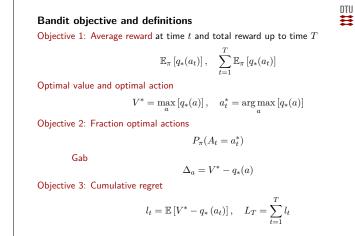


Looking ahead: Reinforcement learning	Many types of bandits	
 In a state s, select optimal action a, then observe what reward we get It is like a bandit problem in each state (but more about that in a few 	 weeks) Sequentially take decisions A₁, A₂, and observe rewards R₁, R₂, Stationary In a stationary bandit the reward distribution does not change Nonstationary The environment can change (but not as consequence of our actions) Contextual You get a bit of information to make your decision Structured Reward of different arms can be inferred from each other (Bayesian black box optimization) 	
11 DTU Compute Lecture 8	11 March, 2025 12 DTU Compute Lecture 8 21 March, 2025	

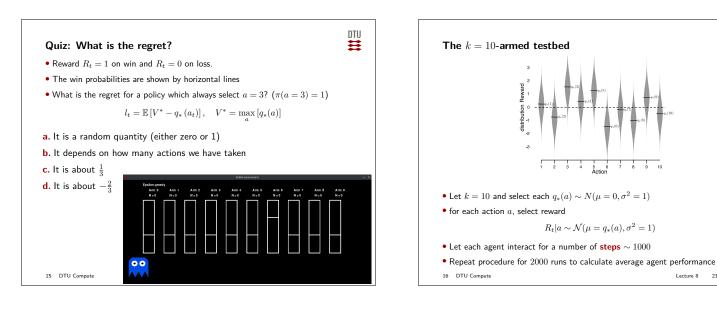
DTU Stationary bandits • Action at time step $t = 1, 2, \ldots$ is A_t Reward is R_{*} • Observations available to make action at t: $H_t = (A_1, R_1, A_2, R_2, \dots, A_{t-1}, R_{t-1})$ • Actions are generated from a **policy** π which we learn based on H_t : $A_t \sim \pi_t(\cdot)$ • Value of an action is $q_*(a) = \mathbb{E}[R_t | A_t = a], \quad a = 0, \dots, K - 1$ \bullet Optimal strategy at t is to select action with highest value • Our learned estimate of $q_*(a)$ at time t is $Q_t(a)$ Exploit Select action a with **highest** estimate of $Q_t(a)$ Explore Do something else to learn more about $Q_t(a)$ • Note bandit methods can be classified according to what they learn about $Q_t(a)$ 13 DTU Compute Lecture 8 21 March, 2025



Goal is to maximize cumulative reward \leftrightarrow minimize total regret 21 March, 2025 14 DTU Compute Lecture 8

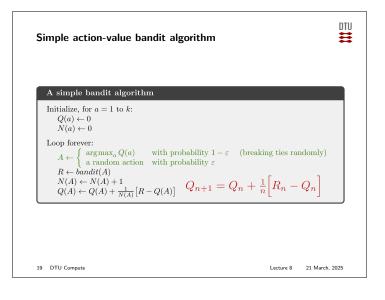
DTU

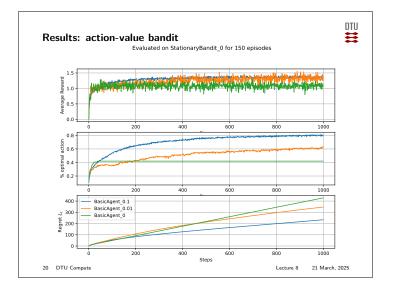
Lecture 8 21 March, 2025

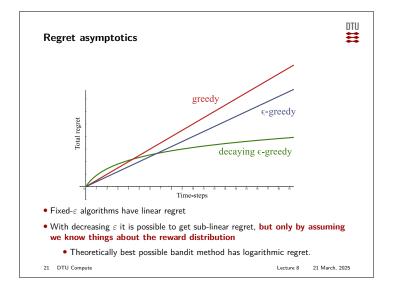


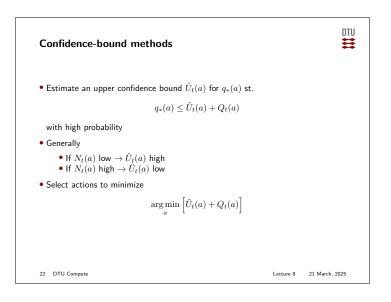
Ma	oking it practical: A bandit problem
# 2	andits.py
	ss BanditEnvironment(Env):
	<pre>definit(self, k : int):</pre>
	<pre>super()init()</pre>
	self.observation_space = Discrete(1) # Dummy observation space with a single
	<pre>self.action_space = Discrete(k) # The arms labelled 0,1,,k-1.</pre>
	<pre>self.k = k # Number of arms</pre>
	def reset(self):
	<pre>raise NotImplementedError("Implement the reset method")</pre>
	<pre>def bandit_step(self, a):</pre>
	reward = 0 # Compute the reward associated with arm a
	<pre>regret = 0 # Compute the regret, by comparing to the optimal arms reward. return reward, regret</pre>
	Teculi Tewaru, Tegrec
	<pre>def step(self, action):</pre>
	reward, average_regret = self.bandit_step(action)
	<pre>info = {'average_regret': average_regret}</pre>
	return None, reward, False, False, info
	<u> </u>
17	DTU Compute Lecture 8 21 March, 2025

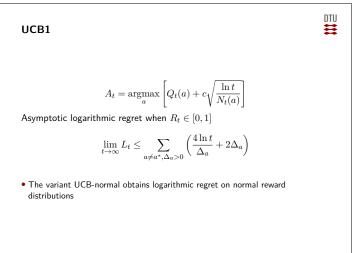
Action-value method Idea: approximate $q_*(a)$ by keeping track of $Q_t(a)$	DTU Ħ
$Q_t(a) \doteq \frac{\text{sum of rewards when } a \text{ taken prior to } t}{\text{number of times } a \text{ taken prior to } t} = \frac{\sum_{i=1}^{t-1} R_i \cdot 1_{A_i=a}}{\sum_{i=1}^{t-1} 1_{A_i=a}}$	$\frac{1}{N_t(a)} = \frac{S_t(a)}{N_t(a)}$
Explore with probability ϵ	
• Action selection π	
• With probability ϵ select random action • With probabilty $1 - \epsilon$ select $a^* = \arg \max_a Q_t(a)$	
- As only one entry A_t of Q_t change at a time track number of times a we selected $n=N(a)$:	IS
$Q_n \doteq \frac{R_1 + R_2 + \dots + R_{n-1}}{n-1} = \frac{S_n(a)}{N(a)}$	(1)
One can show that: $Q_{n+1} = Q_n + \frac{1}{n} \left[R_n - Q_n \right] \label{eq:Qn+1}$	
• Given observed $a = A_t$, $r = R_t$ update:	
18 DTU Compute Lecture 8 21 M	March, 2025

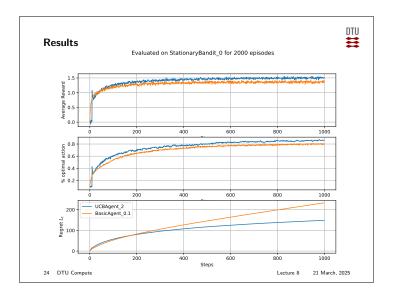












Quiz: How does UCB explore?

Consider the update rule for UCB1:

 $A_t = \operatorname*{argmax}_{a} \left[Q_t(a) + c \sqrt{\frac{\ln t}{N_t(a)}} \right]$

Which one of the following statements is true about UCB1?

- a. UCB1 requires that the rewards are positiveb. If one arm give a much higher reward than the other, UCB1 will
- eventually only select this arm $\ensuremath{\textbf{c}}.$ If one arm is much, much worse than the others, UCB1 will eventually
- stop selecting that arm d. It is possible to predict which arms UCB1 will select k steps in the future
- **e.** At least one of the upper-confidence estimates $\hat{U}_t(a)$ will converge to 0.
- f. Don't know.

25 DTU Compute

Lecture 8 21 March, 2025

DTU

• These is a (hidden) state S_t which evolves as:

 $P(S_{t+1}, R_t | S_t = s, A_t = a) = P(S_{t+1} | S_t = s) P(R_t | S_t = s, A_t = a)$

- Example: Add normal noise to $q_*(a)$ at each time step
- One idea is to replace $\frac{1}{n}$ with $\alpha_t(a)$ and use scheduling:

Previous update:
$$Q_{n+1} = Q_n + \frac{1}{n} [R_n - Q_n]$$

New update: $Q_{n+1} = Q_n + \alpha [R_n - Q_n]$

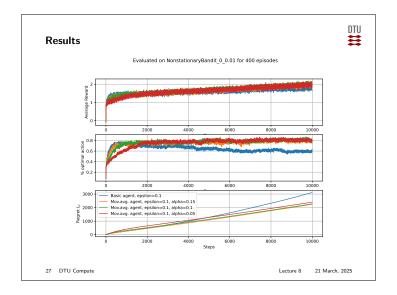
• Constant α means fast adaption but no convergence • Typically chose

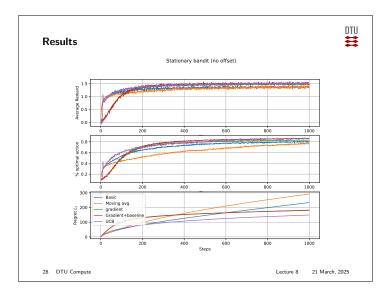
$$\sum_{n=1}^\infty \alpha_n(a) = \infty \quad \text{ and } \quad \sum_{n=1}^\infty \alpha_n^2(a) < \infty$$

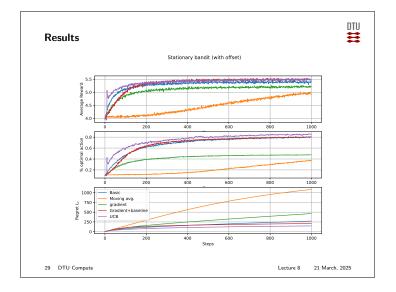
26 DTU Compute

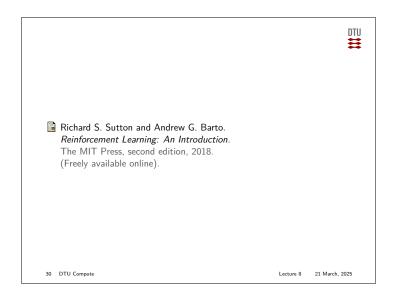
21 March, 2025

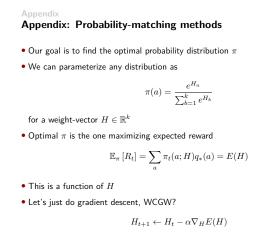
DTU











31 DTU Compute

Lecture 8 21 March, 2025

DTU

Gradient bandit: Derivation

$$\frac{\partial}{\partial H}E(H) = \sum_{a} \pi(a; H)q^{*}(a)\frac{\partial \log \pi(a; H)}{\partial H}$$
(2)

We can sample from $\pi(a)$ and then our environment will give an estimate of $q^{\ast}(a)$

$$\sum_{a} \pi(a; H) q^{*}(a) \frac{\partial \log \pi(a; H)}{\partial H} \approx \frac{1}{S} \sum_{s=1}^{S} R_{t}(a_{s}) \frac{\partial \log \pi(a_{s}; H)}{\partial H}$$
(3)

 \bullet Nobody has told us we cannot use S=1

32 DTU Compute

$$\begin{split} \nabla E(H) &\approx R_t \frac{\partial \log \pi(a_t;H)}{\partial H} \\ H_{t+1}\left(A_t\right) &\doteq H_t\left(A_t\right) + \alpha R_t\left(1 - \pi_t\left(A_t\right)\right), \quad \text{and} \\ H_{t+1}(a) &\doteq H_t(a) - \alpha R_t \pi_t(a), \qquad \qquad \text{for all } a \neq A_t \end{split}$$

Lecture 8 21 March, 2025

DTU

≣

DTU Math facts used in derivation Gradient bandits ≣ • Let \bar{R}_t be the average reward over $0,\ldots,t-1$ Kullback-Leibner divergence Given discrete probability distribution p and q: • Update weights as $\mathrm{KL}[p;q] = \sum_{i=1}^{n} p(x_i) \log \frac{q(x_i)}{p(x_i)}$ $H_{t+1}\left(A_{t}\right)\doteq H_{t}\left(A_{t}\right)+\alpha\left(R_{t}{-}\bar{\underline{R}}_{t}\right)\left(1-\pi_{t}\left(A_{t}\right)\right),\quad\text{ and }\quad$ $H_{t+1}(a) \doteq H_t(a) - \alpha \left(R_t - \overline{R}_t \right) \pi_t(a),$ for all $a \neq A_t$ The logarithm trick for $q(x, \theta) > 0$ • Why? legal because they do not change the gradient, sensible because they can $\frac{\partial}{\partial \theta} \int q(x,\theta) f(x) dx = \int q(x,\theta) \frac{\partial \log q(x,\theta)}{\partial \theta} f(x) dx$ reduce variance/promote exploration • To my knowledge, no theoretical analysis exists • This gradient-trick is basis of **policy gradient** methods for reinforcement learning 33 DTU Compute Lecture 8 21 March, 2025 34 DTU Compute Lecture 8 21 March, 2025

