
EXERCISE 8
Exploration and Bandits

Tue Herlau
tuhe@dtu.dk

21 March, 2025

Objective: Today’s exercises will deal with a core issue in reinforcement learning, known
as the exploration-exploitation dilemma. To introduce the topic, we start by considering
a slightly modified (nonstationary) version of the standard (stationary) k-armed bandit
problem. You’ll implement your own agents and observe how different approaches to
balancing exploration and exploitation perform in this setting. (44 lines of code)
Exercise code: https://lab.compute.dtu.dk/02465material/02465students.git
Online documentation: 02465material.pages.compute.dtu.dk/02465public/exercises/ex08.html

Contents
1 Theoretical question: Simple bandits 1

2 Getting started (bandits.py) 2
2.1 Running agents and the testbed . 3

3 The ε-greedy agent (simple_agents.py) 5

4 Conceptual question: UCB Bandits 5

5 Upper Confidence Bound (UCB) (ucb_agent.py) 6

6 Gradient bandits (gradient_agent.py)// 7

7 A nonstationary bandit problem (nonstationary.py)/ 8

8 The grand bandit race (grand_bandit_race.py)// 9

1 Theoretical question: Simple bandits

☞
(a.) Solve [SB18, Problem 2.2]

1

https://lab.compute.dtu.dk/02465material/02465students.git
https://
https://

EXERCISE 8 21 March, 2025

(b.) The average regret associated with an arm a is defined as:
∆a = max

a′
E[Rt|At = a′]− E[Rt|At = a]

What is the average regret for arms a = 1, 2, 3 in the 10-armed testbed depicted in [SB18,
Figure 2.1]?
(c.) Why do you think it is called the "average regret"?

2 Getting started (bandits.py)
My experience is that Bandits can feel a bit disconnected from the rest of [SB18]. This
is really a shame, since bandits are the primary mechanism by which the agent ex-
plores. To enforce this connection, we will therefore implement Bandits using the same
Agent / Environment -distinction we are have already seen. Specifically:

• The bandit is the environment (i.e. the slot machine) where your actions corre-
sponding to pulling a particular arm (labeled from 0 to k − 1) and get a reward.
There are two specific things to keep in mind:

– The reset-function has to completely reset the environment, i.e. it will ran-
domize which arm is the optimal arm.

– For plotting, we want to track the average regret, which is defined as the
expected difference in reward between the optimal arm and the currently
selected arm. I.e., if the regret is zero, we have selected an optimal arm.
Since only the bandit-environment knows which arm is optimal, we have to
compute it in the environment.

To simplify this, our bandit-environment will all inherit from the same BanditEnvironment
(defined below) and simply implement the reset and bandit_step methods:

1 # bandits.py
2 class BanditEnvironment(Env):
3 def __init__(self, k : int):
4 super().__init__()
5 self.observation_space = Discrete(1) # Dummy observation space with a single observation.
6 self.action_space = Discrete(k) # The arms labelled 0,1,...,k-1.
7 self.k = k # Number of arms
8
9

10 def reset(self):
11 raise NotImplementedError("Implement the reset method")
12
13 def bandit_step(self, a):
14 reward = 0 # Compute the reward associated with arm a
15 regret = 0 # Compute the regret, by comparing to the optimal arms reward.
16 return reward, regret
17
18 def step(self, action):
19 reward, average_regret = self.bandit_step(action)
20 info = {'average_regret': average_regret}
21 return None, reward, False, False, info

EXERCISE 8 21 March, 2025

0 100 200 300 400 500
Time step

4

2

0

2

4
Re

wa
rd

 p
er

 ti
m

e
st

ep

0 100 200 300 400 500
Time step

0

200

400

600

800

1000

1200

1400

Ac
cu

m
ul

at
ed

 R
eg

re
t

Episode 0
Episode 1
Episode 2
Episode 3
Episode 4
Episode 5
Episode 6
Episode 7
Episode 8
Episode 9

Figure 1: Simple bandit examples

• The agent will just be our regular Agent class, where the policy function (def pi(s,t):)
should ignore s and return the arm to pull:

π : ∅ 7→ {0, 1, . . . , k − 1}.

2.1 Running agents and the testbed
Since a bandit is just a special kind of agent we can train it using the methods we have
already seen. As a first example, we will instantiate a bandit environment and plot the
reward obtained over 500 time steps:

1 # bandit_example.py
2 from irlc import Agent, train, savepdf
3 from irlc.ex08.bandits import StationaryBandit
4 bandit = StationaryBandit(k=10) # A 10-armed bandit
5 agent = Agent(bandit) # Recall the agent takes random actions
6 _, trajectories = train(bandit, agent, return_trajectory=True, num_episodes=1, max_steps=500)
7 plt.plot(trajectories[0].reward)
8 plt.xlabel("Time step")
9 plt.ylabel("Reward per time step")

This code should be familiar from the previous weeks, and the result can be found in
fig. 1 (left). This plot is not very informative at all since the reward is just random. To
get closer to the plots in [SB18], we need to compute the regret, and average the reward
over multiple runs where the optimal arm is reset. A more elaborate example show 10
runs and plot the accumulated regret (see fig. 1 (right)):

1 # bandit_example.py
2 agent = Agent(bandit) # Recall the agent takes random actions
3 for i in range(10):
4 _, trajectories = train(bandit, agent, return_trajectory=True, num_episodes=1, max_steps=500)
5 regret = np.asarray([r['average_regret'] for r in trajectories[0].env_info[1:]])
6 cum_regret = np.cumsum(regret)
7 plt.plot(cum_regret, label=f"Episode {i}")

EXERCISE 8 21 March, 2025

8 plt.legend()
9 plt.xlabel("Time step")

10 plt.ylabel("Accumulated Regret")

In our real experiments, we will be using the so-called 10-armed-testbed as described
in [SB18]. The 10-armed testbed is more or less what you have already seen, but with a
few niceties:

• The 10 regret-lines should be averaged into a single line
• It allows easy plotting of multiple bandit-algorithms in one plot
• It saves results as they are computed so plots can happen quickly
Caching results is very helpful in machine learning, but it can a pain when you de-

velop your methods. You can disable cache using use_cache = False (see exercise scripts)
and delete all cached results by removing the ex08/cache directory. The following exam-
ple illustrate what it looks like in practice:

1 # simple_agents.py
2 env = StationaryBandit(k=10)
3 agents = [BasicAgent(env, epsilon=.1), BasicAgent(env, epsilon=.01), BasicAgent(env, epsilon=0)]
4 eval_and_plot(env, agents, num_episodes=100, steps=1000, max_episodes=150, use_cache=use_cache)
5 savepdf("bandit_epsilon")
6 plt.show()

This code set up three different agents (in this case we vary the parameter epsilon),
test them for 100 episodes, and plot the average performance. The parameter max_episodes
control the maximum number of episodes to compute, i.e. if you run the script again it
will only compute an additional 50 episodes and show results of all 150 runs, and if you
run it a third time it will compute no additional episodes but show all 150 results. The
result is shown in problem 1.

Warning: Remember to reset your agent Your bandit agent is supposed to learn the
best arm in the current environment. Since the environment is randomized after each
episode, the bandit algorithm too has to reset itself. The way this is handled is in the
policy-function: Whenever the agent is in time-step 0, it should reset itself and train
anew:

1 # simple_agents.py
2 def pi(self, s, t, info=None):
3 """ Since this is a bandit, s=None and can be ignored, while t refers to the

time step in the current episode """↪→

4 if t == 0:
5 # At step 0 of episode. Re-initialize data structure.
6 self.Q = np.zeros((self.k,))
7 self.N = np.zeros((self.k,))
8 # compute action here

EXERCISE 8 21 March, 2025

3 The ε-greedy agent (simple_agents.py)

Our first objective will be to re-produce the results in [SB18, Section 2.3] for the epsilon-
greedy agent using the 10-armed-testbed with the simple bandit agent described in the
box in [SB18, Section 2.4]. The testbed environment will be implemented as the class
StationaryBandit in bandits.py .

Implement the basic, stationary environment and the epsilon-greedy basic agent to
test an epsilon-greedy bandit strategy. When done, you should get a plot showing
the influence of (ε-greedy exploration)

Problem 1 The first bandits

Info: When done, you should get the same output as in [SB18]

0 200 400 600 800 1000
Steps

0.0

0.5

1.0

1.5

Av
er

ag
e

Re
wa

rd

0 200 400 600 800 1000
Steps

0.2

0.4

0.6

0.8

%
 o

pt
im

al
 a

ct
io

n

0 200 400 600 800 1000
Steps

0

100

200

300

400

Re
gr

et
 L

t

BasicAgent_0.1
BasicAgent_0.01
BasicAgent_0

Evaluated on StationaryBandit_0 for 150 episodes

i

4 Conceptual question: UCB Bandits

Consider a bandit problem with exactly two arms At = a ∈ {0, 1}.

• The first arm, At = 0, always gives a reward of Rt = 5

• The second arm, At = 1, always gives a reward of Rt = 10.

EXERCISE 8 21 March, 2025

In this problem, we imagine we apply UCB1 to this agent and we are interested in the
behavior of the upper-confidence bound

fa(t) = Qt(a) + c

√
ln t

Nt(a)
(1)

for the two arms (recall the upper-confidence bound is used to select the next action).
You can assume that c = 2.

(a.) Suppose we try each of the arms N = 500 times. What are the two upper-confidence
bounds at time t = 1000?

(b.) After these 1000 pulls, which of the two arms will UCB1 select? Explain your result
both as a consequence of how UCB1 select actions and intuitively.

(c.) In the next question, you should assume the agent begins to always select arm At = 1
in each successive timestep t. What is the upper-confidence bound fa(t) as a function of
time for arms a = 0, 1?

(d.) Make a rough sketch (i.e., without usingmaple or python) of how the upper-confidence
bounds f0(t) and f1(t) change as a function of time. The plot should start after the initial
N = 500 attempts at each arm and you should try to get the overall shape of the curves
correct based on your derivation.

(e.) Will the two curves eventually cross? Why/why not? What does crossing signify?

5 Upper Confidence Bound (UCB) (ucb_agent.py)

In contrast to the random exploration we’ve seen so far, the UCB method provides a
systematic approach by taking into account the uncertainty about the underlying prob-
abililty distributions of the levers. This takes into account that actions that are less ex-
plored have a reasonably high potential for optimality and they’re as a consequence
picked more often initially.

Implement the UCB bandit algorithm and compare it against an epsilon-greedy ban-
dit algorithm. When done, you should re-produce [SB18, Fig. 2.4]

Problem 2 UCB action potential

EXERCISE 8 21 March, 2025

Info: When done, you should get the same output as in [SB18]

0 200 400 600 800 1000
Steps

0.0

0.5

1.0

1.5

Av
er

ag
e

Re
wa

rd

0 200 400 600 800 1000
Steps

0.2

0.4

0.6

0.8

%
 o

pt
im

al
 a

ct
io

n

0 200 400 600 800 1000
Steps

0

100

200

Re
gr

et
 L

t

UCBAgent_2
BasicAgent_0.1

Evaluated on StationaryBandit_0 for 2000 episodes

i

6 Gradient bandits (gradient_agent.py) //

This problem will be about the gradient bandit algorithm where we will re-produce
[SB18, Fig. 2.5], where the bandit problem is assumed to (optionally) include a baseline
reward of four. Note that the gradient bandit is not part of the reading for today, so this
is an optional exercise.

Update the simple bandit environment to include the baseline if you have not al-
ready done so. Then implement the gradient bandit algorithm by picking actions
with probability [SB18, Eqn. (2.11)] and update the action preference vector us-
ing [SB18, Eqn. (2.12)] during training.

Problem 3 Gradient Bandits

EXERCISE 8 21 March, 2025

Info: When done, you should get the same output as in [SB18]

0 200 400 600 800 1000
Steps

4.0

4.5

5.0

5.5

Av
er

ag
e

Re
wa

rd

0 200 400 600 800 1000
Steps

0.2

0.4

0.6

0.8

%
 o

pt
im

al
 a

ct
io

n

0 200 400 600 800 1000
Steps

0

200

400

600

800

Re
gr

et
 L

t

Gradient Bandit alpha=0.1
Gradient Bandit alpha=0.4
With baseline: Gradient Bandit alpha=0.1
With baseline: Gradient Bandit alpha=0.4

Evaluated on StationaryBandit_4 for 100 episodes

i

7 A nonstationary bandit problem (nonstationary.py)/

This exercise is based on [SB18, Exercise 2.5]. Implement the new non-stationary bandit
class which changes the mean of the reward distribution by adding a small normally
distributed variable to each coordinate which has mean 0 and standard deviation of
0.01.

When done, implement a new bandit agent which should be similar to the basic one
described in [SB18, Section 2.4], but with moving average α parameter as described
in [SB18, Eqn. (2.3)] which allows it to forget the past and therefore adapt.

Wewill use 10′000 time steps, but it is recommended you start out with less runs/steps
first to test your methods.

Solve [SB18, Exercise 2.5] using the hints above. We will use a few more values of
α, but feel free to only try one value.

Problem 4 Nonstationary bandits (Ex. 2.5)

EXERCISE 8 21 March, 2025

Info: When done, you should get the same output as in [SB18]

0 2000 4000 6000 8000 10000
Steps

0

1

2

Av
er

ag
e

Re
wa

rd

0 2000 4000 6000 8000 10000
Steps

0.2

0.4

0.6

0.8

%
 o

pt
im

al
 a

ct
io

n

0 2000 4000 6000 8000 10000
Steps

0

1000

2000

3000

Re
gr

et
 L

t

Basic agent, epsilon=0.1
Mov.avg. agent, epsilon=0.1, alpha=0.15
Mov.avg. agent, epsilon=0.1, alpha=0.1
Mov.avg. agent, epsilon=0.1, alpha=0.05

Evaluated on NonstationaryBandit_0_0.01 for 400 episodes

i

8 The grand bandit race (grand_bandit_race.py) //
Let’s try to summarize what we have seen today by comparing all our agents; note this
time around the cache can be turned on.

Complete the script to run all bandit algorithms on the principal settings we have
seen today. It will take some time, so consider using the cache system.

Problem 5 Big comparison

References
[SB18] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction.

The MIT Press, second edition, 2018. (Freely available online).

	Theoretical question: Simple bandits
	Getting started (bandits.py)
	Running agents and the testbed

	The -greedy agent (simple_agents.py)
	Conceptual question: UCB Bandits
	Upper Confidence Bound (UCB) (ucb_agent.py)
	Gradient bandits (gradient_agent.py) '057'057
	A nonstationary bandit problem (nonstationary.py) '057
	The grand bandit race (grand_bandit_race.py) '057'057

