
EXERCISE 6
Linear-quadratic problems in control

Tue Herlau
tuhe@dtu.dk

7 March, 2025

Objective: In these exercises you will implement the LQR (linear quadratic regula-
tor), and apply it to a variety of problems to archive optimal control for discrete linear-
quadratic problems. (18 lines of code)
Exercise code: https://lab.compute.dtu.dk/02465material/02465students.git
Online documentation: 02465material.pages.compute.dtu.dk/02465public/exercises/ex06.html

Contents
1 Exam question: DP and LQR 1

2 Discrete LQR (dlqr.py) 2
2.1 Implement full discrete LQR (dlqr_check.py) 3
2.2 Implement an LQR Agent (lqr_agent.py) 4

3 The Boeing level flight example (boeing_lqr.py)⋆ 5

4 LQR and PID Control lqr_pid.py ⋆ 7
4.1 Part 2: Set parameters in the PID controller 8

1 Exam question: DP and LQR

☞ Consider the dynamical programming setting where we plan over a horizon N > 0. We
consider a problem where:

• The terminal cost function is
gN(xN) = x2

N

• For all k = 0, . . . , N − 1 the dynamics is fk(x, u, w) = ax+ u− λw

• The noise disturbances are normally distributed with variance σ2:

PW (w|x, u) = N (w | µ = 0, σ2 = 1)

1

https://lab.compute.dtu.dk/02465material/02465students.git
https://
https://

EXERCISE 6 7 March, 2025

• The states and actions are real numbers Sk = Ak(xk) = R.

• The non-terminal costs are only affected by u, gk(x, u, w) = u2.

Thus, the relevant parameters of the problem are a and λ. We are concerned with optimal
control.

(a.) Although the problem has been formulated as being about dynamical programming,
note that the structure of the problem is that of a 1-dimensional LQR model. In the case
where λ = 3, derive the expected future cost E[gN(xN)|xN−1 = 0, uN−1 = 1] if we at
time step k = N − 1 are in state state xN−1 = 0 and take action u = 1

(b.) Derive an analytical expression for the optimal policy µk(xk) in time step k = N−1

2 Discrete LQR (dlqr.py)

☞The discrete LQR updates are defined in algorithm 22. Our first task will be to implement
LQR and apply it to a very small, linear system with stationary matrices A and B and
quadratic costs Q and R.

A =

[
1. 1.
0. 1.

]
, B =

[
0
1

]
and

Q =

[
ρ−1 0
0 0

]
, R =

[
1.
]

This is known as a double integrator1.
We will solve this problem using LQR. Note there is no terminal cost, no constant

terms, and no linear terms. In other words, you do not have to implement the update
rules for:

Su,k, lk,vk, vk

at this point, which will simplify the implementation somewhat.

Implement the basic discrete LQR update rules for the double integrator. Pay close
attention to the update rules; note that since we are progressing backwards in time
check your implementation by looking at the last values of L, V , i.e. L[N-1] , etc.

Problem 1 Implement basic LQR

1The example is taken from http://cse.lab.imtlucca.it/~bemporad/teaching/ac/pdf/
AC2-04-LQR-Kalman.pdf, but see also https://en.wikipedia.org/wiki/Double_integrator.

http://cse.lab.imtlucca.it/~bemporad/teaching/ac/pdf/AC2-04-LQR-Kalman.pdf
http://cse.lab.imtlucca.it/~bemporad/teaching/ac/pdf/AC2-04-LQR-Kalman.pdf
https://en.wikipedia.org/wiki/Double_integrator

EXERCISE 6 7 March, 2025

Info: The code should produce the following plot:

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Steps k

0.0

0.2

0.4

0.6

0.8

1.0

x 1
=

 x
[0

]

Double integrator
rho=0.1
rho=10
rho=100

For debugging purpose check you get this exact input (and note the first place of
divergence carefully)

1 L[19] is: [[-0. -0.]]
2 L[18] is: [[-0.0099 -0.0198]]
3 L[0] is: [[-0.0799 -0.4415]]

i

Look at thewikipedia article https://en.wikipedia.org/wiki/Double_integrator.
Write out the cost function as a function of ρ. Why does the curves change? what is
the controller trying to dowith the states, andwhy do the curves depend on ρ the way
they do? As a bonus, check the slides the example is taken from found here http://
cse.lab.imtlucca.it/~bemporad/teaching/ac/pdf/AC2-04-LQR-Kalman.pdf. Our
solutions is different, albeit very slightly. Why?

Problem 2 Intuition checkup

2.1 Implement full discrete LQR (dlqr_check.py)
So far so good, but LQR works with non-stationary matrices and this will important for
iterative LQR in a moment. Therefore, it is time to implement the full LQR update (see
algorithm 22). I have included a test for a simple, nonsense system which only operates
over a few time steps. Make sure you get the same output, and otherwise notice the first
step divergence happens.

https://en.wikipedia.org/wiki/Double_integrator
http://cse.lab.imtlucca.it/~bemporad/teaching/ac/pdf/AC2-04-LQR-Kalman.pdf
http://cse.lab.imtlucca.it/~bemporad/teaching/ac/pdf/AC2-04-LQR-Kalman.pdf

EXERCISE 6 7 March, 2025

Implement the full LQR algorithm, updating all terms. Carefully check the output
below.

Problem 3 Implement full LQR

Info: For debugging purpose check you get this exact input (and note the first place
of divergence carefully)

1 l[3]=[-9.5229 2.1249], l[2]=[-6.8482 4.8587], l[0]=[1.0649 -1.2575]
2 L[3]=[[0.9364 1.0472 0.5745]
3 [-1.6524 0.9154 0.5854]]
4 L[2]=[[6.8717 0.2774 1.3766]
5 [-7.6789 -0.6746 -0.9357]]
6 L[0]=[[-2.0035 -3.7411 -1.5262]
7 [-0.135 3.8597 1.9371]]
8 V[0]=[[0.1544 5.2035 1.7752]
9 [5.2035 -4.6053 -2.892]

10 [1.7752 -2.892 0.2216]]
11 v[4]=[-0.7731 0.8494 0.7547], v[3]=[-4.2712 3.3003 3.9519], v[0]=[-1.7517

0.9697 1.7765]↪→

12 vc[4]=-0.4841, vc[3]=3.0585, vc[0]=1.8368

i

2.2 Implement an LQR Agent (lqr_agent.py)
Now that we have implemented discrete LQR, an obvious next step is to implement an
Agent that plan and takes actions using LQR. We will restrict ourselves to problems of
the form:

xk+1 = Axk +Buk + d (1a)

cost =
N−1∑
k=1

[
1

2
x⊤
k Qxk +

1

2
u⊤

k Ruk + q⊤xk

]
(1b)

Your task is to build an Agent that accepts A, B, d and Q, R, q as inputs, plug them into
the discrete LQR planning algorithm to get the control matrices (Lk, lk)

N−1
k=0 , and then

compute the policy using:

uk = Lkxk + lk (2)

EXERCISE 6 7 March, 2025

Figure 1: The locomotive environment

Complete the code for the LQR agent. The agent should call the LQR function you
just implemented and compute the actions in the policy using eq. (2).

The agent is subsequently applied to the locomotive environment using a coarse
guess on the system matrices A,B, . . . – we will return to where they come from in
the next exercise.

Problem 4 Implement the LQR agent

Info: When done, the actions and states should be have as follows:

0 2 4 6 8 10
Time / seconds

1.0

0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6 x(t)
v(t)
u(t)

i

3 The Boeing level flight example (boeing_lqr.py)⋆

In this problem, we will apply discrete LQR, which we looked in the previous question
in section 2.2, to the Boeing level flight example.

Recall once again that the dynamics in the Boeing flight example has the form:
ẋ(t) = A(c)x(t) +B(c)u(t) + d(c) (3)

cost =
∫ tF

t0

[
1

2
x(t)⊤Q(c)x(t) +

1

2
u(t)⊤R(c)u(t) + q⊤

(c)x(t)

]
dt (4)

When we apply our discretization method described in section 13.1.6 this becomes a
discrete update rule of the form:

xk+1 = Axk +Buk = fk(xk,uk) (5)

cost =
N−1∑
k=0

[
1

2
x⊤
k Qxk +

1

2
u⊤

k Ruk + q⊤xk

]
(6)

EXERCISE 6 7 March, 2025

The matrices A, B, d in the above should be calculated using exponential discretization
since the system from the matrices A(c), B(c) and d(c) since the system is linear, and this
will be our first task:

Complete the implementation of compute_A_B_d and compute_Q_R_q . These functions
are given a control model and a discretization time and should use exponential dis-
cretization to compute the system matrices A, B, d and Q, R, and q for the discrete
problem eq. (5).

Problem 5 Discretized the system using exponential discretization

Info: This example shows what the q-vector should look like. We can call the dis-
cretization function as:

1 # boeing_lqr.py
2 dt = env.dt
3 Q, R, q = compute_Q_R_q(model, dt)
4 print("Discretization time is", dt)
5 print("Original q-vector was:", model.get_cost().q)
6 print("Discretized version is:", q)

and we should get:

1 Discretization time is 0.1
2 Original q-vector was: [-100. 0. 0. 0.]
3 Discretized version is: [-10. 0. 0. 0.]

i

After you are done, you can call the LQRAgent , which we considered in section 2.2, to
solve the optimal trajectory.

Use the LQR agent and apply it to the Boing example. You need to use the two helper
functions you defined earlier and call the LQR Agent as in the previous problem.

Problem 6 Boing example and the LQR Agent

EXERCISE 6 7 March, 2025

Info: The examples which illustrates the difference between exponential integration
and Euler integration in the notes are build using the code you just implemented
and can be re-produced by changing which integration method the discrete model
uses. This script uses exponential integration, and reproduce the Boing flight-change
example. You should get:

0 2 4 6 8 10
Time/seconds

2

0

2

4

6

8

10

Ou
tp

ut

Airspeed
Climb rate

0 2 4 6 8 10
Time/seconds

0

1

2

3

4

5

Co
nt

ro
l a

ct
io

n

Elevator
Throttle

i

4 LQR and PID Control lqr_pid.py ⋆

This example will explore how LQR can be used to set theKp andKd parameters in a PID
controller. We will consider the Harmonic Oscillator described in [Her24, section 10.4.2]
and show in fig. 2 Recall that the state consist of the position and velocity and we assume

Figure 2: The harmonic osscilator. A frictionless ball is attached to a spring and can move
back-and-forth. The ball is described by the position x(t) and velocity ẋ(t)

the target is x∗ = 0. The code will apply your LQRAgent to this problem after discretizing
it appropriate and get the optimal control trajectory. Our job is to see if we can reproduce
this trajectory using PID.

Recall that PID is a control law of the form (e = x∗ − xk)

uk = Kpe+Kd
e− eprev

∆

The point is that the control law is the same for all time steps, which is different than
LQR. Your first task is therefore to implement an Agent which behaves exactly the same

EXERCISE 6 7 March, 2025

way as the LQRAgent considered earlier, but which always use the first control matrix,
i.e.:

uk = L0xk + l0 (7)

Implement a variant of the LQRAgent , dubbed ConstantLQRAgent , which implement
the control law in eq. (7). You only need to change the policy-function def pi .

Problem 7 Implement the constant LQR Agent

Info: You only need to change the policy and can use that the LQR Agent already
compute and store Lk and lk for all k. When done you should get this output:

1 # lqr_pid.py
2 x0, _ = env.reset()
3 print(f"Initial state is {x0=}")
4 print(f"Action at time step k=0 {constant_agent.pi(x0, k=0)=}")
5 print(f"Action at time step k=5 (should be the same) {constant_agent.pi(x0,

k=0)=}")↪→

and we should get:

1 Initial state is x0=array([1, 0])
2 Action at time step k=0 constant_agent.pi(x0, k=0)=array([-0.03309495])
3 Action at time step k=5 (should be the same) constant_agent.pi(x0,

k=0)=array([-0.03309495])↪→

i

4.1 Part 2: Set parameters in the PID controller
The way a PID controller select actions, and the way an infinite-horizon optimal LQR
controller does so is in fact very similar if you just write them up as function uk = · · · .
In other words, the control matrices L0, l0 from LQR control can be used to specify the
constants KP and KD in a PID controller, so that they are nearly the same.

Implement the function get_Kp_Kd(L) . Using the above observation, specify the pa-
rameters KP , KD in a PID controller as suggested by L0. The code will plot the PID
action sequence. Can you account for the initial strange-looking action from the PID
controller?

Problem 8 PID corresponding to optimal controller

EXERCISE 6 7 March, 2025

Info:
When done, the code will set up a PID controller using your parameters and run

it. This will give you three action sequences and three state trajectories which are
plotted below:

0 1 2 3 4 5 6 7 8
Time / Seconds

0.20

0.15

0.10

0.05

0.00

0.05

0.10

0.15

0.20

Ac
tio

n
/ N

ew
to

ns

Optimal LQR action sequence
Constant LQR action sequence
PID agent action sequence

0 1 2 3 4 5 6 7 8
Time / Seconds

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Po
sit

io
n

x(
t)

/ M
et

er
s

Optimal LQR states x(t)
Constant LQR states x(t)
PID agent states x(t)

Although the PID controller computes an unusual first action, it very nearly tracks
the constant LQR controller, which in turn is quite close to the optimal LQR controller.

i

References
[Her24] Tue Herlau. Sequential decision making. (Freely available online), 2024.

	Exam question: DP and LQR
	Discrete LQR (dlqr.py)
	Implement full discrete LQR (dlqr_check.py)
	Implement an LQR Agent (lqr_agent.py)

	The Boeing level flight example (boeing_lqr.py)
	LQR and PID Control lqr_pid.py
	Part 2: Set parameters in the PID controller

