronous updates, we do

® For each s € S compute:
v (s) < Ex[R 4+ yv:(5")]s]
® When done, set v, v

® |n asynchronous updates, we re-use the updated values within one sweep

® For each s € S compute:
v () < Ex[R+ yv(5)|s]

Both converge: You implement the asynchronous version, but most
analysis is done in the synchronous version. It is also possible to structure
sweeps for efficiency (see [BY10])
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Convergence results =
We will focus on the value function as the action-value results are very
similar. First we define the operators 7 and 7:
(Tew)(s) = Ex [R+70(S")]s] (7)
(Tw)(s) = max B [R+yv(9")]s,a (8)
If the state space is discrete S = {s1,..., sy} we can define the vector
v; = v(s;)

then the operators act on these vectors 7 : RN — RV

Fixed-point theorem
Let T: A+ A be a function and A C R" a compact subset of R™. Then if for all
xz,z€ A

[T(@) =Tz <7lle—z[, 0<y<l1
then repeatedly applying 7" to any x will converge to a single, unique fixed point
x* =T (x%)
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Existence of solutions to Bellmans equations =

® Both the operators 7 and 7 are contractions in the max-norm
[|z|l = max; |z;|. Example:
1T — Towlloo = max[Ex [R+70(S")|si] ~ Bx [R+u(S)lsil  (9)
= max |3 p(s'|si, @) (y0(s') — 7u(s)) (10)
>
< ymax 3 p(s'|si, 0) [o(s) — w(s)| (11)

< yma s'|si, - = - 12
,Wmilxzp(*ls,(l)”'v wl=vlv-wl,  (12)

® Consequence: Repeatedly applying Bellmans operators will lead to a single, fixed
point policy Tv, = v, and T,v, = v,

® Therefore, PE/PI converge to v,. VI also converges, but does it converge to the
maximum?
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Asynchronous updates =
® In synchronous updates, we iterate for all s € S:
v (8) « Ex[R + yv:(S')]s]
then vy vl
® |n synchronous updates, we re-use the updated values within one sweep
vr(s) < Ex[R + yv:(5")|s]
Both converge. It is also possible to structure sweeps for efficiency (see
[BY10])
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VI and maximum =

® We know: Value iteration converge to a unique fixed point
v. =(TT---T)(v)
® Maximum value function is defined as

0(s) = max vg(s)
P

® |t could be the case that ©(s) = v (s), 9(s") = v/ (s’), and neither was equal to

0. (8), v:(8)

34 DTU Compute Lecture 9 4 April, 2025

=]
=
=

"

Value iteration solution corresponds to a policy

Show that v,(s) < 9(s)
® Value iteration gives us v, as a fixed point

® From v, we can construct the action-values
¢ (s,a) = E[R +yv.(5)|s,d]
® From these we can define the greedy policy 7.

m(s) = arg max q. (s, a)
a

® By definition now v, (s) = (Tw.)(s) = (Tr-v)(s)

® Therefore v, is the value function of the policy ., and so v.(s) < ©(s) for all s
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Value iteration is optimal

Show that v, (s) > 9(s)
® Assume v.(s) < 0r(s) for a specific s, m
® Let m; be the greedy policy according to ©. We know that
U < Vr,

by the policy improvement theorem
® Therefore, v,(s) < ¥x(s) < vr, (8)
® Repeat again to obtain 75 and notice we are doing policy iteration
® Since we are doing policy iteration eventually 7, — 7o

® |t must be the case v,__ is a fixed-point of 7, otherwise by the policy
improvement theorem we could select a better (greedy) policy

® Since the fixed point is unique, v;_ = v., which is a contradiction
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