

DTU

≣

Lecture 7 14 March, 2025

Solution: Linearization!

Assume a general dynamics:

$$\boldsymbol{x}_{k+1} = \boldsymbol{f}_k\left(\boldsymbol{x}_k, \boldsymbol{u}_k\right), \quad c\left(\boldsymbol{x}_k, \boldsymbol{u}_k\right)$$

Assume system is near
$$\bar{x}$$
, \bar{u} . Expand using Jacobians

$$oldsymbol{f}_k(oldsymbol{x}_k,oldsymbol{u}_k)pproxoldsymbol{f}_k(oldsymbol{ar{x}},oldsymbol{ar{u}})+\underbrace{rac{\partialoldsymbol{f}_k(oldsymbol{ar{x}},oldsymbol{ar{u}})}{\partialoldsymbol{u}}(oldsymbol{x}_k-oldsymbol{ar{x}})+\underbrace{rac{\partialoldsymbol{f}_k(oldsymbol{ar{x}},oldsymbol{ar{u}})}{\partialoldsymbol{u}}(oldsymbol{u}_k-oldsymbol{ar{u}})$$

Simplifies to:

$$\boldsymbol{x}_{k+1} = A_k \boldsymbol{x}_k + B_k \boldsymbol{u}_k + \boldsymbol{f}_k(\bar{\boldsymbol{x}}, \bar{\boldsymbol{u}}) - A_k \bar{\boldsymbol{x}} - B_k \bar{\boldsymbol{u}}$$

19 DTU Compute

Lecture 7 14 March, 2025

DTU

≘

LQR Tracking around Nonlinear Trajectory
$$\mathbf{\mathfrak{f}}$$

Given initial guess \bar{x}_k, \bar{u}_k (nominal trajectory) for $k = 1, 2, ..., N-1$
 $x_{k+1} \approx \underbrace{f_k(\bar{x}_k, \bar{u}_k)}_{\bar{x}_{k+1}} + \underbrace{\frac{\partial f_k}{\partial x}(\bar{x}_k, \bar{u}_k)}_{A_k}(\underbrace{x_k - \bar{x}_k}_{\delta x}) + \underbrace{\frac{\partial f_k}{\partial u}(\bar{x}_k, \bar{u}_k)}_{B_k}(\underbrace{u_k - \bar{u}_k}_{\delta u})$
Introduce new variables signifying deviation around the nominal trajectory:
 $\delta x_k = x_k - \bar{x}_k, \quad \delta u_k = u_k - \bar{u}_k.$
Back-substituting gives:
 $\delta x_{k+1} = A_k \delta x_k + B_k \delta u_k$

Expansion of the cost function We then expand the cost-function around: $z_k = \begin{bmatrix} x_k \\ u_k \end{bmatrix}$ and $\bar{z} = \begin{bmatrix} \bar{x} \\ \bar{u} \end{bmatrix}$: $c_k(x_k, u_k) \approx c_k(\bar{x}, \bar{u}) + (\nabla_z c_k(\bar{x}, \bar{u}))^\top (z_k - \bar{z}) + \frac{1}{2}(z_k - \bar{z})^\top H_{\bar{z}}(z_k - \bar{z})$ Multiplying out all the terms gives a quadratic approximation in the δ -coordinates $c_k = c_k(\bar{x}, \bar{u})$ $c_{xx,k} = H_{xc_k}(\bar{x}, \bar{u})$, $c_{u,k} = \nabla_u c_k(\bar{x}, \bar{u})$ $c_{xx,k} = H_{xc_k}(\bar{x}, \bar{u})$, $c_{u,k} = H_u c_k(\bar{x}, \bar{u})$ $c_{ux,k} = J_x \nabla_u c_k(\bar{x}, \bar{u})$

Algorithm 3 iLQR Require: Given initial state #0				
1. 1	$-i\pi \leftarrow 10^{-6}$ $\mu_{max} \leftarrow 10^{10}$ $\mu \leftarrow 1$ $\Delta_0 \leftarrow 2$ and $\Delta \leftarrow \Delta_0$			
2: Ir	itialize \bar{x}_{l}, \bar{u}_{l} as before			
3 fc	$\mathbf{r}_{i} = 0$ to a pre-specified number of iterations do			
4:	$A_k, B_k, c_k, c_{\pi,k}, c_{\mu,k}, c_{\pi\pi,k}, c_{\mu\pi,k}, c_{\mu\mu,k} \leftarrow \text{Get-derivatives}(\bar{a})$	\bar{x}_k, \bar{u}_k		
5:	$L_k, l_k \leftarrow Backward-Pass(A_k, B_k, c_k, c_{\pi,k}, c_{\mu,k}, c_{\pi,k}, c_{\mu,k}, c_{\mu,k$	Cum k. (1)		
6:	$J' \leftarrow \text{Cost-of-trajectory}(\bar{x}_k, \bar{u}_k)$	· uu,,		
7:	for $\alpha = 1$ to a very low value do			
8:	$\hat{x}_k, \hat{u}_k \leftarrow FORWARD-PASS(\bar{x}_k, \bar{u}_k, L_k, l_k, \alpha)$			
9:	$J^{\text{new}} \leftarrow \text{Cost-of-trajectory}(\hat{x}_k, \hat{u}_k)$			
10:	if $J^{new} < J'$ then			
11:	if $\frac{1}{J'} J^{new} - J' < a \text{ small number then}$			
12:	Method has converged, terminate outer loop and ret	turn		
13:	end if			
14:	$J' \leftarrow J^{new}$			
15:	$ar{m{x}}_k \leftarrow \hat{m{x}}_k$ and $ar{m{u}}_k \leftarrow \hat{m{u}}_k$			
16:	α accepted: Update Δ and μ using eq. (17.19) \triangleright R	Reduce regularization		
17:	Break loop over α			
18:	end it			
19:	end for			
20:	If No o-value was accepted then			
21:	Opdate △ and µ using eq. (17.16) ▷ In	ncrease regularization		
22:	end in			
23: E	compute controller $\int_{\infty} 1^{N-1}$ as before from L .			
24. 0	Simplify controller $\{\pi_k\}_{k=0}$ as before from D_k, v_k			
30	lecture_06_pendulum_ilqr_L			
30	lecture 06 pendulum ilgr ubar			
	DTU Compute		Lecture 7	14 March. 2025
30	lecture_06_cartpole			

Appendix: MPC can be understood as dynamical programmin

$$J^{*}(x_{0}) = \min_{u_{0}} \mathbb{E} \left[J_{1}^{*}\left(x_{1}\right) + g_{0}\left(x_{0}, u_{0}, w_{0}\right) \right]$$

d-step rollout of DP (**optimal**):

$$J^{*}(x_{0}) = \min_{\mu_{0},\dots,\mu_{d-1}} \mathbb{E}\left[J_{d}^{*}\left(x_{k+d}\right) + \sum_{k=0}^{d-1} g_{k}\left(x_{k},\mu_{k}\left(x_{k}\right),w_{k}\right)\right]$$

 $\label{eq:def-Deterministic simplification for control \mbox{ (optimal)}:$

$$J^{*}(oldsymbol{x}_{0}) = \min_{oldsymbol{u}_{0},...,oldsymbol{u}_{d-1}} \left[J^{*}_{d}\left(oldsymbol{x}_{k+d}
ight) + \sum_{k=0}^{d-1} c_{k}\left(oldsymbol{x}_{k},oldsymbol{u}_{k}
ight)
ight]$$

• MPC: Approximate $J_d^*(\boldsymbol{x}_{k+d})$ and just plan on d-horizon

Re-plan at each step

38 DTU Compute

Lecture 7 14 March, 2025