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Dynamical programming

1 The finite-horizon decision problem
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7 February

3 DP reformulations and introduction to
Control
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Control

4 Discretization and PID control
21 February

5 Direct methods and control by
optimization
28 February

6 Linear-quadratic problems in control
7 March

7 Linearization and iterative LQR
14 March

Reinforcement learning

8 Exploration and Bandits
21 March

9 Policy and value iteration
4 April

10 Monte-carlo methods and TD learning
11 April

11 Model-Free Control with tabular
and linear methods
18 April

12 Eligibility traces and value-function
approximations
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13 Q-learning and deep-Q learning
2 May
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Reading material:
• [SB18, Chapter 6.4-6.5; 7-7.2; 9-9.3; 10.1]

Learning Objectives
• Sarsa on-policy learning
• Q off-policy learning
• the n-step return
• value-function approximations and linear methods
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Recap: First-Visit Monte-Carlo value estimation

We want to calculate the value function vπ(s) = E[Gt|St = s].
Simulate an episode of experience s0, a0, r1, s1, a1, r2, . . . , rT using π

• First step t we visit a state s

• Measure return Gt = Rt+1 + γRt+2 + γ2Rt+3 + · · · for rest of the episode
• Estimate value function as vπ(st) = E[Gt|St = s] ≈ 1

n

∑n
i=1 G

(n)
t

• The average can be computed incrementally:

V (s)← V (s) + 1
n

(Gt − V (s))

• We use a fixed learning rate α

V (s)← V (s) + α(Gt − V (s))
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Dynamical Programming

Bellman equation Learning algorithm

Bellman expectation equation for vπ

vπ(s) = Eπ [R + γvπ (S′) |s]

Iterative policy evaluation to learn vπ

V (s)← Eπ [R + γV (S′) |s]

Bellman expectation equation for qπ

qπ(s, a) = Eπ [R + γqπ (S′, A′) |s, a]

Iterative policy evaluation to learn qπ

Q(s, a)← Eπ [R + γQ (S′, A′) |s, a]

Policy iteration: Use policy evaluation to estimate vπ or qπ

Improve by acting greedily: π′(s)← arg maxa qπ(s, a)

Bellman optimality equation for v∗

v∗(s) = maxa E [R + γv∗(S′)|s, a]

Value iteration

V (s)← maxa E [R + γV (S′)|s, a]

Bellman optimality equation for q∗

q∗(s, a)=E [R+γ maxa′ q∗(S′, a′)|s, a]

Q-value iteration

Q(s, a)←E [R+γ maxa′ Q(S′, a′)|s, a]
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Sarsa control
TD and MC value estimation
• Recall vπ(s) = E[Gt|St = s]
• MC learning: Gt estimate of vπ(s); update:

V (St)← V (St) + α (Gt − V (St))

• Bellman equation:

vπ(s) = E[Rt+1 + γV (St+1)|St = s]

• TD learning: Rt+1 + γV (St+1) is also an estimate of vπ(s); update:

V (St)← V (St) + α (Rt+1 + γV (St+1)− V (St))

• TD learning has several advantages
• Lower variance
• Don’t have to wait for episode to finish

• Natural idea: Apply TD to Q(s, a)
• Still ε-greedy policy improvement
• Update Q estimates at each time step
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Sarsa control
Sarsa estimation of action-value function

• Bellman equation:

qπ(s, a) = E [Rt+1 + γqπ (St+1, At+1)|St = s, At = a]

• Implies Rt+1 + γqπ (St+1, At+1) is an estimate of qπ(s, a)
• Implies the update equation

Q(S, A)← Q(S, A) + α (R + γQ (S′, A′)−Q(S, A))

• We use bootstrapping (i.e. biased estimate)
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osvg-71
Sarsa control
Sarsa control

s lecture_11_sarsa.py
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Convergence of Sarsa
Sarsa converge to optimal action-value function Q→ q∗ assuming
• GLIE sequence of policies (decreasing but non-trivial exploration)
• Robbins-Monro sequence of step-sizes αt

∞∑

t=1
αt =∞,

∞∑

t=1
α2

t <∞
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Q-learning
Using the Bellman optimality equation

• Bellman equation:

q∗(s, a) = E
[
Rt+1 + γ max

a′
q∗ (St+1, a′)|St = s, At = a

]

• Implies Rt+1 + γ maxa′ q∗ (St+1, a′) is a Monte-Carlo estimate of q∗(s, a)
• Implied update equation

Q(S, A)← Q(S, A) + α
(

R + γ max
a′

Q (S′, a′)−Q(S, A)
)

• Note we use bootstrapping (i.e. biased estimate)
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Q-learning
Q-learning is off-policy

Q(S, A)← Q(S, A) + α

(
R + γ max

a′
Q

(
S′, a′

)−Q(S, A)
)

• The behavior policy determines which St, At are visited
• The environment determines what happens next (S′)
• The Q-values are updated without reference to the behavior policy
• Q-learning is therefore off-policy
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Q-learning
Q-learning

s lecture_11_q.py
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Q-learning
Exam question: Q-learning

a. The first step in training a Q-learning agent is to compute the set of all
states the agent can be in
b. The Q-table Q(s, a) in Q-learning is a measure of the reward the agent
will obtain in the very next step multiplied by γ

c. Q-learning still works if we initialize the Q-table to −1, i.e. Q(s, a) = −1
for all s ∈ S
d. When Q-learning is applied to a deterministic environment, the agent will
follow a deterministic policy
e. Don’t know.
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Convergence of Q-learning
Q-learning converge to optimal action-value function Q→ q∗ assuming
• All s, a pairs visited infinitely often
• Robbins-Monro sequence of step-sizes αt

∞∑

t=1
αt =∞,

∞∑

t=1
α2

t <∞
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Q-learning
Comparing Q-learning and SARSA
• Reward −100 if we fall
• Reward −1 per step
• Both use ε-greedy exploration

s lecture_11_sarsa_cliff.py , s lecture_11_q_cliff.py
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Q-learning
Algorithms so far

Bellman equation Learning algorithm

Bellman expectation equation for vπ

vπ(s) = Eπ [R + γvπ (S′) |s]

Iterative policy evaluation to learn vπ

V (s)← Eπ [R + γV (S′) |s]

Bellman expectation equation for qπ

qπ(s, a) = Eπ [R + γqπ (S′, A′) |s, a]

Iterative policy evaluation to learn qπ

Q(s, a)← Eπ [R + γQ (S′, A′) |s, a]

Policy iteration: Use policy evaluation to estimate vπ or qπ

Improve by acting greedily: π′(s)← arg maxa qπ(s, a)

Bellman optimality equation for v∗

v∗(s) = maxa E [R + γv∗(S′)|s, a]

Value iteration

V (s)← maxa E [R + γV (S′)|s, a]

Bellman optimality equation for q∗

q∗(s, a)=E [R+γ maxa′ q∗(S′, a′)|s, a]

Q-value iteration

Q(s, a)←E [R+γ maxa′ Q(S′, a′)|s, a]
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n-step backups
From two weeks ago: DP backups

V (St)← Eπ [Rt+1 + γV (St+1)]
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n-step backups
Last week: MC backups

V (St)← V (St) + α (Gt − V (St))
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n-step backups
Last week: TD backups

V (St)← V (St) + α (Rt+1 + γV (St+1)− V (St))
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n-step backups
Comparisons

• Bootstrapping: Update involves an estimate (e.g. V )
• TD and DP bootstraps
• MC does not bootstrap

• Sampling: Update involves a sample estimate of an expectation
• MC and TD sample
• DP does not sample

Let’s combine methods and avoid either/or choices
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n-step backups
n-step predictions

• Let TD target look n steps into the future
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n-step backups
n-step return
• Recall return is Gt = Rt+1 + γRt+2 + γ2Rt+3 + γ3Rt+4 + · · ·

n = 1: (TD) G
(1)
t = Rt+1 + γGt+1

n = 2: G
(2)
t = Rt+1 + γRt+2 + γ2Gt+2

n: G
(n)
t = Rt+1 + γRt+2 + γ2Rt+3 + · · ·+ γn−1Rt+n + γnGt+n

n =∞ (MC): G
(∞)
t = Rt+1 + γRt+2 + · · ·+ γT −1RT

• Using the rules of expectations:
vπ(s) = E[Rt+1 + γRt+2 + · · ·+ γn−1Rt+n + γnGt+n|s]

= E
[
Rt+1 + γRt+2 + · · ·+ γn−1Rt+n + E [γnGt+n|St+n] |St = s

]

= E[Rt+1 + γRt+2 + · · ·+ γn−1Rt+n + γnvπ(St+n)|St = s]
Therefore, the n-step return is an estimate of V (St)

Gt:t+n = Rt+1 + γRt+2 + · · ·+ γn−1Rt+n + γnV (St+n)

• This gives n-step temporal difference update:
V (St)← V (St) + α (Gt:t+n − V (St))
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n-step backups
n-step TD: Implementation details

G
(n)
t = Rt+1 + γRt+1 + · · ·+ γn−1Rt+n + γnV (St+n)

V (St)← V (St) + α
(
G

(n)
t − V (St)

)

• We cannot compute G
(n)
t until we have the n next steps episodes

• Maintain buffer of size n

• At end of episode, we are still missing n− 1 updates
• Do a for-loop and perform missing updates
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n-step backups
n-step Sarsa for value estimation
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n-step backups
n-step Sarsa
Recall the decomposition:

Gt = Rt+1 + γRt+2 + · · ·+ γn−1Rt+n + γnGt+n

• As before:

qπ(s, a) = E[Rt+1 + γRt+2 + · · ·+ γn−1Rt+n + γnGt+n|St = s, At = a]
= E[Rt+1 + γRt+2 + · · ·+ γn−1Rt+n + γnqπ(St+n, At+n)|St = s, At = a]

• Therefore, the following n-step action-value return is an unbiased estimate of qπ

q
(n)
t = Rt+1 + γRt+2 + . . . + γn−1Rt+n + γnqπ (St+n, At+n)

• Suggest the following bootstrap update of the action-value function

Q (St, At)← Q (St, At) + α
(

q
(n)
t −Q (St, At)

)
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n-step backups
n-step Sarsa for control
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Value-function approximations
Scaling up reinforcement learning
We want to apply RL to large problems

• Chess: > 1040 states
• Go: > 10170 states
• Robot arm: continuous state space
• Example: Mountain-Car position, velocity. Discrete actions

s =
[
s1
s2

]
∈ R2
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Value-function approximations
Value Function Approximation

• We have used loopup table representation (stored Q(s, a) as a big table)
• Every state s has an entry V (s) or
• Every state-action pair s, a has an entry Q(s, a)

• Issues with lookup tables
• There are too many states and/or actions to store in memory
• It is too slow to learn the value of each state individually

• Idea:
• Estimate value function or state-action value with function approximation

v̂(s, w) ≈ vπ(s)

q̂(s, a, w) ≈ qπ(s, a)
• Generalize from seen states to unseen states
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Value-function approximations
Types of Value Function Approximation

Our approximators need to be differentiable:
• Neural networks
• Linear combination of features
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Value-function approximations
Feature Vectors and linear representations

• Represent value function by a linear combination of features

v̂(s, w) = x(s)⊤w, w ∈ Rd

Where feature vector is defined as:

x(s) =




x1(s)
...

xd(s)




• The gradient is simply:
∇v̂(s, w) = x(s)

In this case q̂(s, a, w) = x(s, a)⊤w
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Value-function approximations
Feature vector construction: Tile coding

• Divide each dimension of s into a number of tiles nT

• Translate tiles in fraction of tile width to get overlap

• x has now nT non-zero elements corresponding to the number of active tiles
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Value-function approximations
Recall from 02450: Gradient Descent

• Let E(w) be a differentiable function of parameter vector w

• The gradient of E(w) is

∇wE(w) =




∂E(w)
∂w1...

∂E(w)
∂wn




• Adjust w in direction of negative gradient
to find a local minimum of E(w)

w← w − α∇wE(w)

with step-size parameter α (learning rate)
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Value-function approximations
Using the approximations

• Consider TD learning which implements Bellman equation:

vπ(s) = E[R + γv(S′)|s]

• Standard TD update

V (s)← V (s) + α(r + γV (s′)− V (s))

• Easy to plug in v̂(s, w) instead of V (s) on right-hand side

v̂(s, w)← v̂(s, w) + α(r + γv̂(s′, w)− v̂(s, w))

• ..but how do we update w on the left-hand side so v̂(s, w) agrees with
r.h.s.?
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Value-function approximations
Take a step back: What do we want to do?
• No function approximators: v(s) = E[R + γv(S′)|s]
• With function approximators: Find w so that:

v̂(s, w) = E[R + γv(S′)|s]

• Find w so that:

w = arg min
w

1
2

(
v̂(s, w)− E[R + γv(S′)|s]

)2

• Find w using gradient descent:

w ← w + α∇w
1
2

(
v̂(s, w)− E[R + γv(S′)|s]

)2

= w + α
(
v̂(s, w)− E[R + γv(S′)|s]︸ ︷︷ ︸

≈ 1
B

∑B

n=1
r(n)+v(s′(n))

)
∇v̂(s, w)

• Use a sample-size of B = 1 to compute the average
w ← w + α

(
v̂(s, w)− r + γv(s′)

)
∇v̂(s, w)
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Value-function approximations
Summary
• Given f(x) = Ez[g(x, z)] and approximation-function f̂(x, w)
• To find w such that f̂(x, w) ≈ f(x) iterate:

w ← w + α
(

g(x, z)− f̂(x, w)
)
∇f̂(x, w)

• TD learning: V (s) = E[R + γV (S′)|s] and v̂(s, w) ≈ v(s)
V (s)← V (s)+α(r + γV (s′)− V (s))

w ← w +α (r + γv̂(s′, w)− v̂(s, w))∇v̂(s, w)

• Sarsa learning: q(s, s) = E[R + γq(S′, A′)|s, a] and q̂(s, a, w) ≈ q(s, a)
q(s, a)← q(s, a)+α (r + γq(s′, a′)− q(s, a))

w ← w +α (r + γq̂(s′, a′, w)− q̂(s, a, w))∇q̂(s, a, w)

• Q-learning: q(s, s) = E[R + γ maxa′ q(S′, a′)|s, a] and q̂(s, a, w) ≈ q(s, a)
q(s, a)← q(s, a)+α(r + γ max

a′
q(s′, a′)− q(s, a))

w ← w +α
(

r + γ max
a′

q̂(s′, a′, w)− q̂(s, a, w)
)
∇q̂(s, a, w)

• Remember that ∇q̂(s, a, w) = x(s, a) and ∇v(s, w) = x(s)
35 DTU Compute Lecture 11 18 April, 2025

Value-function approximations
Quiz: Linear function approximators

Which of the following statements is true about reinforcement learning and
linear function approximators?
a. Linear function approximators can only be used with continuous state
spaces and not with discrete spaces.
b. Linear function approximators provide a way to generalize from known
states to unknown states, which can be useful in tabular reinforcement
learning situations with large state spaces.
c. Linear function approximators in SARSA or Q-learning requires that we
store all state-action pairs.
d. When using linear function approximators the policy will be deterministic
e. Don’t know.

36 DTU Compute Lecture 11 18 April, 2025



Value-function approximations
Implementing this

1 # semi_grad_q.py
2 class LinearSemiGradQAgent(QAgent):
3 def __init__(self, env, gamma=1.0, alpha=0.5, epsilon=0.1, q_encoder=None):
4 """ The Q-values, as implemented using a function approximator, can now be accessed as follows:
5
6 >> self.Q(s,a) # Compute q-value
7 >> self.Q.x(s,a) # Compute gradient of the above expression wrt. w
8 >> self.Q.w # get weight-vector.
9

10 I would recommend inserting a breakpoint and investigating the above expressions yourself;
11 you can of course al check the class LinearQEncoder if you want to see how it is done in practice.
12 """
13 super().__init__(env, gamma, epsilon=epsilon, alpha=alpha)
14 self.Q = LinearQEncoder(env, tilings=8) if q_encoder is None else q_encoder
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Value-function approximations
Linear Sarsa with tite coding in mountain car
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Richard S. Sutton and Andrew G. Barto.
Reinforcement Learning: An Introduction.
The MIT Press, second edition, 2018.
(Freely available online).
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Appendix
Approximation: The big picture

• Suppose f is a real-valued function f : X 7→ R which happens to be defined
using an expectation:

f(x) = Ez [g(x, z)] =
∫

p(z|x)g(x, z)dz

• Assume that f̂(x, w) is a neural network we want to use to approximate f with
• Problem: How do we find w such that f̂(x, w) ≈ f(x)?
• Idea: Select w to minimize

w∗ = arg min
w

Ex

[[
f̂(x, w)− f(x)

]2
]

(1)

• Solve this using gradient descent:

w ← w − α∇
(
E

[
f(x)− f̂(x, w)

]2
)

(2)
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Appendix
Evaluating the gradient

∇
(
E

[
f̂(x, w)− f(x)

]2
)

= E
[
∇

(
f̂(x, w)− f(x)

)2
]

= 2E
[(

f̂(x, w)− f(x)
)
∇f̂(x, w)

]

= 2E
[(

f̂(x, w)− Ez[g(x, z)]
)
∇f̂(x, w)

]

Implication: Given samples x ∼ p and z ∼ p(z|x) then

2
(
f̂(x, w)− g(x, z)

)
∇f̂(x, w)

is an unbiased estimate of the gradient
Stochastic gradient descent
Given minimization problem arg min F (w) and (technical conditions!) then

wt+1 ← wt − αtĝ(wt)

converge to w∗ provided ĝ(w) is an unbiased estimate of the gradient ∇F (w)
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