
EXERCISE 4
Discretization and PID control

Tue Herlau
tuhe@dtu.dk

21 February, 2025

Objective: This exercise will introduce the rest of the control-toolbox which will be used
in the course. It it is important to emphasize that this will not change how you specify
models, which we looked at last week, but rather how you can take a model specification
and either discretize it or turn it into an environment. Finally, we will take a look at PID
control which is a simple but widely-used model free control method. (24 lines of code)
Exercise code: https://lab.compute.dtu.dk/02465material/02465students.git
Online documentation: 02465material.pages.compute.dtu.dk/02465public/exercises/ex04.html

Contents
1 Exam question: Euler discretization of control problem 2

2 Exam Question: PID 2

3 Models, simulation, discretization and environments (discrete_kuramoto.py) 3
3.1 Recap of the Kuramoto toy problem . 3
3.2 Discretization . 4
3.3 Part 2: Creating an environment . 4

4 PID Control 6
4.1 PID and the locomotive environment (pid.py) 6
4.2 PID and the locomotive environment (pid_locomotive_agent.py) . . . 7
4.3 Pendulum balancer (pid_pendulum.py)/ 8

5 PID Racecar controller (pid_car.py)⋆ 10
5.1 Moon landing (pid_lunar.py)// 11

1

https://lab.compute.dtu.dk/02465material/02465students.git
https://
https://

EXERCISE 4 21 February, 2025

1 Exam question: Euler discretization of control prob-
lem

☞We consider a control problem where a control signal u(t) ∈ R is applied to a variable
w(t) ∈ R. The variable measures an angle, and it satisfies the following differential
equation:

ẅ = cos (u+ w) (1)

We introduce a state x(t) =

[
w(t)
ẇ(t)

]
which allows us to re-write the system in the usual

way as a first-order differential equation:

ẋ(t) = f(x(t), u(t)) =

[
x2(t)

cos(u(t) + x1(t))

]

The problem is then discretized using Euler discretization with a time step of ∆ to give
states x0,x1,x2, · · · .

(a.) Assume that the initial conditions at the starting time t0 = 0 is x0 = 0 and that no
control signal is applied to the system (u(t) = 0, t ≥ 0). According to Euler discretization,
what is the value of the angle w at time t1 = ∆?

(b.) Continuing the previous problem and still assuming no control signal is applied.
According to Euler discretization, what is the value of w at time t2 = 2∆?

(c.) Assume the system is initialized in x0 =

[
π
2

0

]
and we apply a constant control signal

u0 to the system. What is x1 as a function of u0? Explain what the value of angle, w, at
time t1 mean in terms of the accuracy of Euler-discretization.

2 Exam Question: PID

☞
Consider PID control applied to steer a car along a straight track. The control signal

uk corresponds to the angle between the front wheel and the centerline of the track, the
input signal xk corresponds to the angle between the car body and the track in degrees,
and the goal of the PID controller is to bring the angle between the car body and the
track to a value of x∗ = 4 degrees (corresponding to executing a turn). Figure 1 shows
the behavior of both xk and uk at time steps k = 0, 1, 2, Suppose the PID controller
takes the form described in the lecture notes, and assume Kd = Ki = 0, which one of
the following options are true?

a. Kp = 1

b. Kp = 2

EXERCISE 4 21 February, 2025

0 1 2 3 4 5 6
k

6

4

2

0

2

4

6 xk

uk

Figure 1: Plot of PID controller

c. Kp = 3

d. There is not enough information to determine the correct answer
e. Don’t know.

3 Models, simulation, discretization and environments
(discrete_kuramoto.py)

This exercise will be a continuation of the Kuromoto toy problem from last week where
the focus will be on

• Creating a discretized model
• Turning it into an environment

3.1 Recap of the Kuramoto toy problem
Assume that x(t) ∈ R and u(t) ∈ R are one-dimensional. The Kuramoto oscillator is
defined by the following differential equation:

dx(t)

dt
= u(t) + cos(x(t))

If we write this in our standard notation it looks as follows:
ẋ = f(x, u) = u+ cos(x). (2)

We will assume that the cost function is just:

{cost} =
1

2

∫ tF

0

u(t)2dt

and that the system is subject to the constraint that −2 ≤ u(t) ≤ 2. The next sections
will show how to implement and discretize this model.

EXERCISE 4 21 February, 2025

3.2 Discretization
Discretization occurs by simply passing a model instance to the DiscreteControlModel
class along with a discretization time step dt (= ∆ in our notation):

1 # discrete_kuramoto.py
2 dmodel = DiscreteControlModel(KuramotoModel(), dt=0.5)
3 print(dmodel) # This will print details about the discrete model.

The class will automatically discretize the environment and create the function fk
such that xk+1 = fk(xk, uk) = xk +∆f(xk, uk).

The online documentation contains an example of how to use this class, and this
exercise will allow you to replicate the key steps using the Kuromoto environment – so
use the online documentation in the following!

Use the discrete model to compute the Euler-discretized step function fk as the func-
tion def fk(x,u) .

Then implement the function def dfk_dx(x,u) which computes the Jacobian deriva-
tive with respect to x:

∂fk(x, u)

∂x

Problem 1 Discrete model: Implement fk

Info: If you are stuck with the first part, look at https://02465material.pages.
compute.dtu.dk/02465public/exercises/ex04.html#example-creating-a-discrete-pendulum-environment.
I.e., create a discrete model class and simply use the function dmodel.f , which eval-
uate fk.

If you are stuck with the second part, look at https://02465material.pages.
compute.dtu.dk/02465public/exercises/ex04.html#computing-derivatives-jacobians-of-the-discretized-dynamics.

When done, you should get this output.

1 The Euler-discretized version, f_k(x,u) = x + Delta f(x,u), is
2 f_k(x=0,u=0) = [0.5]
3 f_k(x=1,u=0.3) = [1.42015115]
4 The derivative of the Euler discretized version wrt. x is:
5 df_k/dx(x=0,u=0) = [[1.]]

Try to verify the last result by manually computing the derivative.

i

3.3 Part 2: Creating an environment
Our final task will be to create an environment. The environment requires a discrete
model, and will automatically define a reset and step function. It can be specified as
(see online documentation):

https://02465material.pages.compute.dtu.dk/02465public/exercises/ex04.html#example-creating-a-discrete-pendulum-environment
https://02465material.pages.compute.dtu.dk/02465public/exercises/ex04.html#example-creating-a-discrete-pendulum-environment
https://02465material.pages.compute.dtu.dk/02465public/exercises/ex04.html#computing-derivatives-jacobians-of-the-discretized-dynamics
https://02465material.pages.compute.dtu.dk/02465public/exercises/ex04.html#computing-derivatives-jacobians-of-the-discretized-dynamics

EXERCISE 4 21 February, 2025

1 # discrete_kuramoto.py
2 dmodel = DiscreteControlModel(KuramotoModel(), dt=0.5)
3 env = ControlEnvironment(dmodel, Tmax=20) # An environment that runs for 20

seconds.↪→

The step function will, as usual, accept an action, and then simulate the model using
RK4 (i.e., the code you just wrote) over a time period of dt . The environment will also
track the current time as env.time .

Complete the code to simulate the trajectory xk over 20 seconds when using the
step -function in the environment and a constant action u = 1.3.

Problem 2 Simulate system using the step-function

Info: The code is nearly complete and again the online documentation contains
plenty of hints. The point of the exercise is to familiarize you with how you can
create a Control environment, and note that the outcome of the environment agrees
with the high-order RK4 simulator we looked at last week – this is of course not a
coincidence, as the step-function uses RK4! When done, you should get the following:

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

0

2

4

6

8

10

12

14

16 RK4 (nearly exact)
RK4 (step-function in environment)
x(t) when using a random action sequence from agent

i

You should now be all set: You have defined a continuous-time variant of the environ-
ment, an Euler discretized variant, and an environment which is consistent with both.
You can now build agents that uses either of the models to plan in your environment!.
As an example, this is how you can use a random agent:

1 # discrete_kuramoto.py
2 stats, trajectories = train(env, Agent(env), return_trajectory=True)
3 plt.plot(trajectories[0].time, trajectories[0].state, label='x(t) when using a

random action sequence from agent')↪→

EXERCISE 4 21 February, 2025

4 PID Control

This section will consider PID control discussed in algorithm 19. The basic PID method
accepts a single number as input and outputs a single number. We will implement this
functionality as a class so it can later be reused.

4.1 PID and the locomotive environment (pid.py)

Our first example will be the locomotive-example from the notes. Since PID is a model-
free method, you will only need to interact with the def step(action) function as usual,
which will simulate the model exactly using RK4. You job is to implement a class, PID ,
which has a single function PID.pi(x) which takes a state as input, and return the action
computed using the PID update formula. In other words, this is how you use the class to
compute an action:

1 # pid.py
2 env = LocomotiveEnvironment(m=70, slope=0, dt=0.05, Tmax=15)
3 pid = PID(dt=0.05, Kp=40, Kd=0, Ki=0, target=0)
4 # Compute the first action using PID control:
5 print(f"When x_0 = 1 then the first action is u_0 = {pid.pi(x=1)} (and should be

u_0 = -40.0)")↪→

and this result in:

1 When x_0 = 1 then the first action is u_0 = -40.0 (and should be u_0 = -40.0)

Read the code and complete the implementation of the PID class and use it to com-
pute the action. We clip the actions since the locomotive is not infinitely powerful.

Problem 3 Bare-bones PID and locomotive

EXERCISE 4 21 February, 2025

Info:

0 25 50 75 100 125 150 175 200

1.0

0.5

0.0

0.5

1.0

Since this is a proportional controller, the locomotive will oscillate around the target
at 0.

i

4.2 PID and the locomotive environment (pid_locomotive_agent.py)
Let’s turn the basic PID class into a proper agent. This will allow us to re-produce the
locomotive results

Implement the PID agent. The computation of the actual action should be delegated
to the PID class. When done, inspect the experiments and discuss the results.

Problem 4 PID agent and the locomotive environment

Info: The code will also run an animation of a small train. You can turn these off by
setting render_mode=None .

0 2 4 6 8 10 12 14
Time/seconds

1.0

0.5

0.0

0.5

1.0

x(
t)

Kp = 40

0 2 4 6 8 10 12 14
Time/seconds

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

x(
t)

Kp = 40, Kd = 10
Kp = 40, Kd = 50
Kp = 40, Kd = 100

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Time/seconds

1.0

0.5

0.0

0.5

1.0

1.5

x(
t)

Kp = 40, Ki = 0, Kd = 100
Kp = 40, Ki = 10, Kd = 100

i

EXERCISE 4 21 February, 2025

Figure 2: Illustration of pendulum system

4.3 Pendulum balancer (pid_pendulum.py)/
Our final example relates to the pendulum problem (see fig. 2). Our goal is to create
a PID agent which can stabilize the pendulum in both an upright position as well as an
angle. This is accomplished by applying torque.

To make the problem more interesting we start the problem in an imbalanced po-
sition, obtained by initializing the pendulum as standing upright and applying a small
force u > 0 for a few steps. The more steps, the more difficult the subsequent balancing
task.

• x[0] : θ, angle. θ = 0 is upright.

• x[1] : θ̇, angular velocity.

I have split the problem into three progressively more difficult tasks, but you should
only implement a single agent and call it with the same set of parameters. As for how to
find the right parameters and inputs to the PID Agent: You simply have to guess and use
your intuition (that was what I did), and look forward to next week when we will look
at model-based controllers which will require less guesswork.

Implement the pendulum balancing agent where the goal is simply to bring the pen-
dulum angle to θ = 0.

Problem 5 Implement the pendulum balancer in the simplest version

EXERCISE 4 21 February, 2025

Info: As a hint, for this question, it was sufficient to use x[0] as input for this part
of the problem. My implementation used Kd and Kp but not Ki. Remember to
apply action clipping. u = np.clip(u, min_val, max_val) You can get the minimum
and maximum values from the action space (see online documentation).

0 2 4 6 8 10
Time

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.25 Angle
Angular speed

i

Expand your implementation above to balance the pendulum at an angle different
than zero. θ∗ ̸= 0.

Problem 6 Balance at an off-center angle

Info: Solve this by tuning your previous implementation. The target should be θ∗,
but at this position, gravity will pull the pendulum down – this is similar to a problem
we saw with the train. How did we fix it? You may need to tune the PID parameters
a bit to make the pendulum work.

0 2 4 6 8 10
Time

2

1

0

1

2

3 Angle
Angular speed

i

EXERCISE 4 21 February, 2025

Figure 3: Screenshot of the car environment. Recall the cars action space consist of the
steering angle and throttle

5 PID Racecar controller (pid_car.py)⋆

Implement the PID racecar example from the lecture notes (see also fig. 3). You need to
set up two pid controllers and tune their values; viewing what the car does will tell you
if you are on the right track.

Implement the PID car agent. Nearly all functionality is delegated to the two PID
controllers (one for velocity, one for car angle) that you set up, but you need to tune
their parameters.

Problem 7 Implement racecar controller

EXERCISE 4 21 February, 2025

Info: Look at the animation to see if the behavior is approximately correct (too fast,
too slow, over-steering, etc.). When you run the code, the car will explain what the
coordinates of the state and action vectors mean.

0 50 100 150 200
Time/seconds

0.0

0.2

0.4

0.6

0.8

1.0

velocity
s (distance to center)

i

5.1 Moon landing (pid_lunar.py)//

This is a more open-ended (and challenging!) problem which is partly inspired by the
apollo lander, which used a custom-build controller that used techniques similar to PID,
see https://eli40.com/lander/02-debrief/.

Our particular example will use the much simpler Gym environment, and in fact
the implementation is a re-worked version of https://github.com/wfleshman/PID_
Control/blob/master/pid.py. In other words, this link contains the correct PID con-
troller, and your job is simply to translate the control rules in the code to a standard
formulation of PID you can implement.

Implement the PID lunar lander. I have selected a different set of parameters from
the reference implementation but asides this change the two implementations should
be equivalent.

Problem 8 Implement the lunar-lander module

https://eli40.com/lander/02-debrief/
https://github.com/wfleshman/PID_Control/blob/master/pid.py
https://github.com/wfleshman/PID_Control/blob/master/pid.py

EXERCISE 4 21 February, 2025

Figure 4: Gyms lunar-lander module.

Info: Pay particular attention to https://github.com/wfleshman/PID_Control/
blob/master/pid.py#L37 and the following lines of code. Your result will depend
on the random seed and the parameters I have found works about 95% of the time.

0 50 100 150 200 250
Steps

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Va
lu

e

PID Control
x
y
vx
vy
theta
vtheta

Note the Lunar-lander environment requires the extended openai environments for
the physical simulations. You can check the gitlab page for installation instructions
suitable for your system if these cause a problem.

i

References

https://github.com/wfleshman/PID_Control/blob/master/pid.py#L37
https://github.com/wfleshman/PID_Control/blob/master/pid.py#L37

	Exam question: Euler discretization of control problem
	Exam Question: PID
	Models, simulation, discretization and environments (discrete_kuramoto.py)
	Recap of the Kuramoto toy problem
	Discretization
	Part 2: Creating an environment

	PID Control
	PID and the locomotive environment (pid.py)
	PID and the locomotive environment (pid_locomotive_agent.py)
	Pendulum balancer (pid_pendulum.py) '057

	PID Racecar controller (pid_car.py)
	Moon landing (pid_lunar.py) '057'057

