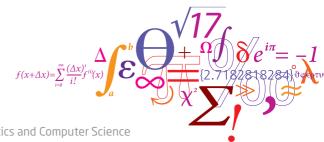


02465: Introduction to reinforcement learning and control

Exploration and Bandits

Tue Herlau

DTU Compute, Technical University of Denmark (DTU)



DTU Compute

Department of Applied Mathematics and Computer Science

Lecture Schedule

Dynamical programming

- 1 The finite-horizon decision problem 31 January
- 2 Dynamical Programming 7 February
- 3 DP reformulations and introduction to Control

14 February

Control

- Discretization and PID control 21 February
- 6 Direct methods and control by optimization

28 February

- 6 Linear-quadratic problems in control 7 March
- Linearization and iterative LQR

14 March

Reinforcement learning

8 Exploration and Bandits

21. March

18 April

- Opening Policy and value iteration 4 April
- Monte-carlo methods and TD learning 11 April
- Model-Free Control with tabular and linear methods
- Eligibility traces and value-function approximations 25 April
- Q-learning and deep-Q learning 2 May

DTU Compute Lecture 8 21 March, 2025

Syllabus: https://02465material.pages.compute.dtu.dk/02465public

Help improve lecture by giving feedback on DTU learn

Reading material:

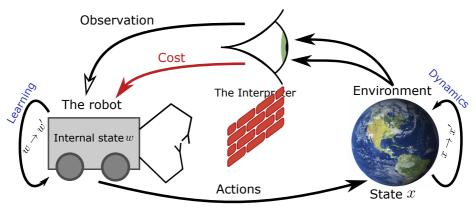
• [SB18, Chapter 1; Chapter 2-2.7; 2.9-2.10] Only as background

Learning Objectives

- Exploration/exploitation problem
- Bandits as a simplified reinforcement learning setting
- Formalizing the bandit problem
- Algorithms for solving the bandit problem

Housekeeping

- Project evaluations are online
- Many singleton groups try to merge groups (use Discord or the classrooms)
 - No advantage to working alone.
- Sorry for messing up the quiz last time; **Option a** was correct (I remembered it as false and didn't read it during class..); I have uploaded an improved version of the quiz in the slides and will refrain from double-negation.



- Dynamics of world not known
- Simultaneously learn the environment and maximize expected reward
- Balance exploration and exploitation

Bandit studies this in an idealized setting

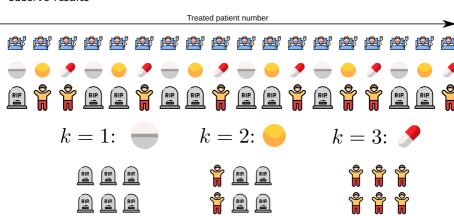
Bandits, examples

- Suppose you have a large number of patients $t=1,2,\ldots$ with the same disease
- You have access to k drugs $a=0,1,\ldots,k-1$ with different outcome probabilities
- Outcome of treatment is either that the patient recovers, $R_t = 1$, or not $R_t = 0$
- Goal is to maximize $\sum_{t=1}^{T} R_t$

Treated patient number

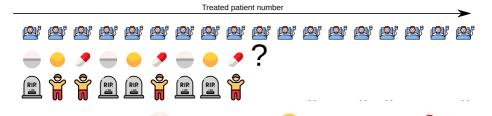
Idea 1: Statistics!

- \bullet Divide first T patients into K groups of $S=\frac{T}{K}$ patients
- Administer drugs to each group
- observe results



Bandit approach

- After t-1 choices of actions A_1, \ldots, A_{t-1} and observed rewards R_1, \ldots, R_{t-1}
- ullet Decide next action A_t to maximize reward
- Bandit assumption: Action A_t only affects R_t
 - Personalized medicine
 - Evaluating similar, approved drugs (low risk)
 - SMART trials/JITAIs



k = 2:

k = 1:

k = 3:

Example: An opinion columnist

Suppose you are writing for a major newspaper which relies on social media to get as many reads as possible. You can choose between 5 headlines, and your job is to get as many clicks as possible:

- ullet k=0: "With less destructive nukes on the way, it's time for the left to say good-bye to those annoying non-proliferation treaties."
- ullet k=1: "Opinion | The upside of nuclear war? Making popcorn without a microwave."
- k=2: "Joe Biden has prevented a nuclear holocaust. But how will that play with suburban moms this fall?"
- k=3: "Opinion | Nuclear war may not be woke. But it's not a war crime."
- ullet k=4: "Opinion | With rising temperatures, would a nuclear winter really be that bad?"

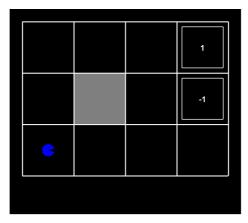
But which one to choose?

Example: An opinion columnist

- For each exposure t=1,2,... on twitter, selects a headline $A_t=0,\ldots,k-1$
- Observe whether the user clicks the story $R_t \in \{0,1\}$
- Use this to select the next headline for the next user $A_{t+1} = a$
- You want to maximize total clicks, knowing the story has a finite lifespan:

$$\sum_{t=1}^{ extsf{2-3 days?}} R_t$$

- In a state s, select optimal action a, then observe what reward we get
- It is like a bandit problem in each state (but more about that in a few weeks)



Many types of bandits

Sequentially take decisions A_1,A_2,\ldots and observe rewards R_1,R_2,\ldots

Stationary In a stationary bandit the reward distribution does not change Nonstationary The environment can change (but not as consequence of our actions)

Contextual You get a bit of information to make your decision

Structured Reward of different arms can be inferred from each other

(Bayesian black box optimization)

Stationary bandits

- Action at time step $t = 1, 2, \ldots$ is A_t
- Reward is R_t
- Observations available to make action at t:

$$H_t = (A_1, R_1, A_2, R_2, \dots, A_{t-1}, R_{t-1})$$

• Actions are generated from a **policy** π which we learn based on H_t :

$$A_t \sim \pi_t(\cdot)$$

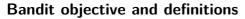
• Value of an action is

$$q_*(a) = \mathbb{E}[R_t | A_t = a], \quad a = 0, \dots, K - 1$$

- Optimal strategy at t is to select action with highest value
- ullet Our learned estimate of $q_*(a)$ at time t is $Q_t(a)$

Exploit Select action a with **highest** estimate of $Q_t(a)$ Explore Do something else to **learn** more about $Q_t(a)$

ullet Note bandit methods can be classified according to what they learn about $Q_t(a)$



Objective 1: Average reward at time t and total reward up to time T

$$\mathbb{E}_{\pi}\left[q_{*}(a_{t})\right], \quad \sum_{t=1}^{T} \mathbb{E}_{\pi}\left[q_{*}(a_{t})\right]$$

Optimal value and optimal action

$$V^* = \max_{a} [q_*(a)], \quad a_t^* = \arg\max_{a} [q_*(a)]$$

Objective 2: Fraction optimal actions

$$P_{\pi}(A_t = a_t^*)$$

Gab

$$\Delta_a = V^* - q_*(a)$$

Objective 3: Cumulative regret

$$l_t = \mathbb{E}\left[V^* - q_*(a_t)\right], \quad L_T = \sum_{t=1}^{T} l_t$$

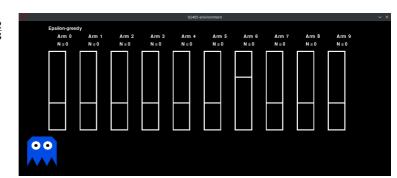
Goal is to maximize cumulative reward \leftrightarrow minimize total regret

Quiz: What is the regret?

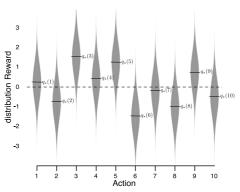
- Reward $R_t = 1$ on win and $R_t = 0$ on loss.
- The win probabilities are shown by horizontal lines
- What is the regret for a policy which always select a=3? $(\pi(a=3)=1)$

$$l_t = \mathbb{E}[V^* - q_*(a_t)], \quad V^* = \max_a [q_*(a)]$$

- a. It is a random quantity (either zero or 1)
- b. It depends on how many actions we have taken
- **c.** It is about $\frac{1}{3}$
- **d.** It is about $-\frac{2}{3}$



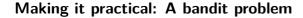
The k = 10-armed testbed



- Let k=10 and select each $q_*(a) \sim N(\mu=0, \sigma^2=1)$
- for each action a, select reward

$$R_t|a \sim \mathcal{N}(\mu = q_*(a), \sigma^2 = 1)$$

- ullet Let each agent interact for a number of steps ~ 1000
- ullet Repeat procedure for 2000 runs to calculate average agent performance



10

11 12 13

14

15

16 17

18

19

20

21


```
# bandits.py
class BanditEnvironment(Env):
   def __init__(self, k : int):
        super().__init__()
        self.observation_space = Discrete(1) # Dummy observation space with a single o
                                             # The arms labelled 0,1,\ldots,k-1.
        self.action space = Discrete(k)
        self.k = k # Number of arms
   def reset(self):
       raise NotImplementedError("Implement the reset method")
   def bandit_step(self, a):
       reward = 0 # Compute the reward associated with arm a
       regret = 0 # Compute the regret, by comparing to the optimal arms reward.
       return reward, regret
   def step(self, action):
       reward, average_regret = self.bandit_step(action)
        info = {'average_regret': average_regret}
       return None, reward, False, False, info
```

Action-value method

Idea: approximate $q_*(a)$ by keeping track of $Q_t(a)$

$$Q_t(a) \doteq \frac{\text{ sum of rewards when } a \text{ taken prior to } t}{\text{number of times } a \text{ taken prior to } t} = \frac{\sum_{i=1}^{t-1} R_i \cdot \mathbf{1}_{A_i=a}}{\sum_{i=1}^{t-1} \mathbf{1}_{A_i=a}} = \frac{S_t(a)}{N_t(a)}$$

Explore with probability ϵ

- Action selection π
 - ullet With probability ϵ select random action
 - With probabilty 1ϵ select $a^* = \arg \max_a Q_t(a)$
- As only one entry A_t of Q_t change at a time track number of times a was selected n=N(a):

$$Q_n \doteq \frac{R_1 + R_2 + \dots + R_{n-1}}{n-1} = \frac{S_n(a)}{N(a)}$$
 (1)

One can show that:

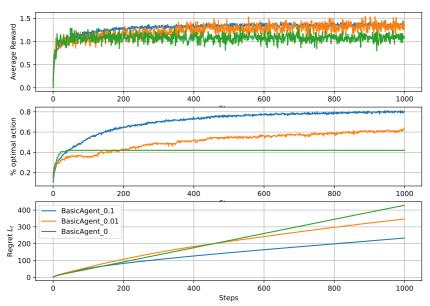
$$Q_{n+1} = Q_n + \frac{1}{n} [R_n - Q_n]$$

• Given observed $a = A_t$, $r = R_t$ update:

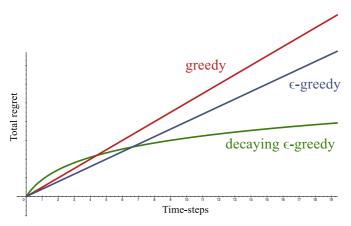
A simple bandit algorithm

```
\begin{aligned} &\text{Initialize, for } a = 1 \text{ to } k: \\ &Q(a) \leftarrow 0 \\ &N(a) \leftarrow 0 \end{aligned} &\text{Loop forever:} \\ &A \leftarrow \left\{ \begin{array}{ll} \arg \max_a Q(a) & \text{with probability } 1 - \varepsilon & \text{(breaking ties randomly)} \\ \text{a random action} & \text{with probability } \varepsilon & \\ &R \leftarrow bandit(A) \\ &N(A) \leftarrow N(A) + 1 \\ &Q(A) \leftarrow Q(A) + \frac{1}{N(A)}[R - Q(A)] & Q_{n+1} = Q_n + \frac{1}{n} \left[ R_n - Q_n \right] \end{aligned} \right.
```


Evaluated on StationaryBandit 0 for 150 episodes



Regret asymptotics



- Fixed- ε algorithms have linear regret
- With decreasing ε it is possible to get sub-linear regret, but only by assuming we know things about the reward distribution

• Theoretically best possible bandit method has logarithmic regret.

Confidence-bound methods

ullet Estimate an upper confidence bound $\hat{U}_t(a)$ for $q_*(a)$ st.

$$q_*(a) \le \hat{U}_t(a) + Q_t(a)$$

with high probability

- Generally
 - If $N_t(a)$ low $\to \hat{U}_t(a)$ high
 - If $N_t(a)$ high $\to \hat{U}_t(a)$ low
- Select actions to minimize

$$\underset{a}{\operatorname{arg\,min}} \left[\hat{U}_t(a) + Q_t(a) \right]$$

UCB1

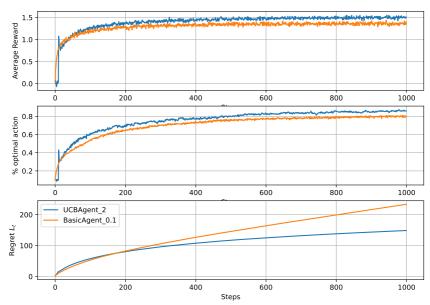
$$A_t = \operatorname*{argmax}_{a} \left[Q_t(a) + c \sqrt{\frac{\ln t}{N_t(a)}} \right]$$

Asymptotic logarithmic regret when $R_t \in [0,1]$

$$\lim_{t \to \infty} L_t \le \sum_{a \ne a^*, \Delta_a > 0} \left(\frac{4 \ln t}{\Delta_a} + 2\Delta_a \right)$$

 The variant UCB-normal obtains logarithmic regret on normal reward distributions

Evaluated on StationaryBandit_0 for 2000 episodes



Quiz: How does UCB explore?

Consider the update rule for UCB1:

$$A_t = \operatorname*{argmax}_{a} \left[Q_t(a) + c \sqrt{\frac{\ln t}{N_t(a)}} \right]$$

Which one of the following statements is true about UCB1?

- a. UCB1 requires that the rewards are positive
- **b.** If one arm give a much higher reward than the other, UCB1 will eventually only select this arm
- **c.** If one arm is much, much worse than the others, UCB1 will eventually stop selecting that arm
- **d.** It is possible to predict which arms UCB1 will select k steps in the future
- **e.** At least one of the upper-confidence estimates $\hat{U}_t(a)$ will converge to 0.
- f. Don't know.

Non-stationary bandits

• These is a (hidden) state S_t which evolves as:

$$P(S_{t+1}, R_t | S_t = s, A_t = a) = P(S_{t+1} | S_t = s) P(R_t | S_t = s, A_t = a)$$

- Example: Add normal noise to $q_*(a)$ at each time step
- One idea is to replace $\frac{1}{n}$ with $\alpha_t(a)$ and use scheduling:

Previous update:
$$Q_{n+1}=Q_n+rac{1}{n}\left[R_n-Q_n
ight]$$

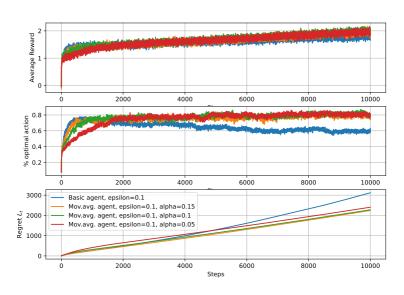
New update: $Q_{n+1}=Q_n+lpha\left[R_n-Q_n
ight]$

- ullet Constant lpha means fast adaption but no convergence
- Typically chose

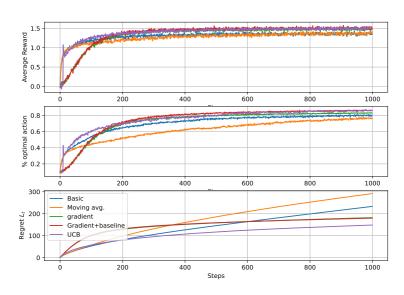
$$\sum_{n=1}^{\infty}\alpha_n(a)=\infty \quad \text{ and } \quad \sum_{n=1}^{\infty}\alpha_n^2(a)<\infty$$

27

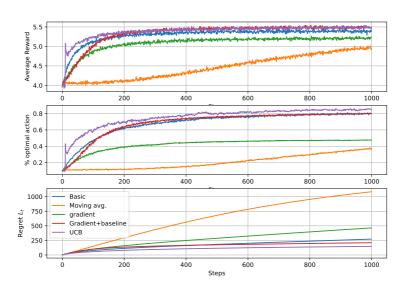
Evaluated on NonstationaryBandit 0 0.01 for 400 episodes



Stationary bandit (no offset)



Stationary bandit (with offset)



Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. The MIT Press, second edition, 2018. (Freely available online).

DTU

Appendix: Probability-matching methods

- ullet Our goal is to find the optimal probability distribution π
- We can parameterize any distribution as

$$\pi(a) = \frac{e^{H_a}}{\sum_{b=1}^k e^{H_b}}$$

for a weight-vector $H \in \mathbb{R}^k$

ullet Optimal π is the one maximizing expected reward

$$\mathbb{E}_{\pi}\left[R_{t}\right] = \sum_{a} \pi_{t}(a; H) q_{*}(a) = E(H)$$

- This is a function of H
- Let's just do gradient descent, WCGW?

$$H_{t+1} \leftarrow H_t - \alpha \nabla_H E(H)$$

Gradient bandit: Derivation

$$\frac{\partial}{\partial H}E(H) = \sum_{a} \pi(a; H)q^{*}(a) \frac{\partial \log \pi(a; H)}{\partial H}$$
 (2)

We can sample from $\pi(a)$ and then our environment will give an estimate of $q^*(a)$

$$\sum_{a} \pi(a; H) q^{*}(a) \frac{\partial \log \pi(a; H)}{\partial H} \approx \frac{1}{S} \sum_{s=1}^{S} R_{t}(a_{s}) \frac{\partial \log \pi(a_{s}; H)}{\partial H}$$
(3)

ullet Nobody has told us we cannot use S=1

$$\nabla E(H) \approx R_t \frac{\partial \log \pi(a_t; H)}{\partial H}$$

$$H_{t+1}(A_t) \doteq H_t(A_t) + \alpha R_t \left(1 - \pi_t \left(A_t\right)\right), \quad \text{and}$$

$$H_{t+1}(a) \doteq H_t(a) - \alpha R_t \pi_t(a), \quad \text{for all } a \neq A_t$$

Math facts used in derivation

Kullback-Leibner divergence Given discrete probability distribution p and q:

$$KL[p;q] = \sum_{i=1}^{n} p(x_i) \log \frac{q(x_i)}{p(x_i)}$$

The logarithm trick for $q(x, \theta) > 0$

$$\frac{\partial}{\partial \theta} \int q(x,\theta) f(x) dx = \int q(x,\theta) \frac{\partial \log q(x,\theta)}{\partial \theta} f(x) dx$$

Gradient bandits

- Let \bar{R}_t be the average reward over $0,\ldots,t-1$
- Update weights as

$$\begin{split} H_{t+1}\left(A_{t}\right) &\doteq H_{t}\left(A_{t}\right) + \alpha\left(R_{t} - \bar{R}_{t}\right)\left(1 - \pi_{t}\left(A_{t}\right)\right), \quad \text{ and } \\ H_{t+1}(a) &\doteq H_{t}(a) - \alpha\left(R_{t} - \bar{R}_{t}\right)\pi_{t}(a), \quad \qquad \text{for all } a \neq A_{t} \end{split}$$

- Why? **legal** because they do not change the gradient, **sensible** because they can reduce variance/promote exploration
- To my knowledge, no theoretical analysis exists
- This gradient-trick is basis of **policy gradient** methods for reinforcement learning

Results

Evaluated on StationaryBandit 4 for 100 episodes

