
LECTURE
NOTES 02465

Sequential Decision-Making
Tue Herlau
tuhe@dtu.dk

December 4, 2024
Version 1.3.2

Foreword for 02465

The purpose of 02465, Introduction to reinforcement learning and control, is to present
a unified treatment of control and reinforcement learning. Both subjects address the
same underlying problem, namely how to make decisions in sequence to bring about
a desired outcome, but with a considerable differences in emphasis, methodology and
notation.

For this reason it has not been possible to find a unified treatment of both subjects
suitable for a bachelor-level course. It was early on apparent that the excellent resource
[SB18] should be used for the second half of the course in reinforcement learning, how-
ever, I had considerable difficulties finding suitable reading material for the first part
of the course on control.

To address this, I have written a self-contained introduction to sequential decision
making, with an emphasis on the DP algorithm and it’s application to optimal decision
making under certainty and computer-game AI. The second part will consider its appli-
cations to control theory, a section which borrows from the lecture notes from AA 203:
Optimal and Learning-Based Control offered at Stanford, generously made available on-
line by the author James Harrison: https://github.com/StanfordASL/AA203-Notes

AA203 has a broader scope than this course, and therefore I have reduced the
scope of my version considerable, and added additional chapters to provide a gentler
introduction to dynamical systems. A student who is interested in a more in depth and
challenging treatment of the topic is encouraged to read the original material.

Finally, the notes have been extended with three chapters to cover the functionality
of python we will use in this course. The inclusion of this material was based on the
observation that programming skills in the KID study line are not practiced enough
during the bachelor study line, which means some are unfamiliar with important parts
of the python language. Although there are many excellent resources to learn python
online, I hope that a self-contained treatment will provide some much needed overview.

Throughout the notes we use the following symbols:

☞ An algorithm you will implement in the exercises

/ A section which is slightly technical, and where only the general gist of the
result is exam relevant. Exercises with one star should be completed after the
exercises with no stars.

// A section with extra material included for completeness but not relevant
for the exam. Exercises with two stars are only for those who are extra interested.

Compared to earlier versions, I have trimmed down the code examples in the notes
significantly, but created an online documentation site for the course which is much
better suited for this purpose. You can find it here: .

https://github.com/StanfordASL/AA203-Notes
https://02465material.pages.compute.dtu.dk/02465public/index.html

Contents

X Preliminaries 10

Preliminaries 10
X.1 Monte-Carlo sampling . 10

X.1.1 The Monte Carlo principle . 10
X.2 Analysis . 11

X.2.1 Vector-valued functions . 12
X.2.2 Derivatives . 12
X.2.3 Jacobian . 13
X.2.4 Approximations . 13
X.2.5 Dot-notation . 14
X.2.6 Differential equations . 14

X.3 Linear algebra . 15

I Programming 16

1 Python basics 17
1.1 Why this course emphasize python . 17

1.1.1 Scope . 18
1.1.2 Starting python . 18
1.1.3 Python version . 19
1.1.4 What is a program? . 19

1.2 The primitive data types . 20
1.2.1 Integers (int) . 20
1.2.2 Decimal (floating point) numbers (float) 20
1.2.3 Booleans (bool) . 22
1.2.4 Strings (str) . 22
1.2.5 The None-type (None) . 23

1.3 If/else, functions and exceptions . 24
1.3.1 Functions (def) . 24
1.3.2 Inlined functions (lambda) . 25
1.3.3 What is a good function? . 26

3

2 Compound data types and iteration 27
2.1 Lists (list) . 27

2.1.1 Intermezzo: The for -loop and lists 29
2.1.2 The range -function . 29
2.1.3 The break and continue -statements, and else in a loop 31

2.2 Tuples (tuple) . 32
2.2.1 Sequence unpacking and functions 33

2.3 Sets (set) . 34
2.4 Dictionaries (dict) . 35

2.4.1 Example: A probability assignment 36
2.4.2 Example: A tiny grid-world . 36
2.4.3 Example: The fruit-store . 36

2.4.4 Example: A small database/ 37

2.4.5 The collections-module (defaultdict)/ 38
2.5 Looping techniques . 38

2.5.1 Looping over a dictionary (items) 39
2.6 List and dictionary comprehension . 40

2.6.1 Dictionary comprehension . 41
2.7 More on functions . 42

2.7.1 Named arguments and default values 42
2.7.2 Variable input arguments (* and **) 42

2.8 Example: Conways game of life// 44

3 Classes and packages 47
3.1 Modules and packages (import) . 47
3.2 packages . 49
3.3 Classes and objects . 50

3.3.1 Defining a class (class) . 50
3.3.2 Class inheritance . 52
3.3.3 Calling super-class constructors (super) 54

3.3.4 Why inheritance is so awesome// 55

3.3.5 Wrappers/ . 56

3.3.6 Type annotation// . 58

II Optimal decision making 59

4 Introduction 60
4.1 Introduction . 60

4.1.1 Scope and organization . 62
4.1.2 Reward, cost, and other annoyances⋆ 63

4.2 The decision problem . 64
4.2.1 Example: The pendulum . 65

4.2.2 Example: Graph traversal ⋆ . 66
4.2.3 Example: The inventory control problem 67
4.2.4 Example: Gridworlds⋆ . 68
4.2.5 Example: Pacman . 69

4.3 Detailing the decision problem . 70
4.3.1 The environment . 70
4.3.2 The agent . 71
4.3.3 The interpreter . 72
4.3.4 The control loop . 72
4.3.5 How to build an agent . 73

4.4 Implementing environments and agents 74
4.4.1 Building a robot . 74
4.4.2 The environment . 75
4.4.3 The agent . 76
4.4.4 The training loop . 77
4.4.5 Advanced features, plotting⋆ 78
4.4.6 Visualizing the environment⋆ 79

5 The basic problem 82
5.1 The discrete, finite-horizon decision problem 82

5.1.1 Small graph traversal . 84
5.1.2 Inventory control example . 85
5.1.3 Example: The chessmatch . 86
5.1.4 Open and closed loop . 88

5.2 State augmentation . 89
5.2.1 Absorbing states . 89
5.2.2 An observation about time . 90
5.2.3 Time lags/ . 90

5.2.4 Partially observed environments/ 91
5.3 Implementation details . 91

6 Dynamical Programming 93
6.1 The principle of optimality . 93
6.2 The DP algorithm . 94

6.2.1 Example: The small graph problem 96
6.2.2 Example: The chess match . 98
6.2.3 Example: Inventory control . 99
6.2.4 Example: Optimal pacman⋆ . 100
6.2.5 Multi-ghost pacman . 102
6.2.6 One-ghost Pacman . 103
6.2.7 Shortcomings of DP . 104

6.3 Reformulations . 104
6.3.1 Evaluation . 104
6.3.2 Adversarial setting . 105

6.3.3 Finite-horizon formulation . 106

7 Shortest path formulation 107
7.1 Deterministic decision problem . 107

7.1.1 Traveling Salesman . 108
7.1.2 An issue with the DP algorithm 109

7.2 The deterministic decision problem and graphs 109
7.2.1 The forward view of DP . 112
7.2.2 Search problems and forward-DP 112
7.2.3 Example: Shortest-path graph traversal with no restrictions . . 115
7.2.4 Example: Pacman food pellet search 116
7.2.5 Where to go from here? . 117

8 Search 118
8.1 Search methods . 118

8.1.1 Frontier queues . 120
8.1.2 Search nodes . 121
8.1.3 Breadth-First search . 122
8.1.4 Search performance . 123

8.2 Uniform cost search . 125
8.3 Depth-first search . 126

8.4 Structured search and A∗ / . 129
8.4.1 Heuristic functions . 129
8.4.2 Heuristic functions . 130

9 Multi-agent systems 132
9.1 Multi-agent games . 132
9.2 Expectimax . 134

9.2.1 Formulating the opponents choice as a DP update 135
9.3 Minimax search . 139

9.3.1 An issue with expectimax and minimax 140

9.4 Alpha-Beta search// . 141
9.4.1 Alpha-beta pruning . 142
9.4.2 Comments on efficiency . 145
9.4.3 Tricks and chess . 146

III Control 147

10 The control problem 148
10.1 The continuous-time control problem 150
10.2 Constraints . 151

10.2.1 Non-linear constraints ⋆ . 152
10.3 Policy and cost . 152

10.3.1 Cost function . 153
10.4 The continuous-time control problem 153

10.4.1 Example 1: The pendulum . 154
10.4.2 Example 2: The harmonic osscilator 154
10.4.3 Example 3: The racecar . 155

10.5 Implementation details . 158

11 Simulation 159
11.1 Exactly solving the dynamics . 159

11.1.1 Example A: 1-d problem with no control 159
11.1.2 Example B: The harmonic oscillator 159

11.2 Euler integration . 160
11.2.1 Example A continued: Euler integration of a simple 1d system . 162
11.2.2 Example B continued: Euler integration of the harmonic oscillator 162

11.3 Runge-Kutta . 162
11.3.1 Evaluating the cost . 164
11.3.2 Comments on simulation . 165

12 Linear-quadratic problems 166
12.1 An exact solution to linear problems 167

12.1.1 Example 2: Level flight for a 747 168

13 Discretization of a control problem 171
13.1 Building models by discretization . 171

13.1.1 Example: The discrete linear-quadratic model 172
13.1.2 Discretization using Euler integration 173
13.1.3 The special case of linear dynamics 173
13.1.4 Coordinate transformations . 174
13.1.5 Discretization the cost . 175
13.1.6 Discretization of an environment 175

13.2 Notes on implementation . 176
13.2.1 Discretized model . 176
13.2.2 Models to environments . 177
13.2.3 Training control methods . 178

14 PID Control 180
14.1 The P in PID ensures we reach our goal 180
14.2 The D in PID control oscillations . 181
14.3 The I in PID fix droop . 183

14.3.1 Tuning PID controllers . 184
14.4 Example: The car-model . 184

15 Direct methods 187
15.1 Optimization . 187

15.1.1 Non-linear optimization . 187
15.1.2 Linear-quadratic optimization 188

15.2 Optimizing the discrete problem . 188
15.2.1 Transcription Methods . 189
15.2.2 Comments about optimizing the discrete problem 189

15.3 Direct collocation . 189
15.3.1 Problem formulation . 189
15.3.2 Collocation . 190
15.3.3 Constructing the solution . 192
15.3.4 Guesses and the iterative method 193
15.3.5 Example: Pendulum swingup 194
15.3.6 Example: Cartpole swingup . 196

15.3.7 Example: Brachistochrone/ 197

15.4 Additional issues// . 199
15.5 Bibliographic Notes . 201

16 Linear-quadratic regulator 202
16.1 The Linear Quadratic Regulator in Discrete Time 202

16.1.1 Example: Double integrator . 204
16.1.2 Example: Double integrator revisited 205
16.1.3 Example: Boing 747 flight . 207
16.1.4 LQR with Additive Noise . 207
16.1.5 LQR with (Bi)linear Cost and Affine Dynamics 209
16.1.6 Regularization . 209

16.2 Bibliographic Notes . 210

17 Iterative LQR 211
17.1 Linearization . 211

17.1.1 LQR Tracking around a Nonlinear Trajectory 213
17.1.2 Example: Pendulum and basic ILQR 216

17.2 Iterative LQR . 217
17.2.1 Example: Cartpole . 219

17.3 Bibliographic Notes . 220

18 System estimation 221
18.1 Introduction . 221

18.1.1 Solving the problem . 222
18.1.2 Using the linear dynamical model 224

18.2 Non-linear problems . 225
18.2.1 Example: Pendulum swingup 227
18.2.2 MPC and optimization . 227
18.2.3 Example: Pendulum swingup and optimization 228

18.3 Learning-MPC and the racecar/ . 228
18.3.1 Problem formulation . 228
18.3.2 Linearization . 229
18.3.3 The terminal cost approximation 231

19 Preparing for RL 233
19.1 Markov Decision Process . 233

19.1.1 The terminal time . 234
19.1.2 Implementation of an MDP . 236

A Proof of principle of optimality 238
A.1 Principle of optimality . 238

Chapter X

Preliminaries

This chapter will collect useful mathematical results we will make use of throughout
the remainder of the course.

X.1 Monte-Carlo sampling

Monte Carlo (method) (MC) is an umbrella name for an arsenal of numerical techniques
for computing approximate estimates via random sampling. The estimates are very
often given as the result of an intractable integral and the technique could have been
named “numerical integration in high dimensions via random sampling”. The term
Monte Carlo was initially coined during 1940’s by von Neumann, Ulam and Metropolis
[MU49, MRR+53] to refer to the famous casino of 1940’s.[BGJM11] However, due to
the central importance of the subject and wide use of the concept, it soon became an
established technical term. Monte Carlo techniques have been further popularized in
applied sciences with the wider availability of computing power, starting from the 90’s,
most notably in statistics, computer science, operational research and signal processing.

X.1.1 The Monte Carlo principle

In an abstract setting, the main principle of a Monte Carlo technique is to generateMonte Carlo

a set of samples x(1), . . . , x(N) from a target distribution π(x) to estimate some features
of this target density π. Features are simply expectations of well behaving functions
that can be approximated as averages:

Eπ[φ] ≈
φ
(
x(1)

)
+ · · ·+ φ

(
x(N)

)
N

≡ Ēφ,N . (X.1)

Provided that N is large enough, we hope that our estimate Ēφ,N converges to
the true value of the expectation Eπ(φ(x)). More concrete examples of test functions
φ(x) will be provided in the next section. For independent and identically distributed
samples, this is guaranteed by two key mathematical results: the strong Law of Large

10

Numbers (LLN) and the Central Limit Theorem (CLT)[Ros05]. Assuming that the true
mean and variance

Eπ[φ] = µ, Varπ [φ] = σ2 (X.2)

are both finite Law of Large Numbers states thatLaw of Large Num-
bers

Ēφ,N → µ a.s.

Here, a.s. denotes convergence almost surely, which is the technical statement the limit
converge with probability one [Ros05]

Pr
{

lim
N→∞

|µ− Eφ,N | = 0
}
= 1 (X.3)

Since our approximation will be based on a random, finite sample set x(1), . . . , x(N),
fluctuations are inevitable, but we wish that they are small. This is guaranteed by the
central limit theorem: for sufficiently large N , the fluctuations are approximatelycentral limit the-

orem Gaussian distributed

Ēφ,N ∼ N
(
Ēφ,N |µ,

σ2

N

)
(X.4)

with mean equal to the true mean and standard deviation decreasing at a rate pro-
portional to 1√

N
. This result has important practical consequences. If we can generate

i.i.d. samples from the distribution π of x, we can estimate any expectations E[φ(x)]
using Monte Carlo sampling and be guaranteed the following properties

1. Monte Carlo provides a noisy but unbiased estimate of the true value µ =
Eπ(φ(x))

2. The error decreases at a rate proportional to 1√
N

3. The decrease in error is independent of the dimensionality of x

The third point is particularly important. It suggests that, at least in principle, with
a quite small number of samples one can compute approximate solutions for arbitrary
large parameter estimation problems.

X.2 Analysis

Control theory will make use of concepts from analysis which should be familiar, such
as derivatives and ordinary differential equations (ODEs).

X.2.1 Vector-valued functions

Highschool math is focused on functions such as f(x) = sin(2x), g(x) = e−ax, and so on.
These functions map a single real number to a single real number which is commonly
written as f : R → R. We can generalize this definition in two ways: A function can
either take multiple arguments, or map to multiple outputs (or both). Suppose we
adopt the convention of writing vectors as

x =

x1
x2
...
xn

 . (X.5)

We could define a multivariate function asmultivariate func-
tion

f(x) = sin(x1)e
x2 + x3. (X.6)

Which we would write as f : R3 → R. This function takes three input arguments and
return a single number. We could also let a function have multiple output arguments.
We write this as:

f(x) =

[
sin(x)
cos(x)

]
(X.7)

Which we write as f : R→ R2. Obviously the two things can be combined to give, for
instance,

f(x) =

[
x2 sinx1

x2 cos(x1 + x3)

]
(X.8)

which we write as f : R3 → R2. Note the use of boldface to indicate which quantities
are vectors.

X.2.2 Derivatives

The derivative is defined in the ordinary way as df
dx
(x) = lim∆→0

f(x+∆)−f(x)
∆

. For in-
stance if f(x) = sin(ax) then

df(x)

dx
= f ′(x) = a cos(ax). (X.9)

For vector-valued functions there are two generalizations. The first is the partial deriva-
tive, which just means we perform the ordinary derivative with respect to a single input
variable xk while keeping the others constant:

∂f(x)

∂xk
= lim

∆→0

f(x1, . . . , xk−1, xk +∆, xk+1, . . . , xn)− f(x)
∆

. (X.10)

Gradient and Hessian

If f : Rn → R the gradient is defined asgradient

∇f(x) =

∂f
∂x1

(x)
...

∂f
∂xn

(x)

Note the gradient is a function ∇f : Rn → Rn. We can also define the equivalent to
the second-order derivative namely the Hessian defined as:Hessian

H =

∂2f
∂x21

∂2f
∂x1∂x2

· · · ∂2f
∂x1∂xn

∂2f
∂x2∂x1

∂2f
∂x22

· · · ∂2f
∂x2∂xn

...
...

. . .
...

∂2f
∂xn∂x1

∂2f
∂xn∂x2

· · · ∂2f
∂x2n

 (X.11)

The hessian is a function H : Rn → Rn2
.

X.2.3 Jacobian

Consider now the case where f has multiple outputs, i.e. f : Rn → Rm. The Jacobian
matrix is defined as:Jacobian matrix

J(x) =
[

∂f
∂x1

· · · ∂f
∂xn

]
=

∂f1
∂x1

· · · ∂f1
∂xn

...
. . .

...
∂fm
∂x1

· · · ∂fm
∂xn

 .
The Jacobian is technically a function J : Rn → Rmn.

X.2.4 Approximations

The reason gradients, Jacobians and Hessians are used in machine-learning is because
they can be used to approximate functions. First, suppose f : Rn → R has a single
output argument. We can then approximate f around x as:

f(x+∆) ≈ f(x) +∇f(x)T∆+
1

2
∆TH(x)∆ (X.12)

A similar expression can be obtained for a multi-variate f : Rn → Rm:

f(x+∆) ≈ f(x) + Jf (x)∆ (X.13)

These expressions are fairly abstract, but we can make sense of them in two ways: First,
lets consider the case where n = 1. The first equation becomes:

f(x+∆) = f(x) + ∆f ′(x) +
1

2
∆2f ′′(x) (X.14)

Which is just the second-order Taylor expansion. The second equation, if n = m = 1,
is simply f(x+∆) = ∆f ′(x).

The reason why these equations are important is because they allow us to reason
about how a function behaves at a point x+∆ given only information computed at x.
As an example, given x, suppose we consider a new point selected as x′ = x−α∇f(x) =
x+∆, ∆ = −α∇f(x). Plugging this into eq. (X.12) gives

f(x′) = f(x+∆) ≈ f(x)− α∥∇f(x)∥2 + α21

2
(∇f(x))⊤H(x)∇f(x) (X.15)

Assuming α is small the last term will be much smaller than the middle-term. This
tells us that f(x′) ≈ f(x)−α∥∇f(x)∥2 and so f(x′) < f(x). What this tells us is that
adding a term proportional to minus the gradient times α to x will likely decrease the
objective function, i.e. gradient descent works.

X.2.5 Dot-notation

Finally, time will play an important role throughout. Suppose u : R→ Rn is a function
of time, for instance u(t) = e−at would be an exponentially decaying function. The
derivative is then written using a dot, or the double-derivative using two dots:

u̇(t) ≡ u′(t) = −ae−at, ü(t) ≡ u′′(t) = a2e−at (X.16)

Often the time-dependence is suppressed and this is written as u̇ and ü.

X.2.6 Differential equations

The reader is no doubt fmliar with differential equations. For instance, solve for f if

f ′(t) =
1

f(x)
(X.17)

(typically the problem should also contain additional information such that f(t) must
be non-negative and satisfy an initial condition, but we will omit these details here).
Notice we can write this equivalently as:

ḟ = F (f), F (z) =
1

z
. (X.18)

Since we will be interested in abstract differential equations we will prefer this notation
where F is assumed to be some well-behaved function.

Solving a differential equation is often easier done by guessing a solution. In this
particular case you can check that f(t) = ln(t+ k) works for any constant k.

We can generalize the above way of writing differential equations to the multivariate
case:

ḟ = F (f) (X.19)

In this case f : R → Rn is a vector-valued function and F : Rn → Rn tells us how f
relates to it’s rate of change. The notation can alternatively be unpacked into the n
coupled differential equations:

f ′
1(t) = F1(f(t))

f ′
2(t) = F2(f(t))

...

f ′
n(t) = Fn(f(t)).

(X.20)

Solving such systems of differetial equations is in nearly all cases impossible and we will
not be interested in it here. However, note given F , we can easily check if a particular
function f is a solution by simply differentiating it and checking all n equations agree.

X.3 Linear algebra

A symmetric matrix Q is positive semi-definite if for all x it holds:positive semi-
definite

x⊤Qx ≥ 0 (X.21)

It is positive definite if the inequality is sharp: x⊤Qx > 0. This property is importantpositive definite

in optimization since it ensures that xTQx resembles a quadratic expression (such as
x2) in that it is at most quadratic in x and can never be negative.

Part I

Programming

16

Chapter 1

Python basics

Python is a powerful language with a simple syntax, great build-in data-structures, and
the best libraries for machine learning and AI. In the last 15 years, python has emerged
as the standard programming language in machine learning.

1.1 Why this course emphasize python

Machine-learning is a new field and so what one ought be able to know or do is less well-
established than in other academic disciplines. However, I think it is fair to compare
the relationship between being a machine-learning practitioner and programming to

• The relationship between being a surgeon and using surgical tools to operate

• The relationship between being an architect and making technical drawings

• The relationship between an electrician and his tools

In other words, programming is what allows us to transform theoretical knowledge
into something of value. If you don’t have the ability to operate on a person, you cannot
perform surgery. If you cannot read and make technical drawings, you cannot be an
architect, and if you cannot program, you cannot be a data scientist.

So what are good programming skills? I am going to define it as roughly this:

• You can start with a blank editor and write code

• You know what a dictionary and list is, and how and when to use them

• You know that e.g. a pytorch tensor is a class, and why pytorch made this choice

• Programming does not scare you or feel like trial-and-error

In the first two semesters I ran this course, it was my experience about 40% of the
students had deficiencies which made the course unpleasant, and perhaps 20% were
struggling to even get started with the exercises. At the same time, I found that poor
programming skills did not correlate with study activity or general technical abilities.

17

I think the reason for these deficiencies should be attributed to there being no
python-specific introduction to programming course, as well as a general lack of focus
in the study line on programming as a day-to-day activity which directly affects ones
grades. In contrast, when I have spoken with good programmers in the study line, they
have all attribute their skills to self-study.

Unfortunately, I think this can easily create the impression that if you struggle, you
simply lack an innate ability of some sort. This is wrong. Programming is a learned
skill, similar to blind typing, and our mistake was that you could not reasonably be
expected to become good in a single 5 ECTS course.

We are doing what we can to improve on that situation. In the spring 2022 semester,
the algorithms and data structure course was moved to an earlier place in the study line,
and the introduction to programming course and mathematics course will eventually be
re-modeled. However, you need a fix here and now. I have therefore decided to include
three chapters to refresh programming concepts we will use, so there is at least a single,
self-contained reference for those who prefer to learn in that way.

1.1.1 Scope

I think everyone knows what an if statement is, how to add numbers in python, and
that s = "Hello World" defines a variable called s which store a bit of text. Despite this,
this guide will start from the ground up, since if something relatively simple is missing,
this will create a great confusion later on.

1.1.2 Starting python

When you learn a new programming language, the most important thing is you can
experiment with the examples as you read them. I recommend that you install a good
IDE and get yourself set up, you can find more details on DTU Learn, including videos
on how to do that.

Once you are done, you can start python by running the command python in the
console. On my computer it results in the following output:

1 Python 3.8.6 (tags/v3.8.6:db45529, Sep 23 2020, 15:52:53) [MSC v.1927 64 bit (AMD64)] on win32

2 Type "help", "copyright", "credits" or "license" for more information.

3 >>>

When python is used this way it is called the interactive mode, because commandsinteractive mode

are typed in directly after the three greater-than signs (>>>) and executed when you
press enter. The interactive mode is convenient to showcase basic features, but not
usable for longer programs. The console mode is also available from Pycharm if you
press the Python console tab in the bottom of the screen.

The alternative way to run python is to type your commands into .py -files and
then run them using a command such as python my_script.py . Putting your commands
in .py -files is the recommended way to use python, however, you should not actually
type the command python my_script.py yourself, but rather run the scripts from Pycharm

or VScode, since this is far more convenient. Please see the installation video for more
details.

1.1.3 Python version

Most of what the python command output is not important, but check your version
number (in this case 3.8). Higher versions are okay, but lower versions will not work
for this course1.

1.1.4 What is a program?

When you program, you should have this view in mind: Initially, you have your python
program code, usually stored in .py files. As an example:

1 # chapter0pythonA/chapter1_python_example.py

2 x = [] # Create an empty list

3 for i in range(5): # A for-loop

4 if i == 0 or i == 2 or i == 4: # Check if i is even

5 x.append(i) # If even, add i to the list x.

6 print(x) # Print the list x

When you then run your program, a special program called an interpreter readsinterpreter

your code and begin to execute the lines in your program starting from the top. Dur-
ing execution, variables are assigned and changed as dictated by each line of code.
Eventually, the above program will reach the print -function and print out:

1 [0, 2, 4]

If you are not entirely sure about everything that goes on in this program don’t
panic; you will be after the next two chapters. For now, let’s just try to name the
different elements:

• The number 5 , and the variable i , are integers (or in python lingo, an int). This
is an example of a build-in data type. Other examples are decimal numbersbuild-in data type

and strings.

• The symbol x is a variable. It is initially initialized to an empty list, whichvariable

is written as [] , which we then append integers to using the append() function.
Things like lists are called the data structure because they allow us to structuredata structure

the data the program manipulates.

• Statements like if and for are called called control flow statements, becausecontrol flow

they control the order (flow) in which the program lines are executed.

• Comments are written as ## This is a comment and are ignored by the interpreter.Comments

1This is because a build-in library in python was changed between version 3.6 and 3.8. The code
itself should be compatible with older versions of python.

1.2 The primitive data types

The primitive data types are the atoms of a programming language, and probably the
most important thing to be familiar with. There are a few extra niche types2, but you
only need to know the following five:

1.2.1 Integers (int)

Integers are whole numbers such as −2, −1, 0, 1, 2, 117. Naturally they supportIntegers

standard algebraic operations like addition and subtraction:

1 >>> 2 + 4 # Add two integers

2 6

3 >>> 50 - 5 * 6

4 20

5 >>> (2 + 2) * (3 - 1) # You can group operations using parenthesis

6 8

7 >>> width = 20 # Assign the variable 'width' to a value of 20

8 >>> height = 5*9 # And also height is assigned the value of 5 * 9 = 45

9 >>> area = width * height # Compute the area of a rectangle and asign it to 'area'

10 >>> area # This line shows us the value of 'area'

11 900

1.2.2 Decimal (floating point) numbers (float)

Floating-point numbers are decimal numbers such as 3.14, −10.3 and so on, andFloating-point
numbers support operations like division, multiplication, addition and subtraction. They are

defined using the period sign like 7.01 . For instance:

1 >>> 2.5 + 1.5

2 4.0

3 >>> 5 / 2 # Division of two integers automatically creates a floating-point number

4 2.5

5 >>> 3.5 * 1e2 # Create a floating-point number using scientific notation, i.e. 3.5 * 10^2 = 350.

6 350.0

7 >>> 1e-3 # Scientific notation for 10^-3 = 0.001

8 0.001

9 >>> 1.25 * 4

10 5.0

11 >>> 12 / 3 # Do you find anything surprising about this result?

12 4.0

13 >>> cost_per_apple = 1.5

14 >>> apples = 5

15 >>> total_cost = apples * cost_per_apple

16 >>> total_cost

17 7.5

Why are there two number-types?

The distinction between an integer-type and a more general floating-point type has to
do with how computers store things internally. Integers are easy to store exactly in a

2Such as complex numbers, hexadecimal numbers and the binary data type.

binary format, whereas floating point numbers, such as 0.1 , are actually quite tricky
to represent efficiently when you only have a finite amount of memory per number.

What the computer does is that it stores a number which is very close to 0.1 , and
various rounding-tricks are then applied to ensure this distinction is rarely noticed.
Consider this example: It should be the case that 1 − (1 − x) = 1 − 1 + x = x for all
x, but if we actually try the example in python using x = 0.1:

1 >>> 1 - (1-0.1)

2 0.09999999999999998

Generally speaking, when you do calculations involving floating-point numbers, the
result will tend to accrue minuscule errors, which only in rare cases become a problem3.
TL;DR: If you can define your program using only integers you should since the result
will be exact in that case.

Number-operations

As we saw, the normal division operator / convert integers to floating-point num-
bers. Python has a special whole-integer division operation // which does division and
rounding, as well as the modulus operator % which computes the remainder aftermodulus operator

division. Exponentials can be computed using the double multiplication operator a**b :

1 >>> 16 / 3 # classic division returns a float

2 5.333333333333333

3 >>> 16 // 3 # floor division discards the fractional part

4 5

5 >>> 16 % 3 # the % operator returns the remainder of the division. 16 = 5*3 + 1.

6 1

7 >>> 17 % 3 # Same as above. In this case 17 = 5*3 + 2

8 2

9 >>> 18 % 3 # Equal to 0 because 3 divides 18 so 18 = 6*3 + 0

10 0

11 >>> 5 * 3 + 1 # result * divisor + remainder

12 16

13 >>> 2 ** 3 # Computes 2^3 (as an integer)

14 8

15 >>> 5.0 ** 2 # Computes 5^2 (as a float)

16 25.0

Conversion

The name of a datatype can be used for conversions. When you convert a floating point
number to an integer, the number is rounded down. For instance:

1 >>> int(3.2) # Integer to float

2 3

3 >>> float(3)*2.5 # integer to float (very rarely useful)

3The magnitude of the errors will depend on the magnitude of the numbers involved, try for instance
(1e18 +1)-1e18 . Rounding problems that arise from floating-point inaccuracies are called overflow or

underflow. My personal rule of thumb is to trust floating-point numbers to a precision of about 10−10.

4 7.5

5 >>> 3 * 2.5 # Same as above; python does automatic conversion

6 7.5

In other words, you should think about int as actually being a function: It takes
an argument which is not an integer and converts it to an integer.

1.2.3 Booleans (bool)

A Boolean is a special data type which can only take two values, True or False .Boolean

Booleans support operations such as or , not and and . They most commonly arise as
the result of comparisons, like x==3 . This expression is either True or False , depending
on x , and therefore we can assign it to a variable such as y = x == 3 . In this case, y

will be a Boolean variable which will be True if x is 3 and otherwise False . Some
examples

1 >>> x = 8

2 >>> y = x == 3 # y is 'False'

3 >>> y

4 False

5 >>> z = x != 7 # This will be true because 'x' is not equal to 7

6 >>> z

7 True

8 >>> y or x # This will be True

9 8

10 >>> y or not z or 3 == 8 # This will be False

11 False

12 >>> i = 3

13 >>> i == 0 or i == 2 or i == 4 # This will be True if i is an even number less than or equal to 4.

14 False

1.2.4 Strings (str)

A string is used to store text. Strings are an incredible versatile data type in pythonstring

and, compared to other languages, very easy to use. Some examples of using strings:

1 >>> "Hamberder" # A string

2 'Hamberder'

3 >>> x = "Green eggs" # A string-variable

4 >>> len(x) # The number of letters in x

5 10

6 >>> y = " and ham" # Another string variable

7 >>> x + y # Concatenating two strings to gether

8 'Green eggs and ham'

9 >>> x + (y * 2) # Multiplication can repeat strings

10 'Green eggs and ham and ham'

11 >>> x == "Green eggs" # test if 'x' is "Green eggs"

12 True

Strings can be defined using either single or double-quotes, or using triple-quotes
which allow us to write multi-line strings. Regardless, they are all just strings:

1 >>> 'Donald Trump is a "clever" buisnessman' # Single-quotes allow double-quotes in string

2 'Donald Trump is a "clever" buisnessman'

3 >>> "Donald Trump is a 'honest' politician" # Double-quotes allow single-quotes in string

4 "Donald Trump is a 'honest' politician"

5 >>> h = """triple-quotes allow both " and ' (and may span several lines) """

6 >>> len(h)

7 62

Some, myself included, use the triple-quote strings as a way to write multi-line
comments; other people consider this a bad habit, but they are wrong.

String conversion

A really nice thing about python is that all common-sense things usually works. For
instance, this is how you can convert between strings and other data-types such as int ,
float or bool :

1 >>> x = 107

2 >>> str(x) # Convert x to a string

3 '107'

4 >>> int("107") # Convert the string '107' to an integer

5 107

6 >>> float("12" + "77") # Rarely the right way to add numbers

7 1277.0

This may seem like a very small thing to make a fuzz about, but these things usually
requires a trip around stackexchange in Java or C++.

String formatting

If this was a normal programming course I would spend more time on all the cool things
you can do with strings, however, we are mostly going to use strings as a way to output
things. The f-string syntax provides a super convenient way to format output. Tof-string syntax

provide a few examples which combine the print -command and string formatting:

1 >>> apples = 10

2 >>> print("There are " + str(apples) + " apples") # Nasty old way

3 There are 10 apples

4 >>> print("There are", apples, "apples") # Using multi-input print (better)

5 There are 10 apples

6 >>> print(f"There are {apples} apples") # Using the automatic f-string formatting feature

7 There are 10 apples

8 >>> price = 2/3

9 >>> f"Total cost of all {apples} apples is {price*apples}" # Not nice

10 'Total cost of all 10 apples is 6.666666666666666'

11 >>> f"Total cost of all {apples} apples is {price*apples:.2f}" # Format with two decimal after the period.

12 'Total cost of all 10 apples is 6.67'

1.2.5 The None-type (None)

The none type can just take a single value, None . Surprisingly, this turns out to be quitenone

useful since they convention in python is to let None stand for not currently assigned.

We can test if something is None or not using the comparison-operators == and != or
the special, and sometimes more readable, syntax is None and is not None .

1 >>> name = "Bob's bakery"

2 >>> name is None

3 False

4 >>> name == None

5 False

6 >>> None is None

7 True

8 >>> name is not None

9 True

1.3 If/else, functions and exceptions

An if -statement has the form if <boolean-variable>: and execute the indented code if theif

statement is true. A simple example:

1 >>> x = 42

2 >>> if x > 10:

3 ... print("x is larger than 10!")

4 ...

5 x is larger than 10!

The if can be followed by an else-clause which is executed if the if -statement iselse

False :

1 >>> x = 42

2 >>> if x > 117:

3 ... print("x is larger than 117")

4 ... else:

5 ... print("x is not larger than 117")

6 ...

7 x is not larger than 117

The optional elif (else-if) statements can be used to check multiple conditions inelse-if

a row:

1 >>> x = 10

2 >>> if x > 10:

3 ... print("x is greater than 10!")

4 ... elif x == 10:

5 ... print("x is equal to 10")

6 ... else:

7 ... print("x is less than 10")

8 ...

9 x is equal to 10

1.3.1 Functions (def)

A function takes one (or more) input-arguments, executes the content (body) of thefunction

function, and return a value. Functions are the soul of programming, as they allows
the same pieces of code to be re-used in different contexts:

1 >>> def test_my_pet(animal):

2 ... if animal == "dog" or animal == "cat":

3 ... print("That is a pretty normal pet!")

4 ... elif animal == "parrot" or animal == "lizard":

5 ... print("This is an unusual pet")

6 ... elif animal == "dragon":

7 ... print("No way!")

8 ... else:

9 ... print("I am not familiar with this kind of animal")

10 ...

11 >>> test_my_pet("lizard")

12 This is an unusual pet

13 >>> test_my_pet("bunny")

14 I am not familiar with this kind of animal

By default, a function will return (i.e., compute) the value None , but you can specify
another value using the return-keyword. Lets write a function which solves the equation
ax+ b = 0 for x:

1 >>> def solve_linear(a, b): # Solve the equation ax + b = 0

2 ... return -b / a

3 ...

4 >>> solve_linear(3, 2)

5 -0.6666666666666666

6 >>> solution = solve_linear(10, 3) # Assign the output of the function to a variable

7 >>> print(f"The solution of 10x + 3 = 0 is x = {solution}")

8 The solution of 10x + 3 = 0 is x = -0.3

This code is buggy in the case where a = 0. In this case it might be beneficial to
tell the user clearly what is wrong, which can be done by raising an exception. Theexception

exception will cause the program to fail with an error message we can specify. We can
do this as follows:

1 >>> def new_solve_linear(a, b): # Solve the equation ax + b = 0

2 ... if a == 0:

3 ... raise Exception(f"I don't know what to do about the equation: {a}x + {b} = 0")

4 ... else:

5 ... return -b / a

6 ...

7 >>> new_solve_linear(3, 2)

8 -0.6666666666666666

9 >>> new_solve_linear(0,2)

10 Traceback (most recent call last):

11 File "<console>", line 1, in <module>

12 File "<console>", line 3, in new_solve_linear

13 Exception: I don't know what to do about the equation: 0x + 2 = 0

There is more to exceptions than this, for instance the try / except keywords can
be used to anticipate exceptions and handle them without failing, but you will not be
using this functionality in this course. Why should you, the code will be perfect!.

1.3.2 Inlined functions (lambda)

If a function just take up a single line, you can define it as an inlined function usinginlined function

the lambda keyword. As an example, consider these equivalent ways to define a one-line
function

1 >>> def misterfy(x): # A basic function

2 ... return "Mr " + x

3 ...

4 >>> misterfy("Bunny")

5 'Mr Bunny'

6 >>> misterfy2 = lambda x: "Mr " + x # Same thing, one line shorter

7 >>> misterfy2("Cat")

8 'Mr Cat'

The lambda -keyword is a bit obscure, and we will only use it a very few times. The
recommended way to define a function is to use the familiar def function_name(): syntax.

1.3.3 What is a good function?

When you write your code, try to break it up into different functions. This both tends
to make your code easier to write, read, and will allow you to easier re-structure and
re-use your program later. Novice programmers tend to use few functions, and better
programmers tend to write more functions.

• If you feel you have a choice between using one or two functions for a task, use
two.

• Functions should be short. Try to make them fit on a single screen.

• A function should do a single thing. If the behavior of your function depends on
input arguments (for instance, your function may find the maximum of a second
degree polynomial or the roots based on an input argument), you should probably
use two functions.

• The exception to the above is a public-facing API, such as matplotlibs plot() -
function. This function does a ton of stuff, but that is because it is intended for
a third-party user

• Break these rules if it is more convenient in your concrete setting.

Chapter 2

Compound data types and iteration

A compound data type is a build-in data structure which allows us to collect manycompound data
type instances of the simple data types for later processing. In this section, we will focus

on the four most important compound data types, starting with lists. The later half of
the chapter will consider iteration techniques for the compound data types.

2.1 Lists (list)

The most important compound data type in python is the list for two reasons: (i) Listslist

are just really useful and (ii) strings and most other compound data-types behaves like
lists.

A list is simply a sequence of items which can be of any type, including lists them-
selves. Lists can be manually defined using squared brackets and commas, and the len

function can be used to compute the length. A list can also be empty:

1 >>> squares = [1, 4, 9, 16, 25] # A list of 5 elements, each element is an integer.

2 >>> squares

3 [1, 4, 9, 16, 25]

4 >>> len(squares) # Compute the number of elements

5 5

6 >>> empy_list = [] # An empty list

7 >>> empty_list2 = list() # This also creates an empty list

The element at the i’th place in the list (from the left) can be accessed using the
notation my_list[i] . Conveniently, the index can be negative, which will access the list
from the right. Therefore, my_list[-1] will always be the last element, my_list[-2] the
element before that, and so on:

1 >>> squares[0] # First element

2 1

3 >>> squares[1] # Second-element

4 4

5 >>> squares[-1] # Last element

6 25

7 >>> squares[-2] # Element before the last

8 16

27

If you want to get a sub-sequences of a list, you can do that using the slicing-slicing

operator : . This can be used in conjunction with negative indexing to get a new list
which corresponds to either the first or last part of the list:

1 >>> squares[2:] # Slice from 2 to end

2 [9, 16, 25]

3 >>> squares[:-3] # Negative indexing works with slicing

4 [1, 4]

5 >>> squares[:] # Creates a copy of the list

6 [1, 4, 9, 16, 25]

Strings and lists are actually quite similar if you think about a string as a list of
characters, and strings can also be indexed and sliced. Furthermore, like strings, lists
can be added using addition + or repeated using multiplication * :

1 >>> more_squares = squares + [36, 36, 49, 64] # Concatenate two lists

2 >>> more_squares

3 [1, 4, 9, 16, 25, 36, 36, 49, 64]

4 >>> even_more_squares = squares * 3 # Repeat list three times

5 >>> even_more_squares

6 [1, 4, 9, 16, 25, 1, 4, 9, 16, 25, 1, 4, 9, 16, 25]

It is possible to update the elements in a list. The technical term for a datatype
which can be changed like this is that it is mutablemutable

1 >>> primes = [2, 3, 4, 7, 9] # This seems wrong

2 >>> primes[2] = 5 # Set element 2 equal to '5'.

3 >>> primes

4 [2, 3, 5, 7, 9]

A cool thing about python how readable the syntax is. If you want to know if an
element is in a list, just use the in -keywordin

1 >>> primes = [2, 3, 5, 7]

2 >>> 5 in primes # True

3 True

4 >>> 4 in primes # False

5 False

6 >>> 7 not in primes # False

7 False

A few options are available to increase/decrease the size of a list. The append com-
mand is used to append elements to the list:append

1 >>> primes.append(11) # Add 11 to the list

2 >>> primes.append(13)

3 >>> primes

4 [2, 3, 5, 7, 11, 13]

Furthermore, pop can be used to remove (pop) elements and return them for pro-
cessing, del can remove elements by index, and the more rarely used clear() will remove
all the elements in the list:

1 >>> last_element = primes.pop() # Remove the last (right-most) element

2 >>> last_element # This will be the value we just removed (popped)

3 13

4 >>> primes # This contains the remaining elements.

5 [2, 3, 5, 7, 11]

6 >>> del primes[1] # Remove the 2nd element of the list

7 >>> primes

8 [2, 5, 7, 11]

9 >>> primes.clear() # remove all elements in the list

10 >>> primes

11 []

2.1.1 Intermezzo: The for -loop and lists

To provide a bit of context we will take a peak at iteration and lists. The for loopfor loop

allows us to iterate over lists. As an exampleiterate

1 >>> for animal in ["cat", "dog", "dragon"]:

2 ... print("Look! A large", animal)

3 ...

4 Look! A large cat

5 Look! A large dog

6 Look! A large dragon

This allows us to structure similar computations. As an example, let’s compute the
squares of a sequence of numbers:

1 >>> numbers = [1, 2, 4, 5]

2 >>> cubes = []

3 >>> for n in numbers:

4 ... cubes.append(n ** 3) # computes n^3

5 ...

6 >>> cubes

7 [1, 8, 64, 125]

As an additional example, the following functions uses a for-loop and list-addition
to compute the reverse of a list (as we will see later, there is a much better way)

1 >>> def reverso(numbers): # A function which reverse a list

2 ... reversed = []

3 ... for n in numbers:

4 ... reversed = [n] + reversed # reversed.insert(n,0) is faster

5 ... return reversed

6 ...

7 >>> print(reverso([1, 1, 2, 3]))

8 [3, 2, 1, 1]

2.1.2 The range -function

Often, we want to iterate over a list of numbers in arithmetic progression. This can be
accomplished using the range function which, given n, counts the integers from 0 torange function

n− 1:

1 >>> for i in range(4):

2 ... print(i)

3 ...

4 0

5 1

6 2

7 3

The end-point n is not part of the sequence, and so the sequence contains exactly
n values and will be useful to index a list of length n.

You can let range start from another number, and even specify different increments
using a function call such as range(start, stop, increments) . This allows range to count
backwards (note 2 is not included):

1 >>> for i in range(10, 2,-2):

2 ... print(i)

3 ...

4 10

5 8

6 6

7 4

As an example, we can use this to enumerate the elements in a list:

1 >>> animals = ["dog", "cat", "tiger"]

2 >>> for k in range(len(animals)):

3 ... print("Animal", k, "is a", animals[k])

4 ...

5 Animal 0 is a dog

6 Animal 1 is a cat

7 Animal 2 is a tiger

If you just print range , something strange occurs:

1 >>> print(range(5))

2 range(0, 5)

So why does this not just output the list [0, 1, 2, 3, 4] ? What happens is that range

actually returns an iterator. This is a special object which, when used in a for-loop,iterator

returns the successive elements in the desired sequence exactly like a list, but computes
the items on-the-fly, thus saving memory. Iterators are common in python because
they save memory. If you want, you can convert an iterator to a list using the list()

function:

1 >>> print(list(range(5)))

2 [0, 1, 2, 3, 4]

Using the range function we can begin to build our first useful program. The
following program tests if a number n is a prime:

1 >>> def is_prime(n): # Test if n is prime assuming n >= 2.

2 ... for k in range(2, n): # k = 2, 3, 4, .., n-1

3 ... if n % k == 0: # Check if the remainder is zero. In that case n = k * x + 0 and so k divides n.

4 ... return False # Divisor found, n is not a prime

5 ... return True # No divisors found, so n must be a prime

6 ...

7 >>> print("Is 11 prime?", is_prime(11))

8 Is 11 prime? True

9 >>> print("Is 9 prime?", is_prime(9))

10 Is 9 prime? False

11 >>> print("Is 2 prime?", is_prime(2))

12 Is 2 prime? True

To understand this program, what it does is to check, for each k = 2, . . . , n − 1, if k
divides n. This is here done by checking if the remainder is zero. If this is the case,
the function returns False , and otherwise it will return True since a number without
divisors is prime.

2.1.3 The break and continue -statements, and else in a loop

The break statement can be used to stop a for -loop before time. Here is an example
where we break the inner loop whenever we find a divisor:

1 >>> for n in range(2, 8):

2 ... for k in range(2, n):

3 ... if n % k == 0:

4 ... print(f"{n} = {k} * {n//k}")

5 ... break

6 ...

7 4 = 2 * 2

8 6 = 2 * 3

Often you want to do something special depending on whether the loop was termi-
nated early or not. This can be done by using an else statement, which is executed
only if the loop is not stopped with a break . The effect is easier seen than explained:

1 >>> for n in range(2, 8):

2 ... for k in range(2, n):

3 ... if n % k == 0:

4 ... print(f"{n} = {k} * {n//k}")

5 ... break

6 ... else:

7 ... print(n, "is a prime number")

8 ...

9 2 is a prime number

10 3 is a prime number

11 4 = 2 * 2

12 5 is a prime number

13 6 = 2 * 3

14 7 is a prime number

When a continue -statement is encountered in a loop the interpreter skips the code
following the continue-statement and immediately jump to the next iteration of the the
loop. A slightly artificial example:

1 >>> for animal in ['dog', 'dragon', 'cat', 'pig', 'bunny']:

2 ... if animal in ['pig', 'dragon']: # Not a nice animal!

3 ... continue # Skip the rest of the for-loop

4 ... print("What a nice", animal) # Skipped by 'continue'

5 ... # If there was more code here, it would also be skipped

6 ...

7 What a nice dog

8 What a nice cat

9 What a nice bunny

This is useful when the loop contains a lot of code which you sometimes don’t
want to execute, but you can often obtain the same result using an if -statement (as
is certainly the case here). Generally speaking, you should try to avoid break and
continue -statements if you can.

2.2 Tuples (tuple)

On the surface, a tuple is exactly like a list except it is defined using parenthesis rathertuple

than square bracket:

1 >>> t = (135, "a dog", [5, 7]) # Tuples are defined using parenthesis, and may contain any number of values

2 >>> print(t)

3 (135, 'a dog', [5, 7])

4 >>> s = 1, 4, 9, 16 # You can in fact drop the parenthesis, although it makes your code look worse.

5 >>> print(s)

6 (1, 4, 9, 16)

7 >>> singleton_tuple = (1,) # A singleton contains just a single element. Note the comma!

8 >>> print(singleton_tuple)

9 (1,)

10 >>> empty_tuple = () # Define an empty tuple. Just writing `empty_tuple = ()` will also work.

11 >>> print(empty_tuple)

12 ()

13 >>> print("Length of the tuples are:", len(t), len(singleton_tuple), len(empty_tuple))

14 Length of the tuples are: 3 1 0

15 >>> x = list(t) # Convert to a list---

16 >>> print(x)

17 [135, 'a dog', [5, 7]]

18 >>> print(tuple(t)) # ---and back to a tuple

19 (135, 'a dog', [5, 7])

Tuples also behave like lists in the way they are indexed, sliced, added together, and
so on. Just a few examples:

1 >>> toys = ("ball", "boat", "doll", "waterpistol")

2 >>> "boat" in toys # test for membership

3 True

4 >>> toys[2:] # Slicing works just like lists

5 ('doll', 'waterpistol')

6 >>> toys[2] # Membership to.

7 'doll'

8 >>> toys + ("jack in a box",) # Addition of tuples

9 ('ball', 'boat', 'doll', 'waterpistol', 'jack in a box')

Since tuples appear to be identical to lists, you might wonder why we have two
different types. The difference is that tuples are immutable, meaning that they cannotimmutable

change after you have defined them. For instance, we cannot update an element of a
tuple like we can with a list:

1 >>> toys[1] = "lego"

2 Traceback (most recent call last):

3 File "<console>", line 1, in <module>

4 TypeError: 'tuple' object does not support item assignment

This guarantees the tuple cannot be changed by other code. Asides this, tuples
and lists can in most cases be used interchangeably. By convention, tuples are most
commonly used in situations where you have a short sequence of things of different
types, and lists are commonly used when you have a (longer) sequence of things of the
same type, as in the prime-number example.

2.2.1 Sequence unpacking and functions

Declaring a tuple using just commas and not parenthesis, for instance 2, "Hamberder!" , is
called tuple packing because you pack things into a single tuple. Tuple unpackingtuple packing

Tuple unpacking is when you go the other way and define multiple variables in one go from a single tuple.
The following example illustrates both:

1 >>> t = 1, "dog", "five beers"

2 >>> print(t)

3 (1, 'dog', 'five beers')

4 >>> children, pet, breakfast = t # The tuple is 'unpacked' into the three variables.

5 >>> print(f"Miranda has {children} children, a {pet}, and her last meal was {breakfast}")

6 Miranda has 1 children, a dog, and her last meal was five beers

Tuple unpacking can be used to define multiple variables in one line, and also to
solve the completely useless programming pop-quiz question of swapping two variables
x and y in a single line without using any intermediate variables:

1 >>> x, y = 10, 3 # Define two variables in a single line

2 >>> x, y = y, x # Swap the order of x and y

3 >>> print(x, y)

4 3 10

Defining multiple variables is usually looked down upon because it is considered a less
readable, but I think it has its uses.

By far the biggest application of packing/unpacking are functions with multiple
return values. Consider a function to solve a second-degree polynomial:

1 >>> import math # Ignore this for now.

2 >>> def solve_polyal(a, b, c): # Solve ax^2 + bx + c = 0

3 ... d = b**2 - 4*a*c

4 ... if d < 0:

5 ... raise Exception("Oy veh, no solutions")

6 ... sol1 = (-b - math.sqrt(d))/(2*a)

7 ... sol2 = (-b + math.sqrt(d))/(2*a)

8 ... return sol1, sol2 # Note this function returns a tuple with two elements

9 ...

10 >>> x1, x2 = solve_polyal(1, -5, 4) # solve x^2 - 5x + 4 = 0

11 >>> print(f"Solution x1 =", x1, "Solution x2 =", x2)

12 Solution x1 = 1.0 Solution x2 = 4.0

Although we might say that this function return two values, in fact all it does is
return a tuple, defined using tuple packing as the two-element tuple (sol1, sol2) , and
then when we use the function, we use tuple unpacking to define x1 and x2 at the same
time. The following examples should make this obvious by capturing all the output in
a single tuple:

1 >>> solutions = solve_polyal(1, -5, 4)

2 >>> print("The solutions as a tuple", solutions)

3 The solutions as a tuple (1.0, 4.0)

If we are only interested in one of the outputs, assign the other to the (dummy)
underscore variable _ . This tells other programmers that we are going to ignore the
corresponding output value:

1 >>> _, sol = solve_polyal(1, -5, 4)

2 >>> print("A solution is", sol)

3 A solution is 4.0

2.3 Sets (set)

A set is an unordered collection of values which does not contain duplicate elements.set

Sets are created either using the set -function (which can convert lists or tuples to sets)
or using curly parenthesis. Sets has some convenient, but less often used, syntax for
quickly finding union, intersection and difference:

1 >>> s = {1, 5, 1, 2, 2, 3, 4, 5, 7, 8} # Define a set. Notice the list has duplicates

2 >>> print(s)

3 {1, 2, 3, 4, 5, 7, 8}

4 >>> len(s)

5 7

6 >>> all_numbers = set(range(9)) # Create all numbers 0 to 9 by converting the range(9) sequence to a set.

7 >>> primes = {2, 3, 5, 7} # All primes less than 11.

8 >>> 4 in primes # Test for membership

9 False

10 >>> all_numbers - primes # Set difference; non-prime numbers

11 {0, 1, 4, 6, 8}

12 >>> s & primes # the set of numbers in s which are prime

13 {2, 3, 5, 7}

In the example above, notice how the order of the elements in the first example
changes when duplicate elements are automatically removed.

Sets are the least used of the composite datatypes we will consider in this chapter,
but have their use. For instance, a common beginner-problem is how to find the unique
elements in a list, and as shown below we can either solve this using a clunky (and
slow) function, or by using two conversions to weed out the non-unique elements:

1 >>> def unique(s): # Find unique elements in s the hard way

2 ... u = []

3 ... for x in s:

4 ... if x not in u:

5 ... u.append(x)

6 ... return u

7 ...

8 >>> toys = ["car", "ball", "ball", "doll", "car"]

9 >>> unique(toys) # The hard way

10 ['car', 'ball', 'doll']

11 >>> list(set(toys)) # The easy way

12 ['car', 'ball', 'doll']

2.4 Dictionaries (dict)

A dictionary stores a map from one type of object (the key) to another (the value).dictionary

You should compare this to a list, which creates a mapping from the index i (the key)
to my_list[i] (the value), but dictionaries greatly extends on this idea by allowing the
key to be something more general.

Dictionaries can be defined either using curly parenthesis and colons, or using the
dict() function. The following examples illustrates various operations on dictionaries;
pay attention to how the syntax is similar to that of lists:

1 >>> prices = {'apples': 1.00, 'oranges': 1.50, 'pears': 1.75} # Define a dictionary

2 >>> print(prices)

3 {'apples': 1.0, 'oranges': 1.5, 'pears': 1.75}

4 >>> dict(apples=1.0, oranges=1.50, pears=1.75) # Definition using dict. Note the lack of quotes.

5 {'apples': 1.0, 'oranges': 1.5, 'pears': 1.75}

6 >>> dict() # As always, this creates an empty dictionary

7 {}

8 >>> print("Oranges cost", prices['oranges']) # Look up value associated with 'oranges'

9 Oranges cost 1.5

10 >>> prices['plums'] = 0.75 # Add a new (key,value) pair to the dictionary

11 >>> print(prices)

12 {'apples': 1.0, 'oranges': 1.5, 'pears': 1.75, 'plums': 0.75}

13 >>> print(list(prices)) # Print the keys in the dictionary

14 ['apples', 'oranges', 'pears', 'plums']

15 >>> for fruit in prices: # Consistent with the above, this loop over the keys

16 ... print(fruit, "cost", prices[fruit])

17 ...

18 apples cost 1.0

19 oranges cost 1.5

20 pears cost 1.75

21 plums cost 0.75

22 >>>

23 >>> 'pears' in prices # Return True because key is in dictionary

24 True

25 >>> 'coconuts' in prices # Returns False

26 False

27 >>>

28 >>> len(prices) # Number of keys

29 4

30 >>> del prices['oranges'] # Remove an element from prices

31 >>> print(prices)

32 {'apples': 1.0, 'pears': 1.75, 'plums': 0.75}

The keys in a dictionary can be any immutable type. That is, they can be a string,

integer, float or tuple of these types, including tuples of tuples and so on. The keys
cannot be a set, list or a dictionary itself, because they are mutable.

Dictionaries give us a lot of freedom in terms of what we consider the keys and
values, and therefore they can be a little harder to use when you are just starting out.
We are therefore going to look at a couple of examples inspired by the course where
dictionaries provide the by far most useful data-types.

2.4.1 Example: A probability assignment

We can use a dictionary to represent a probability assignment. Consider the variable
X that can take three values:

P (X = −1) = 0.2, P (X = 0) = 0.3, P (X = 1) = 0.5 (2.1)

We represent this by letting the X-value be the key, and the probability the value:

1 >>> Px = {-1: 0.2,

2 ... 0: 0.3,

3 ... 1: 0.5} # A finite probability distribution

4 >>>

5 >>> print("P(X = -1) =", Px[-1])

6 P(X = -1) = 0.2

Normally, we access elements in a dictionary using the syntax dictionary[key] , but we
can also use the get -function, which has the benefit of accepting a default valuedefault value

1 >>> Px = {-1: 0.2, 0: 0.3, 1: 0.5} # A small probability distribution

2 >>> Px.get(1) # Same as Px[1]

3 0.5

4 >>> Px.get(2, 0) # If the key (`2`) is not found in the dictionary the get-function will return the second argument `0`

5 0

2.4.2 Example: A tiny grid-world

As another example, we can implement a small gridworld where the player is confined
to a (x, y) grid by using a dictionary:

1 >>> gridworld = {(1, 1): "Player",

2 ... (8, 8): "Goal",

3 ... (4, 5): "Trap"}

4 >>>

This representation is both very compact, and it is easy to update the players
location.

2.4.3 Example: The fruit-store

Suppose an online store keep track of prices of fruit, and a customer can submit an
order request which specify a fruit he or she wishes to buy as well as the quantity. We

can implement this as follows (note we raise an exception when the customer tries to
buy something we don’t have):

1 >>> prices = {'apples': 1.00, 'oranges': 1.50, 'pears': 1.75} # Define a dictionary

2 >>> def buy_fruit(prices, fruit_type, quantity):

3 ... if fruit_type not in prices:

4 ... raise Exception(f"No {fruit_type} for you!")

5 ... else:

6 ... return prices[fruit_type]*quantity

7 ...

8 >>> print("Cost of 3 oranges:", buy_fruit(prices, "oranges", 3))

9 Cost of 3 oranges: 4.5

More realistically, the customers will submit a shopping basket containing the num-
ber of each type of fruit the wish to buy. This can naturally be represented as a dic-
tionary, where the keys are fruit, and the values are the quantity they wish to buy. We
can then re-use the previous function so we don’t have to duplicate the error handling
code:

1 >>> def buy_lots_of_fruit(prices, order):

2 ... total = 0

3 ... for fruit in order:

4 ... total += buy_fruit(prices, fruit, order[fruit])

5 ... return total

6 ...

7 >>> order = {'apples': 2, 'pears': 10}

8 >>> print(f"Cost of {order}:", buy_lots_of_fruit(prices, order))

9 Cost of {'apples': 2, 'pears': 10}: 19.5

2.4.4 Example: A small database /

As a final example, the values can in turn be anything, for instance tuples or dictionaries.
In 02450 a dictionary is used to keep track of the students id, their exam (multiple-
choice) score, and the score in their reports. We can implement this as a dictionary-
of-dictionaries where one of the values in the nested dictionary is a tuple of the report
scores:

1 >>> students = {'s210001': {'name': "Jacob Larsen", "exam_score": 74, "report_score": (75,60)},

2 ... 's210002': {'name': "Marie Hansen", "exam_score": 88, "report_score": (90,95)},

3 ... 's210003': {'name': "Line Denielsen", "exam_score": 72, "report_score": (80,50)}}

4 >>>

5 >>> students['s210003']['exam_score'] = 80 # Adjust exam score for this student

6 >>> print("Report score of s210003", students['s210003']['exam_score'])

7 Report score of s210003 80

The point of a representation such as this is we can on-the-fly add new fields. For
instance, the following code computes the total score (used for grading) by averaging
the exam and report scores:

1 >>> for id in students:

2 ... students[id]['total'] = 0.75 * students[id]['exam_score'] + 0.25 * sum(students[id]['report_score'])/2

3 ...

4 >>> print(students['s210002']) # All students have a total score which can be discretized to a grade

5 {'name': 'Marie Hansen', 'exam_score': 88, 'report_score': (90, 95), 'total': 89.125}

2.4.5 The collections-module (defaultdict) /

There are other build-in datatypes in python which are more niche, and can be found
in the collections module1. We will only concern ourselves with one of these, the
defaultdict .

As the name suggest, a defaultdict is just a regular dictionary, but returns a defaultdefaultdict

value when the user look up a key which has not been added to the dictionary yet. The
default value is specified by supplying a function to the dictionary, which is invoked to
set the default value. Recall that float is actually a method, so that float() return
0.0 . We can use this to extend the example in section 2.4.1 so that when we ask for
the probability of any x where the probability assignment P (X = x) is not defined, it
returns a probability of 0:

1 >>> from collections import defaultdict # We return to the import statement later

2 >>> Px = defaultdict(float, {-1: 0.2, 0: 0.3, 1: 0.5}) # The first argument set the default argument, second argument is optinal

3 >>> print("P(X=0) =", Px[0]) # Dictionary work as normal

4 P(X=0) = 0.3

5 >>> print("P(X=32) =", Px[32]) # Return default value where it is not defined

6 P(X=32) = 0.0

7 >>> print("P(X=100) =", Px[100]) # Also return default value

8 P(X=100) = 0.0

The second example extends the students directory example from section 2.4.4 by
adding a default record for new students:

1 >>> from collections import defaultdict

2 >>> students = {'s210001': {'name': "Jacob Larsen", "exam_score": 74, "report_score": (75,60)},

3 ... 's210002': {'name': "Marie Hansen", "exam_score": 88, "report_score": (90,95)},

4 ... 's210003': {'name': "Line Danielsen", "exam_score": 72, "report_score": (80,50)} }

5 >>>

6 >>> students2 = defaultdict(lambda: {'name': None, "exam_score": None, "report_score": (None,None) }, students)

7 >>> students2['s999999']['exam_score'] = 80 # Adjust exam score of this student

8 >>> students2['s999999']

9 {'name': None, 'exam_score': 80, 'report_score': (None, None)}

2.5 Looping techniques

Python has a couple of build-in functions which makes looping over sequences simpler
and more readable. The first is the enumerate function, which is useful when you also
want an index of a sequence:

1See https://docs.python.org/3/library/collections.html.

https://docs.python.org/3/library/collections.html

1 >>> bands = ["ACDC", "Rolling stones", "Beatles"]

2 >>> for k, band in enumerate(bands):

3 ... print(k, band)

4 ...

5 0 ACDC

6 1 Rolling stones

7 2 Beatles

Python also has a handy function to loop over a sequence in reverse order

1 >>> for i in reversed(range(4)):

2 ... print(i)

3 ...

4 3

5 2

6 1

7 0

and sorted in ascending order

1 >>> for f in sorted(["Martin", "Jacob", "Anna", "Charlie"]):

2 ... print(f)

3 ...

4 Anna

5 Charlie

6 Jacob

7 Martin

Sometimes, you want to loop over two lists at the same time. This can be accom-
plished by the zip function:

1 >>> students = ["s210001", "s210002", "s210003"]

2 >>> grades = [12, 7, 10]

3 >>> for id, g in zip(students, grades):

4 ... print(id, g)

5 ...

6 s210001 12

7 s210002 7

8 s210003 10

2.5.1 Looping over a dictionary (items)

The default behavior when looping over a dictionary is to loop over the keys:

1 >>> prices = {'apples': 1.00, 'oranges': 1.50, 'pears': 1.75}

2 >>> for fruit in prices:

3 ... print(fruit)

4 ...

5 apples

6 oranges

7 pears

More control can be gained by using the items() function, which allows you to iterate
over both keys and values, and if you want a list of either keys or values use the keys()

and values() methods:

1 >>> prices = {'apples': 1.00, 'oranges': 1.50, 'pears': 1.75}

2 >>> for fruit, price in prices.items():

3 ... print(fruit, "cost", price)

4 ...

5 apples cost 1.0

6 oranges cost 1.5

7 pears cost 1.75

8 >>> print(list(prices.keys())) # All fruit

9 ['apples', 'oranges', 'pears']

10 >>> print(list(prices.values())) # All prices

11 [1.0, 1.5, 1.75]

2.6 List and dictionary comprehension

Many tasks in python programming consists of transforming one composite data type
into another by applying an operation on all elements. List comprehension providesList comprehen-

sion an elegant way of doing this using an intuitively appealing syntax.
Consider the following code which computes a sequence of squares

1 >>> squares = []

2 >>> for x in range(1, 10):

3 ... squares.append(x**2)

4 ...

5 >>> print(squares)

6 [1, 4, 9, 16, 25, 36, 49, 64, 81]

Using list-comprehension, the exact same code can be written as follows

1 >>> squares = [x ** 2 for x in range(1, 10)]

2 >>> print(squares)

3 [1, 4, 9, 16, 25, 36, 49, 64, 81]

List comprehension also allows us to specify a conditional statements so that not
all elements are processed. The general form of a list comprehension call is as follows:

1 # chapter0pythonB/python0B.py

2 [f(x) for x in my_list if condition(x)]

To illustrate the conditional statement, consider the following code which returns
the sub-sequence of positive elements of a list:

1 >>> x = [1, -30, 2, 3, -5]

2 >>> [z for z in x if z > 0]

3 [1, 2, 3]

Or this code, which uses list comprehension to compute a sequence of primes, by
only including those numbers where is_prime returns True :

1 >>> def is_prime(n):

2 ... for k in range(2,n-1):

3 ... if n % k == 0:

4 ... return False

5 ... return True

6 ...

7 >>> primes = [n for n in range(15) if is_prime(n)]

8 >>> print(primes)

9 [0, 1, 2, 3, 5, 7, 11, 13]

We can in fact also test if a number n is a prime by testing if the list of divisors is
empty

1 >>> n = 11

2 >>> len([k for k in range(2,n-1) if n % k == 0]) == 0 # Check if 11 is a prime (compare to is_prime(11))

3 True

Combining these two ideas, the sequence of primes can be computed using a single
line as follows:2

1 >>> [n for n in range(2,12) if len([k for k in range(2,n-1) if n % k == 0]) == 0]

2 [2, 3, 5, 7, 11]

List comprehension can also be used to define both sets and tuples by simply chang-
ing the outer brackets, but since this is rarely used we will not provide any examples.

2.6.1 Dictionary comprehension

Dictionary comprehension is like list comprehension, except we are now creatingDictionary com-
prehension dictionaries. The following example illustrate the idea by creating a new dictionary

having names as keys, and the length of the names as the values:

1 >>> names = ["Lancelot", "King Kong", "Odin", "George Washington"]

2 >>> name_lengths = {name: len(name) for name in names} # Create a new dicionary with the length of the names

3 >>> print(name_lengths)

4 {'Lancelot': 8, 'King Kong': 9, 'Odin': 4, 'George Washington': 17}

The syntax should be familiar from list comprehension. As an example, you can use
an if -statement to filter the dictionary based on the length of the name:

1 >>> short_names = {name: l for name, l in name_lengths.items() if l < 6}

2 >>> print(short_names)

3 {'Odin': 4}

The following example builds a dictionary where the keys are integers, and the
values are a list of divisors of the number:

1 >>> divisors = {n: [k for k in range(1,n) if n % k == 0] for n in range(2,11) }

2 >>> print(divisors)

3 {2: [1], 3: [1], 4: [1, 2], 5: [1], 6: [1, 2, 3], 7: [1], 8: [1, 2, 4], 9: [1, 3], 10: [1, 2, 5]}

2Be warned that packing a ton of functionality into a single line tends to feel better the moment
you write it than it does when you read it again 2 months later.

A perfect number is a number which is equal to the sums of its divisors. For instance
6 is a perfect number because 6 = 3 + 2 + 1. We can find all perfect numbers from the
dictionary of divisors by using list comprehension:

1 >>> many_divisors = {n: [k for k in range(1,n) if n % k == 0] for n in range(3000) }

2 >>> len(many_divisors) # This is now a long list of numbers

3 3000

4 >>> perfect_numbers = [n for n, divisors in many_divisors.items() if sum(divisors) == n]

5 >>> print(perfect_numbers) # Print the perfect numbers less than 3000. There are only four of them!

6 [0, 6, 28, 496]

2.7 More on functions

Next, let’s consider a few extra things in our toolbox which won’t dramatically change
what we can do, but can both make life easier.

2.7.1 Named arguments and default values

Input arguments to functions can have default values. Consider this example where the
variable children will have a default value of 3 :

1 >>> def whois(name, age, children=3):

2 ... return f"{name} is {age} years old and has {children} children"

3 ...

4 >>> whois('Jane', 32, 2) # Works as a regular function

5 'Jane is 32 years old and has 2 children'

6 >>> whois('Jane', 32) # Use the default of 3 children

7 'Jane is 32 years old and has 3 children'

8 >>> whois('Jane', 32, children=4) # Works as well

9 'Jane is 32 years old and has 4 children'

Using named arguments, as we did in the last example when we wrote whois('Jane', 32, children=4) ,
has the two-fold benefit of both telling us which argument we are assigning which value,
and also making the order of the inputs unimportant. For instance, this works:

1 >>> whois(age=65, children=10, name='Bob') # Named argument allows us to change the order of inputs (but don't!)

2 'Bob is 65 years old and has 10 children'

Functions with a ton of optional input arguments, such as matplotlibs plot -function,
makes use of this technique a lot.

2.7.2 Variable input arguments (* and **)

Function can have variable input arguments by using the * -symbol. When this sym-
bol is put in front of a tuple, it can be thought of as stripping away the parenthesis
(sometimes called exploding the tuple). A slightly contrived example makes use of this
to generate a list from a tuple:

1 >>> a = (1, 2, 3) # A small tuple

2 >>> b = [*a] # The star * strips away to the parenthesis; output can be captured to create a list

The thing is the symbol also works in reverse, allowing us to capture multiple inputs
in a tuple. The one place this is useful is function definitions. Read the following
example carefully:

1 >>> def capturing(*args):

2 ... print("args is:", args) # Args is a tuple of all inputs

3 ...

4 >>> capturing("icecream", 'hotdogs', 7) # Capture three inputs

5 args is: ('icecream', 'hotdogs', 7)

This mean the function def capturing can have any number of input arguments. We
can use this to deal with one argument as we normally do, and then use the * symbol
to capture the rest. In this example, args will be a tuple with three elements:

1 >>> def treats(dog, *args):

2 ... for a in args:

3 ... print(dog, "eats a", a)

4 ...

5 >>> treats("Fido", "Steak", "Sofa", "Cat")

6 Fido eats a Steak

7 Fido eats a Sofa

8 Fido eats a Cat

Capturing named arguments

The double-star (**) command works the same way except for dictionaries. This can
be used to capture named arguments (as dictionaries) as shown below:

1 >>> def multiple_capturing(*args, **kwargs):

2 ... print("Normal arguments", args)

3 ... print("Keyword arguments", kwargs)

4 ...

5 >>> multiple_capturing(1, 2, name='Bob')

6 Normal arguments (1, 2)

7 Keyword arguments {'name': 'Bob'}

8 >>> multiple_capturing(banana='good', pear='bad')

9 Normal arguments ()

10 Keyword arguments {'banana': 'good', 'pear': 'bad'}

The one place this is most useful is when you have one function which delegates
most of it’s functionality to another function. In that case, you often simply want to
send most (or all) input arguments to the other function. This can be accomplished as
follows:

1 >>> def redirector(*args, banana='good', **kwargs):

2 ... print("The banana is", banana)

3 ... multiple_capturing(*args, **kwargs) # 'explode' the args, kwargs to call function with these as inputs.

4 ...

5 >>> redirector(1, 2, 3, banana='bad', pear='fine')

6 The banana is bad

7 Normal arguments (1, 2, 3)

8 Keyword arguments {'pear': 'fine'}

Notice the function treats the named input-argument banana in a special way and
will not send that argument on to the multiple_capturing function. The banana input is
therefore handled as usual, using the default value, as the following illustrates:

1 >>> redirector("what will happen next?")

2 The banana is good

3 Normal arguments ('what will happen next?',)

4 Keyword arguments {}

2.8 Example: Conways game of life //

Let’s consider a complete example of how the data-structure we have seen can be used
to create a small animation of Conways game of life. Conways game of life playConways game of

life out on an (infinite) grid. Each (x, y) tile in the grid has 8 neighbors (corner-neighbors
are included) and can be either occupied (alive) or not (dead). The game proceed in
rounds by the following rules

• For each tile (x, y), count the number of neighbors n

• If the tile is alive, and n = 2 or n = 3, the tile stay alive to next round

• If the tile is empty, and n = 3, the tile become alive

• In all other cases, the tile is dead in the next round

Many would naturally use a numpy matrix to represent the game world, but since
the game world does not have a limit, a more natural choice is a dictionary where the
keys are the (x, y) coordinates and a value of 1 means the tile is occupied. This allows
us to only track the living tiles.

While we maintain a potentially infinite game world, we will only plot a section of
it of width 200. The initialization of the game world is as follows:

1 # chapter0pythonB/conway.py

2 import numpy as np

3 from matplotlib import pyplot as plt

4 from matplotlib import animation

5 from collections import defaultdict

6

7 n = 200 # size of visible game world.

8 # Conways game is represented as a defaultdict with keys (i,j).

9 # A value of 0 means a tile is inactive, 1 that it is active.

10 # Example:

11 # > map[(20,10)] == 1 if tile (20,10) is active.

12 mat = defaultdict(int)

13 # We initialize the game-world by placing a bunch of random active tiles in the middle:

14 for _ in range(1000): # place 1000 random tiles

15 mat[(np.random.randint(30) - 15 + n//2, np.random.randint(30) - 15 + n//2)] = 1

For plotting, we will extract a 200× 200 sub-set of the game world and turn it into
a numpy ndarray . This is accomplished using a small function and matplotlib :

1 # chapter0pythonB/conway.py

2 def world2mat(mat):

3 # Convert 'mat' into a n x n x 3 RGB matrix for plotting by matplotlib

4 G = np.ones((n,n,3))

5 for (x,y) in mat:

6 if min(x,y) >= 0 and max(x,y) < n: # Check we are inside viewing area

7 G[x,y,:] = 0 # Tile is active, paint it black

8 return G

9

10 fig = plt.figure()

11 ax = plt.axes(xlim=(0,n), ylim=(0,n))

12 image = ax.imshow(world2mat(mat), interpolation='nearest') # Plot an image of the world in RGB format

Next, we have to implement the game rules. The following code execute update
number i by first counting the number of neighbors, then implementing the game
rules based on the neighbor counts. When it is done, it updates the image we just
defined:

1 # chapter0pythonB/conway.py

2 def one_conway_step(i):

3 mat2 = defaultdict(int)

4 # This loop count neighbours for each (x,y) tile, but only track those with non-zero neighbours

5 for x, y in mat:

6 for dx in [-1, 0, 1]:

7 for dy in [-1, 0, 1]:

8 if dx == dy == 0:

9 continue

10 mat2[x+dx,y+dy] += 1

11 # Conway game rules:

12 # * Active Tiles with 2 or 3 neighbours keep living

13 # * Active tiles with other neighbour counts die from loneliness or overcrowding

14 # * Empty Tiles with 3 neighbours become active (birth)

15 mat2 = { (x,y): 1 for (x,y), num in mat2.items() if num == 3 or (num == 2 and mat[x,y] == 1) }

16 # We use two dictionaries so all updates happen instantaneous

17 mat.clear()

18 mat.update(mat2)

19 image.set_data(world2mat(mat))

20 return image,

Using this code, we can create an animation by telling python to call the one_conway_step()

function a number of times and record the frames. You don’t have to understand this
code; I just copied it from stackexchange:

1 # chapter0pythonB/conway.py

2 anim = animation.FuncAnimation(fig, one_conway_step, frames=100, interval=20, blit=True)

3 # save the animation as an mp4. This requires ffmpeg to be installed; uncomment to just show video.

4 anim.save('basic_animation.mp4', fps=30, extra_args=['-vcodec', 'libx264'])

That’s it! You should now get a nice little animation of Conways game of life and
a mp4 -movie.

0 25 50 75 100 125 150 175 200
0

25

50

75

100

125

150

175

200

Figure 2.1: Conways game of life

Chapter 3

Classes and packages

The previous two chapters have actually shown most of the low-level features of python
you need to write normal code, but there is still a big piece missing: Organization!

Consider the following example to computes the length of the vector

[
3
4

]
:

1 >>> import numpy as np

2 >>> from scipy.linalg import norm

3 >>> x = np.asarray([3, 4])

4 >>> x # What is x?

5 array([3, 4])

6 >>> norm(x)

7 np.float64(5.0)

This code makes use of two forms of code organization:

• The first two lines import functionality from the two packages numpy and scipy .import

What this fundamentally does is that it allows us to split code into multiple files
and, more generally, packages of files such as numpypackages

• The line x = np.asarray([3,4])) creates an ndarray object assigned to the variableobject

x . This allows us to bundle data (in this case the small vector) and functionality
to manipulate the data together.

Programming centered on writing and using objects is called object oriented pro-
gramming, and this is pretty much anything interesting in python (tensorflow, numpy,object oriented

programming sklearn, pytorch, matplotlib to name just a few). It is my experience some students
consider object-oriented programming an esoteric subject they don’t need to know, and
still use objects without understanding what they are. This is a shame! Firstly, it
will prevent one from doing or understanding most things in python (including deep
learning), and secondly, it is not hard to learn.

3.1 Modules and packages (import)

When we use the python interpreter interactively, all our code is lost the moment we
close it. Therefore, you should write your code in a .py file called a script or module,module

47

and then edit, run and debug it in your IDE.
As your program gets longer, it becomes useful to split it into several files, simply

because a file with many hundreds of line of code is difficult to navigate. The module
name is simply the name of the .py file, and it is possible to import definitions ofmodule name

import functions, variables and other functionality from one module into another. This is what
allows programs to be split into several files.

Let’s look at an example. Go to any directory in your computer, for instance
c:/Users/tuhe/Documents/sample and save the following snippet to c:/Users/tuhe/Documents/sample/fruit.py :

1 # fruit.py

2 fruitPrices = {'apples': 2.00, 'oranges': 1.50, 'pears': 1.75}

3

4 def buyFruit(fruitPrices, fruit, numPounds):

5 if fruit not in fruitPrices:

6 # This is the easiest way to format text. Notice the f in the front.

7 print(f"Sorry we don't have {fruit}")

8 else:

9 cost = fruitPrices[fruit] * numPounds

10 print(f"That'll be {cost} please")

11

12

13 if __name__ == '__main__': # True when script is run

14 buyFruit(fruitPrices, 'apples', 2.4)

15 buyFruit(fruitPrices, 'coconuts', 2)

In the same directory, start the python interpreter by running the python command,
and you will see you can use the code in the file using the import command. As you
can see, you can now import the file

1 >>> import fruit

2 >>> fruit.fruitPrices

3 {'apples': 2.0, 'oranges': 1.5, 'pears': 1.75}

There are a couple of helpful variations of the import command. You can use the
from keyword to avoid having to write the module name in dot-notation, and also use
the import <module> as <name> to create a handy alias, which you are no doubt familiar with
when you import numpy and matplotlib

1 >>> from fruit import fruitPrices, buyFruit

2 >>> buyFruit(fruitPrices, 'apples', 10) # Buy some fruit

3 That'll be 20.0 please

4 >>> from fruit import * # Import everything.

5 >>> from fruit import fruitPrices as prices

6 >>> print(prices)

7 {'apples': 2.0, 'oranges': 1.5, 'pears': 1.75}

So far we have used the command-line, but we can certainly also import modules
from other modules (i.e., scripts). When a module is imported, all lines in the script
that contains the module is run. It is often useful to distinguish between when a script is
being imported, and when it is being run explicitly using python <scriptname.py> . This can
be accomplished using the special if __name__ == "__main__" check as shown below, since
the special __name__ -variable is only equal to "__main__" when the script is run directly
using python .

1 # import_sample.py

2 from fruit import fruitPrices

3 print("Price of apples", fruitPrices['apples'])

4

5 if __name__ == "__main__":

6 print("This is only run when the file is run directly using the python-command")

In this case, the bottom print -statement will execute when we run the script as
python import_sample.py , but not if we import it as import import_sample .

3.2 packages

A package allows modules to be bundled together in an organized structure (the pack-package

age) so they can easily be used later. Examples of packages are all the build-in packages
like sys , os , collections and so on, as well as third-party packages such as numpy , torch .

From a practical standpoint, a package is just a directory with some python files
(modules) in it. Let’s consider the code for this course. All code is distributed as
the package irlc , and within this package we have subpackages (these are simplysubpackages

subdirectories) which allows us to create a more granular organization as shown below:

1 irlc/ # Package name

2 __init__.py # Optional init-script which is run when the package is imported

3 ex00/ # Each week is a subpackage

4 fruit.py # A module. Your code is in a file such as this.

5 (...)

6 project0/ # The first test-project

7 fruit_project.py # A file relevant for the project

8 (...)

9 exam/ # Folder for midterms and eventually the exam

10 (...)

11 utils/ # A subpackage of utility functionality which would clutter each exercise week

12 (...)

13 (...)

That’s actually about it. Obviously, in order for python to recognize your package, it
must be in a place where python is told to look for packages. System-wide packages such
as numpy which are installed using the pip -command, are placed in a special directory.
For custom package, like irlc , there are two ways to tell python how to look for them:

• By setting the so-called PYTHONPATH environment variable in your operating system

• By specifying it in your IDE

The later is by far the recommended approach and was covered in the installation video.
Once this is done, using the package is super easy using the dot-notation A.B which

allows you to import from sub-directories in your package structure:

1 # class_sample.py

2 # Import example from the fruit-package

3 from irlc.ex00.fruit import fruitPrices

4 from irlc import Agent

The last line is a bit strange, since the Agent is actually a member of the train

module found in the ex01 directory. The reason why it works is because when the
package irlc is imported, it reads (and executes) the __init__.py file by default (as
you can tell, things surrounded by two underscores are special in python). This file in
turn contains the line from irlc.ex01.train import Agent as Agent which ensures Agent can be
imported as in the example.

3.3 Classes and objects

Modules and packages allows us to organize code into multiple files. Object-oriented
programming (OOP) allows us to organize the logic/functionality of our programs into
logical parts called classes. That makes OOP a bit hard to illustrate because theclasses

simplest examples will have next to nothing to organize (and therefore appear irrelevant)
whereas relevant examples are necessarily more complex (and therefore makes object-
oriented programming seem difficult).

I have decided to start with the simplest examples, but be aware that these are the
real-world concerns that object-oriented problem addresses:

Organizing programs: If you have a reinforcement learning system which play a
simulated game, it will contain hundreds of functions and small data-structures,
containing everything from the game state to the state of the neural network of
the agent. Object-oriented programming allows us to bundle data-structures and
functions to manipulate the data-structures together, and makes such a system
practical.

Reduce redundant code: Most things we build are alike in some ways and different
in others. Object-oriented programming allows us to save coding effort by sharing
functionality where it is useful. In this course, we will write simulation-code once,
and all control environments will have the same simulation functionality.

Working with other people: Suppose you are building a reinforcement-learning sys-
tem, and another person is building an interesting test-environment. The only
way your system, and the other persons environment, will work together is if you
each have a clear, abstract specification in mind of how a system and environ-
ment should work. Object oriented programming allows you to formalize such a
specification.

3.3.1 Defining a class (class)

Let’s begin with the simplest possible class. This can be defined using the class -keyword
in a single line:

1 >>> class BasicClass: # Classnames are usually upper-case

2 ... pass # `pass` is a special keyword which does nothing

3 ...

Once we have made a class, we can instantiate it by calling it like a function.instantiate

After that, we can assign variables to the instance of the class (and read them again)
using the dot-notation. The following creates two instances of the BasicClass and assign
variables to both of them:

1 >>> a = BasicClass() # Create an instance of the class

2 >>> a.name = "My first class" # You can write data to the class like this

3 >>> b = BasicClass() # Another instance. a and b are not related and can store different data:

4 >>> b.name = "Another class"

5 >>>

6 >>> print("Class a:", a.name)

7 Class a: My first class

8 >>> print("Class b:", b.name)

9 Class b: Another class

Let’s just summarize some things:

• BasicClass is a class

• When we do a = BasicClass() then a is an instance of the BasicClass , also knowninstance

as an objectobject

• Objects are not classes. Objects make use of the template laid out in BasicClass ,
but can keep their seperate value of variables (state). In this case a and b are
objects each with different values of a.name and b.name

• The object-specific variable name is called a property or attributeproperty
attribute

In other words, the relationship between a class, and objects made by instantiating that
class, is the same as the relationship between the (abstract idea of) a Dog, and various
specific dogs: Specific instances each have the general properties of an abstract Dog,
but they are individual and can have different names, ages, moods, breeds and so on.

Class methods (self)

In these examples the class is nothing more than a container of variables. Let’s consider
a more interesting example in which the class represents a dog. We have now given the
dog a build-in name -property (sometimes also called an attribute) with a default value
and a function. The name attribute works as before:

1 >>> class BasicDog:

2 ... name = "Unnamed dog" # Each dog-instance will have the property name

3 ... def read_nametag(self):

4 ... # This is a class-function. Note we must pass it `self` as a first argument, which is the

5 ... # instance of the class itself (i.e. the current object). This is how we can access properties of the class

6 ... print("This dog is named", self.name, "please give me treats!")

7 ...

8 >>> dog = BasicDog()

9 >>> dog.name

10 'Unnamed dog'

The def read_nametag(self) function is more interesting. This is how we call it:

1 >>> dog.read_nametag() # Invoke the read_nametag() function. Note we don't pass the object to the function!

2 This dog is named Pluto please give me treats!

Class functions requires at least one input argument self . This is what allows it
to access the objects own properties. That is, when you write dog.read_nametag() , then
self is automatically assigned to self = dog when the method is called, which allows
the read_nametag function to access class attributes.

Constructors (__init__)

In most cases, we don’t want variables to take dummy values such as "Unnamed dog" . To
ensure variables are properly initialized, one should add the special def __init__(self, ...)

function, known as the constructor, as shown in this improved example:constructor

1 >>> class BetterBasicDog:

2 ... def __init__(self, name):

3 ... self.name = name

4 ... self.age = 0

5 ... print(f"The __init__() function has been called with name='{name}'")

6 ... def birthday(self):

7 ... self.age = self.age + 1

8 ... print("Hurray for", self.name, "you are now", self.age, "years old")

9 ...

The __init__ method is called when the object is created, i.e. when you write
BetterBasicDog("Pluto") , as shown here:

1 >>> d1 = BetterBasicDog("Pluto") # the __init__ function is now called

2 The __init__() function has been called with name='Pluto'

3 >>> d2 = BetterBasicDog(name="Lassie") # Also support named arguments

4 The __init__() function has been called with name='Lassie'

This ensures that both the name and age variables have been set, and we now use
the birthday function to let the Pluto celebrate a couple of birthdays:

1 >>> d1.birthday()

2 Hurray for Pluto you are now 1 years old

3 >>> d1.birthday()

4 Hurray for Pluto you are now 2 years old

3.3.2 Class inheritance

Things are often alike in most ways and different in others. For instance, if we build
two classes representing two control-problems (a mechanical arm and a little car), they
may share a lot of information (such as information about constraints, functionality to
simulate the systems, etc.) but be unlike in other regards (i.e. the exact dynamics).

Class inheritance allows two such classes to share most functionality by building ainheritance

general class which contains the shared functionality, and then allowing the two actual
control problems to specify different dynamics, visualization code and so on. This can

be an immensely powerful tool, and one which is vital to understand in order to build
new models in e.g. pytorch, but we will try to introduce it as a toy example.

As a little warm-up, the following code selects a random element from a list:

1 >>> import random

2 >>> random.choice(['Apples', "Bananas", 'Coconuts'])

3 'Bananas'

With this in mind, let’s build a small parrot class we can train to say random words:

1 >>> class Parrot:

2 ... def __init__(self):

3 ... self.words = ["Squack!"]

4 ... def learn(self, word):

5 ... self.words.append(word)

6 ... def speak(self):

7 ... return random.choice(self.words) # Return a random word

8 ... def vocabulary(self):

9 ... return self.words

10 ...

The parrot has methods to learn a new word (by simply adding them to a list), and
then when it speaks, it returns a random word from the list. A small interaction could
look as follows:

1 >>> parrot = Parrot()

2 >>> words = ["sugar", "sleep well", "(parrot noises)", "*honk*"]

3 >>> for word in words:

4 ... parrot.learn(word)

5 ...

6 >>> for _ in range(3): # Say three words

7 ... parrot.speak()

8 ...

9 '(parrot noises)'

10 '(parrot noises)'

11 'sugar'

12 >>> print("Vocabulary", parrot.vocabulary())

13 Vocabulary ['Squack!', 'sugar', 'sleep well', '(parrot noises)', '*honk*']

Let’s suppose we want to build an alternative parrot which has a memory of just a
single word. Clearly, all we need to change is the learn -function, and so it would be a
shame to copy-paste all the other methods. This is where class inheritance comes in.
We can in fact accomplish this as follows:

1 >>> class ForgetfulParrot(Parrot):

2 ... # The Parot class is used as a template.

3 ... # All functions in the Parot-class are therefore 'imported' as default, including 'self.words'

4 ... def learn(self, word): # This function overwrite the 'actual' learn function in the Parot class

5 ... self.words = [word] # This parrot only know a single word

6 ...

The trick is the class ForgetfulParrot(Parrot): line. What this tells python is that
the Parrot class should be used as a template, and the new method we define in the
ForgetfulParrot class, def learn , should overwrite the existing method in the Parrot so
that it only saves a single word. Asides that, everything works as before:

1 >>> old_parrot = ForgetfulParrot()

2 >>> old_parrot.learn("damn remote")

3 >>> old_parrot.learn("Jeopardy")

4 >>> print("Vocabulary", old_parrot.vocabulary())

5 Vocabulary ['Jeopardy']

We say that the ForgetfulParrot inherits from the Parrot -class, and equivalently that itinherits

extends the Parrot class.extends

3.3.3 Calling super-class constructors (super)

Suppose we get a new requirement: Make a parrot which says parrot noises before and
after each word. Since each parrot presumably have different noises, we want to add
this to the constructor. Our attempt at implementing this parrot might look as follows:

1 >>> class BadSqueekyParrot(Parrot):

2 ... def __init__(self, squeek="Quck!"):

3 ... self.squeek = squeek

4 ... def speak(self):

5 ... return f"{self.squeek} {random.choice(self.words)} {self.squeek}"

6 ...

7 >>> squeeky = BadSqueekyParrot(squeek="Kvak-Kvak")

8 >>> squeeky.learn("Good night!")

9 Traceback (most recent call last):

10 File "<console>", line 1, in <module>

11 File "<console>", line 5, in learn

12 AttributeError: 'BadSqueekyParrot' object has no attribute 'words'

This gives an error, because the self.words -variable is assigned in the __init__ func-
tion as defined in the Parrot class. But we just overwrote the __init__ function, so now
the code is broken.

To fix this, we need to use the special super() -keyword which allows us to access
methods from the parent class. The following shows a correct implementation which
also use the super() -keyword to borrow the speak() -function from the Parrot class:

1 >>> class SqueekyParrot(Parrot):

2 ... def __init__(self, squeek="Quck!"):

3 ... super().__init__() # Call the 'Parot' class __init__ method to set up the words-variable.

4 ... self.squeek = squeek # save the squeek variable

5 ... def speak(self):

6 ... word = super().speak() # Use the speak() function defined in the Parrot class.

7 ... return f"{self.squeek} {word} {self.squeek}"

8 ...

9 >>> squeeky = SqueekyParrot(squeek="Kvak-Kvak")

10 >>> squeeky.learn("Good night!")

11 >>> squeeky.learn("Tell that damn bird to shut it's beak")

12 >>> squeeky.learn("Sugar!")

13 >>> squeeky.speak()

14 'Kvak-Kvak Good night! Kvak-Kvak'

15 >>> squeeky.speak()

16 'Kvak-Kvak Squack! Kvak-Kvak'

3.3.4 Why inheritance is so awesome //

In the parrot-example inheritance just saved us a few lines. In more realistic cases, the
class we inherit from (in the previous case, the Parrot -class) will contain a bunch more
functionality, meaning that when we inherit from it, we can build classes with very few
lines which can do some really cool things.

As an example, imagine we want to build our own little web service. This may
seem difficult, but in fact all we need it to inherit from the BaseHttpRequestHandler class,
and overwrite the method which return output to the browser. We can then hook this
class into a python HTTPServer class which exactly expects a BaseHttpRequestHandler . The
full example looks as follows:

1 # chapter0pythonC/server.py

2 class BasicServer(BaseHTTPRequestHandler):

3 def compute_output(self, url): # The function which actually computes the output shown to the user

4 return "Requested url: " + url

5

6 def do_GET(self):

7 self.send_response(200) # Special stuff. Tell the browser we are alive

8 self.send_header("Content-type", "text/html") # Set type of output (in this case a html page)

9 self.end_headers() # End header. The browser knows what is up

10 self.wfile.write(bytes("<html><body>", "utf-8")) # Write the start of the html file

11 output = self.compute_output(self.path) # The actual output we want to display (a string)

12 self.wfile.write(bytes(f"<p>{output}</p>", "utf-8")) # Format it and output it.

13 self.wfile.write(bytes("</body></html>", "utf-8")) # Write the end of the html file

14

15 if __name__ == "__main__":

16 webServer = HTTPServer(("localhost", 8080), BasicServer) # Actually start the http server

17 print(f"Server started http://localhost:8080") # The url http://localhost:8080 will now work in a browser

18 webServer.serve_forever() # Start web server

When happens is that when you go to the url http://localhost:8080/page, all
the classes do their magic and eventually end up invoking the do_GET(self) method where
the field self.path will be the (relative) url, in this case "/page" .

You then have to create an output the browser will understand, which means you
have to generate a header (including content-type information) and write the output in
binary encoded UTF-8 format1. But once this is over with, whatever string we return
in the compute_output method will be send to the user and shown in the browser. You
can see the result in fig. 3.1.

If we want to build a second webservice, it is even simpler: Instead of inheriting from
BaseHTTPRequestHandler , we can inherit from the class we just wrote! We can use this to
create a functional number-factoring service which can factor any number given in the
url such as http://localhost:8080/48. An example result can be found in fig. 3.1.

1 # chapter0pythonC/server3.py

2 class PrimeFactorServer(BasicServer):

3 def compute_output(self, url):

4 n = int(url[1:]) # Extract number from url

5 s = ', '.join([str(k) for k in range(2, n) if n % k == 0]) # Find and format factors

6 return f"Factors of {n} are: {s}" # return a formatted string

7

1Don’t worry too much about what that means; the internet is a mysterious and old thing

http://localhost:8080/page
http://localhost:8080/48

Figure 3.1: Screenshots of our two web-services. Next step, commodification of social
relationships!

8 if __name__ == "__main__":

9 webServer = HTTPServer(("localhost", 8080), PrimeFactorServer) # Actually start the http server

10 print(f"Server started http://localhost:8080") # The url http://localhost:8080 will now work in a browser

11 webServer.serve_forever() # Start web server

3.3.5 Wrappers /

A pattern is a fancy word for an often-used computer-programming trick, and the
wrapper-pattern is one such trick we will use a couple of times in this course.wrapper-pattern

Consider this problem: Different people create python classes which represent com-
puter games which a reinforcement learning agent can learn to solve. You are building
such an agent and want to test it on several games. The output of the games are images
(screenshots), however, the output of different games will be in different resolutions.
Our reinforcement learning agent require all images to be in the same resolution of
140× 210 pixels. How do we handle that?

• One approach is to do the re-sizing within your reinforcement learning code. This
has the problem of polluting your algorithm with irrelevant functionality, and also
ensures it will only work for a single game. Don’t do that, it is nearly always a
bad idea.

• Another slightly smarter approach is to create new environments which subclass
the reinforcement learning game environments, and overwrite whatever methods
that creates the images to make sure they have the right resolution. This method
is better, but we still need to do this for every single environment, leading to
duplicated code.

• Instead, the wrapper-pattern creates a single re-sizing class which can be used
with any environment to do the resizing. This is the method openai-gym uses.

This is a bit abstract, so let’s illustrate it with the different parrot-classes. Suppose
we want to create a new type of parrot, a TalkativeParrot . This parrot should work like
the regular parrots but just repeat the words it speaks four times.

We want this new parrot-type to work with any old parrot (after all, a forgetful and
a regular parrot can both be talkaktive!). The example therefore resemble the image
resizing example: The parrots are the game environments, and the repeated-words
functionality is the resizing.

When we use the wrapper-pattern, it is accomplished as follows:

• Create a TalkativeParrot class.

• The TalkativeParrot class is given a concrete Parrot instance, parrot , in the con-
structor. This is the object which is wrapped.

• All methods of the TalkativeParrot class are delegated to the parrot object except
the speak -function which is extended in order to say four words instead of one.

Practically, this is extremely simple to do:

1 >>> class TalkativeParrot:

2 ... def __init__(self, parrot):

3 ... self.parrot = parrot # The Parrot-object we want to make talkative

4 ... def learn(self, word):

5 ... self.parrot.learn(word) # Learn is delegated to the Parrot-object

6 ... def speak(self):

7 ... return " ".join([self.parrot.speak() for _ in range(4)]) # Speak 4 times. It is talkative!

8 ... def vocabulary(self):

9 ... return parrot.vocabulary() # Vocabulary is delegated to the Parrot-object

10 ...

That’s it! Let’s put it to work by making both our regular parrot and our old parrot
talkative:

1 >>> talkative_parrot = TalkativeParrot(parrot)

2 >>> talkative_old_parrot = TalkativeParrot(old_parrot)

3 >>>

4 >>> talkative_parrot.speak()

5 '(parrot noises) sugar sleep well sleep well'

6 >>> talkative_old_parrot.speak()

7 'Jeopardy Jeopardy Jeopardy Jeopardy'

This general technique is used in a number of situations, both generally in the
reinforcement-learning framework openai-gym (for instance to do observation reshap-
ing, but also framestacking, reward shaping, etc.), and we will also use it in our course
software to make different similar-but-distinct models work together. Another benefit
is you can stack wrappers, so that one wrapper does re-sizing, and another do some-
thing with the reward, and then you just apply both one after another to mix their
functionality.

3.3.6 Type annotation //

Consider the following simple function that takes two arguments and returns a string:

1 # chapter0pythonC/annotation.py

2 def say_happy_hip_hurray(name, times):

3 s = "hip "*times + "hurray, " + name

4 return s

5

6 print(say_happy_hip_hurray("joe", 3))

This code produce the following output:

1 hip hip hip hurray, joe

You can probably guess, the first input argument ought to be a str and the second
an int . Some programmers see an advantage in explicitly specifying that this is the
case, as it makes it easier to reason about the program. This can be specified using
type annotation, in which case the program looks as follows:type annotation

1 # chapter0pythonC/annotation.py

2 def say_happy_hip_hurray2(name : str, times : int) -> str:

3 s = "hip "*times + "hurray, " + name

4 return s

The extra bits is the type annotation: It tells python the first input argument is
a str , the second an int , and the function returns a str . There are advantages and
disadvantages to type annotation:

• Plus: You can find some bugs quicker (such as swapping input arguments)

• Plus: Modern IDEs can use type annotation to offer better code suggestions

• Minus: Your code is harder to read at a glance

• Minus: Type annotations can be tedious to write

I am going to be using type annotation in a very limited manner in places where I feel
it can help you catch certain bugs.

Part II

Optimal decision making

59

Chapter 4

Introduction

This course deals with situations where decisions are made one after another. The
outcome of each individual decision may not be fully predictable, but can either be
anticipated or observed before the next decision is made. The objective is to maximize
the reward, which is a numerical measure of what is considered a desirable outcome.

This type of problem has a huge practical significance and arises in a variety of
contexts: For instance, to control a robotic arm we must decide which motors to activate
at each time step so as to bring about a desired goal, or to play chess against an opponent
we must at each turn decide which piece to move and to where. Since the problem is
very general, this chapter will introduce basic vocabulary and some key examples used
throughout this course.

4.1 Introduction

Sequential decision making occurs in many situations. To mention a few:

• Bringing a rocket into orbit

• Driving a car

• Traversing a graph from node A to node B

• Playing a computer game

• Maintain a dialog with an user in a question/answer format

• Plan which products to buy and when to maintain a warehouse inventory

A key aspect of these situations is that decisions cannot be viewed in isolation, since
one must balance the desire for a high immediate reward with the undesirability of
a low future reward. This fundamentally changes the nature of the problem from a
typical machine learning task such as classification in two important ways:

60

• In machine learning, we only have to make a single decision (such as a label in
a classification task, or a number in a regression or density estimation task, etc.)
based on a fixed quantity of information. In the decision problem we have to take
many decisions one at a time based on information which becomes progressively
available

• In machine learning, we train the method based on a fixed, known quantity of
information (the training set). In the decision problem, the available information
is more nebulous, for instance knowledge of the dynamics of the environment, or
simply the outcome of our actions as we take them

The decision problem is an umbrella formulation, and the exact formal statement,decision problem

as well as which properties of a solution is considered desirable, may differ: For a
rocket ship we want a clear plan for how to reach our destination (and ideally, formal
guarantees that minor disturbances underway will not lead to a catastrophic outcome),
whereas for a computer game an approximate controller which can learn (rather than
being programmed) may be desirable. Generally we will focus on two general subject
areas:

Control theory, which has its origins in the 1940s with the advent of modernControl theory

electronics and is by far the more mature field. The emphasis is on stability, robustness
and optimality guarantees, which can be achieved by rigorous analysis of simple models.
The successful applications of control theory are the Apollo lunar lander, plane autopi-
lots, operation and optimization of industrial plants, and obviously numerous robotics
application: Control theory is out there, everywhere, and works.

Reinforcement learning which, in its modern form, really came together in theReinforcement
learning last half of the 1980s. It was partly inspired by neuroscience and psychology, specifically

how the human reward systems and planning heuristics might work. Reinforcement
learning focuses on the case where the outcome of individual actions are not known,
but must be fully learned through experience. This lack of specificity often means there
are fewer guarantees on the properties of the algorithms, and the focus is simply on
obtaining the maximal reward.

The goal of reinforcement learning is a general learner, who can master any situa-
tion simply through experience, but we are not there yet. Perhaps the most impressive
applications of reinforcement learning has been the AlphaGo-zero board game learner,
and these methods are presently being scaled up to master real-time strategy computer
games. Reinforcement learning is therefore primarily in laboratories and supercomput-
ers, but is slowly making it’s way into the real world 1.

Asides these two examples, the decision problem is encountered in many other sub-
fields. An overview can be found in fig. 4.1

Operations research A mathematical discipline which treats generalizations of the
inventory-control example below, which is of huge practical significance

Economics Much of economics study the decisions of of rational agents

1ChatGPT uses reinforcement learning as part of the training

Figure 4.1: The decision problem, when formulated broadly, is encountered across a
diverse range of fields, each with their own emphasis

Neuroscience Studies how the brain changes (learn) from repeated exposure of re-
ward/punishment

Psychology Humans also take rational decisions. What principles guide human decision-
making?

Computer science AI is to a large extend about building program which can solve
sequential decision problems like talking, locomotion, step-wise reasoning/deduc-
tion, path-finding, and so on

Engineering Control and optimal control theory is centrally concerned with sequential
decision making so as to bring about a goal

4.1.1 Scope and organization

A distinguishing facet of this course is to focus on an entire class of problems (deci-
sion problems) rather than specific methods (Gaussian processes, variational methods,
regression trees, kernel methods, and so on).

This would in most circumstances be overly ambitious. However, as it turns out,
much of what can fundamentally be said about the decision problem across all these
fields rests on a few (and arguably just one!) fundamental ideas which are recycled
again and again.

In other words, while we will consider a very diverse range of applications (search,
multi-agent planning, optimal control, optimal planning, reinforcement learning), these
are from one perspective really just special cases of the same algorithm, and the same
types of tricks (short-horizon planning, game trees, etc.). These tricks are then re-
discovered and re-used, with variations, under different names and notation in different
fields.

To mention one example, most treatments of reinforcement learning develops it from
the ground-up as a separate subject, however, as we will see the key methods reinforce-
ment learning can just as well be thought of as starting with a minor simplification of
the more general decision problem we will encounter in chapter 5, and then replacing
a certain expectation with a sample average∫

f(x)p(xi)dx ≈
n∑
i=1

f(xi), xi ∼ p.

4.1.2 Reward, cost, and other annoyances⋆

Each subfield which studies the decision problem has developed its own terminology
and idiosyncrasies. In some cases this is purely cosmetic: Control theory typically
calls whatever it is we try to control (for instance, a lunar rocket) the plant, whereasplant

reinforcement learning calls it the environment. Control theory typically calls theenvironment

computer program which makes decisions the controller, whereas reinforcement learn-controller

ing typically calls it the agent. Control theory typically calls the whole (i.e., plantagent

and controller) the system, whereas reinforcement learning has no comparable term. Isystem

expect to do such a poor job at separating these terms I scarcely expect the reader to
notice the difference.

Other choices are more annoying. For instance, control theory calls the state (of thestate

rocket, etc.) for x and the control signal u; in reinforcement learning the comparablecontrol signal

quantities are s and a (state and action). These annoyances will become a bit moreaction

pronounced when we implement the methods and have to settle for either x/u or s/a.
However, the biggest annoyances is that the objective of reinforcement learning is

to maximize a reward; whereas the objective of control theory is to minimize a cost.reward
cost This is a completely vacuous distinction; if we define reward as minus the cost both

subjects could consistently use either reward or cost, and the distinction is therefore as
deep as:

max
x

[f(x)] = min
x

[−f(x)] .

Unfortunately, early on the wrong sort of people got to decide these conventions, and
the incompatible notation has now become fixed in the literature.

Environment
The robot

Actions

Le
ar

ni
ng

State

Dynam
ics

Internal state

The Interpreter

Observation

Cost

Figure 4.2: The decision problem. Based on observed input the robot selects and
execute an action. The environment then change based on the action (and whatever
state it was in) according to its dynamics. An interpreter assigns a cost, quantifying
what undesirable, and the robot is then informed about the new state of the world
(observation) as well as the cost. The robot may maintain an internal state useful for
learning.

I have considered fixing these issues by teaching a variant of control theory which
used the s/a/reward notation, but I think it will create more problems than it is worth,
since all external resources will use a different notation. We will therefore stick with
the long established conventions: When we discuss a control-theory topic, we typically
call the state x and minimize the cost, and when we talk about reinforcement learning,
we typically call the state s and maximize the reward.

4.2 The decision problem

In this course we will use the decision problem to refer to the fundamental sequentialdecision problem

decision-making problem outlined in the introduction. I have found it useful to have a
clear model in mind which is illustrated as the cartoon in fig. 4.2.

The figure has three components: An environment, which is the thing we interactenvironment

with by taking actions (activation of wheels, etc.) and whose behavior is guided by the
laws of nature. The second component is the robot (often also called an agent), whichagent

is what we try to program. What the agent practically does is that at each time step,
it obtains measurements of the environment (an observation) and based on this, send
out signals to its wheels, arms, or however it can affect the environment.

Above all this we have the interpreter; the role of the interpreter is to computeinterpreter

the cost function, which is sent into the agent as a signal, and the purpose of the agent
(and therefore, our program) is to minimize this cost. Obviously, in a real application

Figure 4.3: The pendulum is an example of a simple simple robotics tasks. The agent
must balance the pendulum upright by applying a torque around the joint. Note in
most circumstances it is assumed the motor is too weak to simply overcome gravity,
and the pendulum must therefore be swung back-and-forth to bring it upright.

the interpreter will be build into the robot, but this does not change the salient point
that we have to specify (interpret) which states should have a low cost (and therefore
be desirable) and which should have a high cost (and therefore undesirable). Without
this component, the robot will be useless.

The robot, environment and interpreter can be specified independent of each other:
We may choose which control programs to equip the agent with; the same control pro-
gram should be able to solve different tasks (i.e., different environments); and finally
the cost function (interpreter) can encode different goals for the same agent and envi-
ronment, for instance the difference between landing a rocket ship and bringing it into
orbit.

4.2.1 Example: The pendulum

The first example is a prototypical continuous-time robot control problem, where the
goal is to balance an arm (the pendulum) which is free to rotate around an axis upright
(see fig. 4.3). The pendulum is subject to gravity, and we can activate a small motor
which apply torque around the joint; it is assumed the motor is not powerful enough to
simply balance the pendulum upright from the bottom position. Newtons laws allows
us to express how the pendulum behaves. If θ(t) is the angle of rotation around the axis
the pendulum is fixed to, and u(t) is the torque applied at time t, then the behavior of

the pendulum is:

d2θ(t)

dt2
=
g

l
sin(θ(t)) +

u(t)

ml2

It is common to suppress the time index and use the dot-notation for time derivatives.
In this notation the equations of motion becomes

θ̈ =
g

l
sin(θ) +

u

ml2
. (4.1)

Due to the way the coordinate system is defined, the pendulum is upright if2 θ = 0,
and we will normally assume the pendulum starts out hanging downwards, which occurs
when θ = π.

In addition, a robotics system will nearly always be subject to constraints. In our
case this may be the force we can apply is bounded

−umax ≤ u ≤ umax.

but in general constraints can reflect many different things, such as behavior we want
the system to avoid (a large angular speed θ̇ will cause wear) or physical limitations (a
robots foot cannot go through the floor).

Finally, we have to specify a start and a goal for the robot to complete the problem
specification. In our case it might be that the robot starts at t0 = 0 hanging downwards
without movement:

θ(t0) = π, θ̇(t0) = 0

and the goal is to bring the pendulum upright while it is standing standing still at a
known future time tF . A convenient way to put this is as finding the control function
u(t) for t ∈ [t0, tF] which maximize the cost function3:

c(θ, θ̇) = − cos(θ(tF)) + |θ̇(tF)|

subject to all known constraints and assuming the system obeys the dynamics given in
eq. (4.1).

This example contains all the ingredients for the fundamental problem in control:
Find a control function u which tells us what actions u(t) to take at each time point t so
that, when we use u to take actions, we obtain a low (and ideally, the lowest possible)
cost without violating any constraints.

4.2.2 Example: Graph traversal ⋆

Graph traversal is likely familiar to the reader: We consider a graph of n vertices,Graph traversal

some vertices are connected by edges, and if i, j are two vertices connected by an edge
the edge will have an associated cost aij. The problem is then as follows: Starting from

2Or more generally, θ = 2πn
3When is the first term the greatest and when it is the smallest? Why do we use cos and not sin?

Figure 4.4: A very simple example of a weighted graph with n = 5 vertices where each
is connected by an edge.

a vertex s and given a goal vertex t, find the path traversing the graph from s (start)
to t (target) along edges such that the sum of their cost is minimal. For instance,
in the small graph in fig. 4.4 the cost of the optimal path from s = 2 to t = 4 is
a2,3 + a3,4 = 0.5 + 1. This problem can be considered a decision problem, in which the
robot starts in s, and then in each step k = 0, . . . , N − 1 has to take a decision as to
which of the available edges it wants to traverse (the action), and the immediate cost
is the weight of the edge it traverse.

It may appear a bit odd to think of the problem this way, but as we will see many
search algorithms arises as special cases for our more general algorithm.

4.2.3 Example: The inventory control problem

The inventory control problem will be the most important example, as it features allinventory control

of the characteristics of the basic decision problem which will be introduced in chapter 5;
it is also an important problem in its own right, since a great deal of resources go into
managing stocks of various inventory.

A very simple inventory control problem can be defined as follows: We manage a
warehouse which only store a single type of items, and we want to manage the stock
of this item over N days. Each day customers buy a quantity of the item from the
warehouse, and our job is to each day place an order so as to meet the demand. Let us
denote

• xk: Number of the item in stock at the start of the k’th day (period)

• uk: Stock ordered in the k’th period (assumed delivered at the start of the day)

• wk: Demand (number of items bought) during the k’th period

The number of items in stock will change as simply xk+1 = xk −wk + uk, but with the
restriction that the quantity in storage cannot be negative and that the warehouse can

hold a maximum of 2 items, i.e. 0 ≤ xk ≤ 2, and any extra stock is simply lost. The
update rule is therefore:

xk+1 = max{0,min{2, xk − wk + uk}} = fk(xk, uk, wk). (4.2)

The customer demand is not known beforehand, and is assumed to follow a probability
distribution

Pk(wk = 0) =
1

10
, Pk(wk = 1) =

7

10
, Pk(wk = 2) =

1

5
. (4.3)

The cost function has to balance the cost of ordering an item, but also what occurs
if we have unmet demand or a full inventory (we assume the warehouse has limited
space). One (albeit fairly crude) example is:

N−1∑
k=0

(
uk + (xk + uk − wk)2

)
(4.4)

The cost function assumes ordering a single uk cost 1 unit, and penalizes unmet de-
mand/excess stock quadratically.

In this example, the agent should look at the inventory xk, and decide what quantity
of the item to buy uk. One rule for doing so could be to buy one item when the inventory
is zero:

uk =

{
1 if xk = 0

0 otherwise
.

More generally, our job is to determine a function which tells us which actions to take
based on the observation xk:

uk = µk(xk) (4.5)

where µk is what the agent does (we call this the policy), so as to minimize thepolicy

(expected) cost as defined in eq. (4.4). Note that in this problem, it would be very
helpful to decide uk based on wk (the demand), but this quantity is not known when
we decide on uk.

4.2.4 Example: Gridworlds⋆

A gridworld (see fig. 4.5) consist of a set of tiles, and an agent which is restrictedgridworld

to move between the tiles. Typically, the agent (here, the blue dot) has four available
actions (move north, east, south, west) and the result of taking an action is simply to
move one step in the desired direction. Certain tiles give the agent a reward, and may
signify the end of the episode. In the example given above there are two goal states,goal states

one with a reward of +1 and the other with a reward of -1. In our gridworld example,
the goal states are handled as follows:

• The tiles indicated by the numbers 1 and −1 function as exit tiles

Figure 4.5: Example gridworld environment. The agent may move north, east, south
or west, and dependent on which of the two goal tiles it reaches it obtains a reward of
+1 or -1 for the episode.

• When the agent lands on an exit tile, it only has access to a single action (south)

• When the agent takes this action, the agent obtains the terminal reward (1 or −1
in our case), and the environment terminates.

This choice may seem slightly confusing, but it is common in gridworld implementations
for visualizations purposes.

When the gridworld is deterministic, i.e. when we can be certain what the outcome
of the actions are, the gridworld is equivalent to finding the shortest path in a certain
graph. However, gridworlds are often studied in reinforcement learning in which the
outcome of the actions are not known, and the dynamics (i.e., result of an action) may
be stochastic. Gridworlds themselves have a limited practical applicability, but they
are popular because it is visually very easy to visualize what the agent does.

4.2.5 Example: Pacman

Various variants of the game Pacman (see fig. 4.6) will be a running example through-Pacman

out these notes. Pacman can move to adjacent square not blocked by a wall, and the
goal is to eat the food pellets while avoid being eaten by a ghost. In some levels there
are large food pellets which gives Pacman a temporary superpower to chase down and
eat the ghosts.

In Pacman, the available actions are north, east, south, west, and also stop,
however an action is only available assuming the square is not blocked by a wall. The
state consist of the location of Pacman, the ghosts, the food pellets and the super-
pellets. A natural reward function could be the score, although we will often consider
a simpler reward based on whether Pacman wins (+1) or not (+0).

Figure 4.6: Instance of the Pacman game. Note we will often consider greatly simplified
game levels.

Pacman shares similarities with all the other problems in that this too is a kind of
minimization problem, and from Pacmans perspective it resembles the inventory control
problem in that the ghosts movement is not deterministic; however, the game differs
from the inventory control problem in that we can view it as a planning problem from
the perspective of the ghost in which the goal is to eat Pacman; this feature makes it
a multi-agent problem and therefore actually quite reminiscent of chess and othermulti-agent prob-

lem competitive board games. We will return to this perspective in chapter 9.

4.3 Detailing the decision problem

Based on the preceding examples, we can begin to introduce some common notation
for each of the three components of the decision problem.

4.3.1 The environment

The environment contains the dynamical rules, i.e. laws of nature, of the problem, and
it might also contain constraints (such as in the pendulum example). The environment

has a state which we will commonly denote by xk. In case of the pendulum the state was
the position/velocity and the dynamics was an ODE, and in the case of the inventory
control the state was an integer and the dynamics was of the form eq. (4.2)

xk+1 = fk(xk, uk, wk) (4.6)

where wk is a noise term and uk is the applied control. The available actions is called
the action space and the states the environment can be in the state space.action space

state space When there is a noise term the outcome of each action is not known exactly and
the environment is called stochastic. The alternative case is called a deterministicstochastic

deterministic environment, and it is obtained when there is no noise term (or equivalently, where the
noise term can only take a single value). In this case the dynamics simplifies to

xk+1 = fk(xk, uk) (4.7)

In eq. (4.6) the time index is discrete, whereas in the pendulum example it is contin-
uous. The former case is called a discrete time problem and the later a Continuousdiscrete time

problem time problem. Continuous problems are usually discretized and solved, however the
Continuous time
problem

extra step of discretization presents us with various choices and complications. Control
theory usually treat continuous problems, and reinforcement learning is usually focused
on discrete.

The task we consider might terminate or it might not. A problem which eventually
terminates is called episodic. In this case we imagine the problem is reset after eachepisodic

episode. The alternative case is when we the problem is imagined to continue with noepisode

time limit and in that case we call the problem non-episodic. The first section of thisnon-episodic

course will focus on the terminating case.
Finally, the environment might be fully observed. A fully observed environment isfully observed

one where the agent has access to xk, however in many cases we only observe a function
of xk which can be written as ok(xk). The partially observed case is obviously morepartially observed

difficult to solve, but as we will see it will in practice either be treated as a special case
of the fully observed, or the problem may alternatively simply be ignored.

4.3.2 The agent

The role of the agent is to take actions to minimize the cost. In other words the agent
defines a policypolicy

uk = µk(xk)

In continuous time, we could write this as u = πt(x). As indicated, in the most general
case the policy is a function of both the state and time. A useful classification for how
the agent can obtain a policy is as:

• Planning Where the agent know enough about the environment to plan a policyPlanning

beforehand

• Learning Where the agent must arrive at a good policy through interaction withLearning

the environment

Control theory has traditionally been concerned with planning, i.e. finding an optimal
behavior, whereas reinforcement learning focus on learning since the environment is
typically assumed to be unknown.

4.3.3 The interpreter

The interpreter computes the cost function, which is a function of the action and state
of the environment. As a practical matter, it is computed by the robot, however from
the perspective of our control method the computation of the cost is external.

In the discrete case, we assume the reward/cost arrives at each time step, and takes
the additive form for a trajectory of length N :

gN(xN) +
N−1∑
k=0

gk(xk, uk, wk).

Underlying this general formulation is the cost hypothesiscost hypothesis

Definition 4.3.1 (Cost hypothesis). The desired behavior of the agent can be specified
as minimizing a cost function.

For many, this assumption does not feel entirely correct (what about curiosity,
intuition, artistry etc.?), but it has so far proved difficult to replace it with anything
else.

4.3.4 The control loop

The interaction between the agent, environment and interpreter is called the control
loop (or world loop), and it is worth being specific about what it exactly consist of.control loop

world loop In the following it is illustrated in the discrete setting

• Assume at time k = 0 the environment is in state x0. Starting at k = 0 do

– The agents policy is queried to compute a control signal

uk = µk(xk)

– The control signal is fed into the environment which, unbeknown to the
agent, computes a noise disturbance wk ∼ Pk(Wk|xk, uk) and a new state:

xk+1 = fk(xk, uk, wk)

– The interpreter computes a cost ck = gk(xk, uk, wk)

– The cost and next state is fed back into the agent and the agent may change
its policy found in the state xk, the action taken uk, the state it arrived in
xk+1, and the obtained cost ck

Figure 4.7: A coarse classification of methods used to solve the decision problem based
on what the methods primarly choose to store/manipulate in memory

If the environment terminates at time step N we call the states and actions taken

(x0, u0), (x1, u1), (x2, u2), . . . , (xN−1, uN−1), xN (4.8)

the trajectory4. Note the trajectory does not include a uN since no action is computedtrajectory

after the environment terminates. For terminating environments, it is common to
immediately re-start the world-loop when the environment terminates, thereby letting
the agent learn from multiple trajectories/episodes.

4.3.5 How to build an agent

The various methods for solving the decision problem can loosely be thought of as
falling within three categories. The categories are based on what the agent choose to
(primarily) represent in it’s internal memory, see fig. 4.7, and the classification comes
with the proviso a given method may use ideas from more than one category.

• Model-based The agent stores a complete or approximate model of the environ-Model-based

ment and use it to plan

• Value-function based The agent assigns to each state xk a value (the expectedValue-function
based reward) which signifies if it is good or bad, and steers towards those states with

a high value

4The trajectory may also include the cost

• Policy-based The agent directly represents it’s policy internally and manipulatesPolicy-based

it based on whether it did well or less well in terms of the obtained reward

Control theory is traditionally associated with model-based methods, reinforcement
learning with value-function based methods. The description of policy-based methods
is quite vague and will not be elaborated upon here since we will only tangentially touch
upon policy-based methods in this course.

4.4 Implementing environments and agents

The promise of reinforcement learning and control is that we should be able to program
agents who can control arbitrary environments. A major goal for the software in this
course is to make good on this promise, and the way this can be achieved in practice is
to ensure the components of the software (the agent, the environment, and so on) have
clearly defined roles.

This in turn means the programs we write will all derive from a few, key abstractions;
initially this may feel constraining, as it will require us to think in a certain way,
however in the long run it will save us a lot tedious code, and ensure that control and
reinforcement learning algorithms can be bench-marked on the same problems. This
section will itemize these basic components from a user-perspective.

4.4.1 Building a robot

If we take an implementation-oriented approach to the control loop, and consider what
it involves for a practical robot, there are three major components

Environment The environment has an internal state and must implement function-
ality to compute the result of actions.

The Agent The program we implement; must implement functionality for taking ac-
tions and learning, and must also maintain an internal state

The OS Synthesize sensory data to produce input for the Agent, and ensure the ac-
tions from the agent are passed to the environment; should also handle logging
for later diagnostics

Obviously, real-world robotics involve a great deal of engineering, such as how to treat
a continuous stream of inputs. In this course we will only deal with simulated envi-
ronments, but assuming the environment was hooked up to a real robot our methods
should generalize. The interaction between agent and environment can be illustrated
with the following example:

1 # chapter1/notes_chapter1.py

2 from irlc.pacman.pacman_environment import PacmanEnvironment

3 from irlc.ex11.q_agent import QAgent

4 env = PacmanEnvironment()

5 agent = QAgent(env)

6 train(env, agent, num_episodes=1000)

7 env.close()

The example illustrates all three components of our learning setup:

• Instantiate the environment, in this case corresponding to a pacman game

• Instantiate a Q-learning agent, which can learn to solve the environment

• Train the agent on the environment for 1000 episodes (an episode begins in the
start configuration and ends when pacman has either eaten all the dots or been
eaten by a ghost), and the environment is re-set after each episode.

The result of this will be a trained agent which can play Pacman reasonably well, i.e.
obtain a high reward. In the following we will illustrate how each of these components
work with a practical example.

4.4.2 The environment

The environments are all build on OpenAI Gym. Openai Gym is a reinforcementOpenAI Gym

learning framework https://gym.openai.com/ and provides the most well-established
specification of environments, which means there are many open-source environments
in existence build using OpenAIs framework. Asides the availability of many alternative
reinforcement-learning environments, OpenAIs framework is well-documented and very
simple5.

As an example, we will implement the inventory control environment we considered
earlier. The implementation is as follows:

1 # inventory_environment.py

2 class InventoryEnvironment(Env):

3 def __init__(self, N=2):

4 self.N = N # planning horizon

5 self.action_space = Discrete(3) # Possible actions {0, 1, 2}

6 self.observation_space = Discrete(3) # Possible observations {0, 1, 2}

7

8 def reset(self):

9 self.s = 0 # reset initial state x0=0

10 self.k = 0 # reset time step k=0

11 return self.s, {} # Return the state we reset to (and an empty dict)

12

13 def step(self, a):

14 w = np.random.choice(3, p=(.1, .7, .2)) # Generate random disturbance

15 s_next = max(0, min(2, self.s-w+a)) # next state; x_{k+1} = f_k(x_k, u_k, w_k)

16 reward = -(a + (self.s + a - w)**2) # reward = -cost = -g_k(x_k, u_k, w_k)

17 terminated = self.k == self.N-1 # Have we terminated? (i.e. is k==N-1)

18 self.s = s_next # update environment state

19 self.k += 1 # update current time step

20 return s_next, reward, terminated, False, {} # return transition information

5for instance, here: https://github.com/openai/gym, but also use shift-click e.g. pycharm to
jump to source code definition or similar functionality if you are using another IDE.

https://gym.openai.com/
https://github.com/openai/gym

The init-function

The init function defines the action_space and observation_space attributes. These corre-
sponds to sets {0, 1, 2}. They are defined using a special class (Discrete which may
be imported from gym.spaces.discrete), which represent a discrete set of integers. The
reason we define the action and observation spaces using special gym-provided classes
is because it allows our agents to work with any discrete space.

The reset-function

The reset function resets the environment’s internal state to the initial value and return
it. The reset function must be called before each episode. In this case we set k = 0 and
x0 = 0 (or rather, self.s=0 since gym uses the reinforcement-learning convention).

The step-function

The step function takes an action as input, and computes one step (or update) of the
internal state of the environment. The action is in our case an integer (defined by the
action-space).

It returns four parameters: The next state, the obtained reward (in this step),
whether the environment is done or not (a boolean) and finally a dictionary which may
contain additional information. That we have to return a reward is annoying given we
earlier talked about cost, but we follow the convention that reward = -cost whenever the
issue arises.

4.4.3 The agent

The second component of our code is the agent. Since we haven’t learned how to
build an agent, let us just make an agent which generates random actions (i.e. random
numbers from the set {0, 1, 2}) and refuses to learn anything. This agent can be defined
as:

1 # inventory_environment.py

2 class RandomAgent(Agent):

3 def pi(self, s, k, info=None):

4 """ Return action to take in state s at time step k """

5 return np.random.choice(3) # Return a random action

The policy function

The policy is implemented in the function pi , which asks the agent what it wants to do
in state s at time step k. In other words, pi(s,k) = µk(s) in our notation from before.

The training function

The input arguments to the training method consist of the current state, what action
the agent took in that state, what reward the agent obtained r , the next state6 the
agent transitioned to sp and the obtained reward r . This corresponds to the following
four pieces of information

xk, uk, gk(xk, uk, wk), xk+1.

The agent may do anything with this information in order to learn a better policy.

4.4.4 The training loop

The final component is the training loop, which lets the agent and environment interact
with each other. This functionality in collected in a single function train . Using this
function ensures all training elapse in the same way, and that statistics of the training
is collected in a unified manner. To let our agent interact with the environment for one
rollout (i.e., N time steps) and print the accumulated reward, we would do:

1 # inventory_environment.py

2 env = InventoryEnvironment()

3 agent = RandomAgent(env)

4 stats, _ = train(env,agent,num_episodes=1,verbose=False) # Perform one rollout.

5 print("Accumulated reward of first episode", stats[0]['Accumulated Reward'])

The reader is invited to look at the code for the practicalities. The main part of the
code is the generation of a single rollout, which implements the world loop as described
in section 4.3.4, and which can be sketched as:7

1 # inventory_environment.py

2 def simplified_train(env: Env, agent: Agent) -> float:

3 s, _ = env.reset()

4 J = 0 # Accumulated reward for this rollout

5 for k in range(1000):

6 a = agent.pi(s, k)

7 sp, r, terminated, truncated, metadata = env.step(a)

8 agent.train(s, a, sp, r, terminated)

9 s = sp

10 J += r

11 if terminated or truncated:

12 break

13 return J

In other words, the training loop first resets the environment, then feed the first state
s into the agents policy to produce the first action a . This is fed into the step function
to obtain the next state sp and reward r . The agent is trained on this information
and we iterate until the trajectory terminates when done = True .

6It is standard notation to denote the state which follows a given state s as s+; hence the shorthand
sp for s-plus

7Naturally, we don’t hardcode a maximum number of steps of 1000 in the code, so this is just for
illustrations sake

This code computes a single trajectory of length N . To estimate the average cost
of a given policy we must do this T times and average:

T∑
t=1

{Cost obtained in trajectory t}
T

In practice this is easily accomplished using the train function

1 # inventory_environment.py

2 stats, _ = train(env, agent, num_episodes=1000,verbose=False) # do 1000 rollouts

3 avg_reward = np.mean([stat['Accumulated Reward'] for stat in stats])

4 print("[RandomAgent class] Average cost of random policy J_pi_random(0)=", -avg_reward)

which will give us an estimate of the cost of a random policy:

1 <<<<<<< HEAD

2 [RandomAgent class] Average cost of random policy J_pi_random(0)= 4.286

3 =======

4 [RandomAgent class] Average cost of random policy J_pi_random(0)= 4.331

5 >>>>>>> e99c41cdf0c4fe17e48e63e8a332a5aefe6ae9a3

The advantage of using the environment, agent and train-functionality is that we
get a high degree of reuseability. For instance, we could have saved ourselves a little
typing by using that the Agent class by default use random actions:

1 # inventory_environment.py

2 stats, _ = train(env, Agent(env), num_episodes=1000,verbose=False) # Perform 1000 rollouts using Agent class

3 avg_reward = np.mean([stat['Accumulated Reward'] for stat in stats])

4 print("[Agent class] Average cost of random policy J_pi_random(0)=", -avg_reward)

It also allows us to use other learners on the same environments. For instance, we
can train a Q-learning agent and estimate it’s cost:

1 # chapter3dp/inventory_environment.py

2 from irlc.ex11.q_agent import QAgent

3 stats, _ = train(env, QAgent(env), num_episodes=1000, verbose=False) # Perform 1000 rollouts using Agent class

4 avg_reward = np.mean([stat['Accumulated Reward'] for stat in stats])

5 print("Average cost obtained by Q-learning agent J_Q(0)=", -avg_reward)

As expected, the estimated cost of the Q-learner is lower than the random agent:

1 Average cost obtained by Q-learning agent J_Q(0)= 2.849

4.4.5 Advanced features, plotting⋆

If this was all the training loop did there would be little point to it, however it is
also use it to collect statistics (and save them for later plotting) as well as managing
repeated experiments. Let us consider one such example. The following code trains a
Q-learning algorithm for 100 episodes and plot the reward obtain in each episode, and
the output can be seen in fig. 4.8 and is called a trace plottrace plot

0 20 40 60 80 100
Episode

40

30

20

10

0

Ac
cu

m
ul

at
ed

 R
ew

ar
d

(1x)inventory_q

Figure 4.8: Trace plot of the reward obtained by a Q-learning agent in the inventory
control environment trained over 100 episodes. We see the learner generally improves
on the task, but with quite a lot of variability between runs due to the stochasticity of
the environment

1 # chapter1/notes_chapter1.py

2 from irlc import main_plot

3 env = InventoryEnvironment()

4 train(env, QAgent(env), num_episodes=100, experiment_name="inventory_q", max_runs=1)

5 main_plot("inventory_q")

As we see, there is quite a bit of variability between each episode, and so in most
cases it is useful to re-train the method many times and plot the average. This can
very easily be done by simply calling the training method multiple times:

1 # chapter1/notes_chapter1.py

2 from irlc import main_plot

3 for i in range(20):

4 env = InventoryEnvironment()

5 train(env, QAgent(env), num_episodes=100, experiment_name="inventory_q_multiple", max_runs=20)

6 main_plot("inventory_q_multiple")

and the result can be seen in fig. 4.9.

4.4.6 Visualizing the environment⋆

Often, it is informative to see what the environment does as the agent interacts with it.
Many environments come with a build-in rendering functionality which can be enabled
by passing render_mode='human' to the environment, and the environment will then be
animated. As an example:

1 # chapter1/notes_chapter1.py

2 env = PacmanEnvironment(render_mode='human')

3 agent = Agent(env)

4 train(env, agent, num_episodes=1)

0 20 40 60 80 100
Episode

20.0

17.5

15.0

12.5

10.0

7.5

5.0

2.5

Ac
cu

m
ul

at
ed

 R
ew

ar
d

(20x)inventory_q_multiple

Figure 4.9: Similar to the trace plot of the Q-learner in the inventory control environ-
ment from fig. 4.8, however the experiment is repeated 20 times and the average reward
is shown. We see a more smooth learning curve. The shaded area represents a naive
95% confidence interval of the standard deviation of the mean.

The only documentation contains examples of how you can manually input actions
using the keyboard, however, since that does not translate well to written documenta-
tion we will simply take a snapshot using the savepdf function:

1 # chapter1/notes_chapter1.py

2 from irlc import savepdf

3 env = PacmanEnvironment()

4 env.reset()

5 savepdf("pacman_chapter1.pdf", env=env)

The result can be found in fig. 4.10

Figure 4.10: Example snapshot of the Pacman environment captured using the toolbox
code.

Chapter 5

The basic problem

This chapter will provide a more concrete introduction to the basic decision problem.
We focus on an idealized situation where the problems are made in discrete time steps.
This setup allows us to avoid the technical annoyances of continuous time, and allows
a very general problem formulation and optimal solutions. Our second assumption will
be that we solve the problems over a finite horizon, which means that the problemfinite horizon

terminates after a specific number of planning stages. The benefit of this assumption
is that it avoids infinities and greatly simplifies the presentation.

5.1 The discrete, finite-horizon decision problem

Our problem setup has three features:

1. An underlying discrete-time dynamic system,

2. A cost function that is additive over time and

3. A finite, known planning horizon N .planning horizon

Asides these assumptions we will keep everything as general as possible: The dynamics
can change over time and it may be stochastic, and the states and actions may be
vectors, integers, or something else.

The system dynamics describes how the systems state is updated as a conse-system dynamics

quences of decisions made at discrete instances of time, also called stages. The dy-stages

namics of the system has the form

xk+1 = fk (xk, uk, wk) , k = 0, 1, . . . , N − 1 (5.1)

Fundamentally, the interaction occurs over N stages, and the system terminates in
stage N . It is assumed N has a fixed value given beforehand. From this we can make
two observations

• We must compute N actions u0, . . . , uN−1

82

Figure 5.1: A graphical illustration of the paths the planning problem can take starting
at stage 0 and ending at N . The decision problem can be viewed as finding the path
which gives the shortest cost, with the proviso that when we take an action, we may
not be guaranteed which path to follow.

• There is a total of N + 1 states of the system x0, . . . , xN

The xk’s and uk’s resulting from following the system dynamics is called a trajectorytrajectory

or rollout. To explain the rest of the terms one at a time:rollout

• k stage number

• xk The state of the system

• uk The control selected at stage k and applied to the environment

• wk A random parameter (sometimes also called noise or random disturbance).random distur-
bance It allows us to describe that the new state of the environment xk+1 may not be

fully determined by xk and uk

The states the system can be in at step k is called the state space written as xk ∈ Sk.state space

Similarly, the available actions, at planning stage k and given the agent is in state xk,
is called the action space and is denoted Ak(xk). Both of these are sets.action space

The noise terms will be assumed to follow a probability distribution

wk ∼ Pk (Wk|xk, uk) .

This means that the noise can depend on the stage k, as well as the current state xk
and action taken uk. This means the noise term is generated after the agent has carried
out it’s action uk in state xk.

The policy

At each stage k, the policy (or an admissible policy) is a function µk which maps eachadmissible policy

possible state xk ∈ Sk into a possible control uk = µk(sk) such that µk(xk) ∈ Ak(xk).
The full policy is a sequence of N such functions

π = (µ0, µ1, . . . , µN−1) (5.2)

The cost

The cost is assumed to be additive. At each time step k we incur a cost of gk (xk, uk, wk).
The total cost of a particular trajectory becomes

gN (xN) +
N−1∑
k=0

gk (xk, uk, wk) (5.3)

where gN(xN) is a special cost function which only depends on the final state. However,
because of the presence of the noise terms wk, the cost is generally a random variable.
We therefore formulate the problem as an optimization of the expected costexpected cost

E

{
gN (xN) +

N−1∑
k=0

gk (xk, uk, wk)

}
(5.4)

where the expectation is over the noise terms w0, . . . , wN−1.
This formulation requires that we specify the action sequence u0, . . . , uN−1 before-

hand. But in the situation we are concerned with the actions will be computed using
the policy. We therefore define our first fundamental quantity namely the cost of a
policy π, by assuming each action is taken using the rule uk = µk(xk)cost of a policy

Jπ (x0) = E

{
gN (xN) +

N−1∑
k=0

gk (xk, µk (xk) , wk)

}
. (5.5)

This quantity depends on the initial state x0 and policy π. This quantity is fundamental
in control and reinforcement learning, and in the later case it is typically called the
value function.value function

5.1.1 Small graph traversal

Continuing the graph-traversal example section 4.2.2, suppose the graph G has n nodes
and the goal is to traverse from node s to node t along the edges (i, j) in exactly N
steps along the path with the least weight aij.

In this case the states are the set of nodes S = {1, 2, . . . , n}, and the actions are the
nodes connected to a state. I.e. if edge (i, j) ∈ G then j is one of the available action

from state i. The dynamics and cost is then:

fk(xk = i, uk = j, wk) = j (5.6)

gk(xk = i, uk = j, wk) = aij (5.7)

gN(xN) =

{
0 if xN = t

∞ otherwise.
(5.8)

In this case the disturbances are irrelevant and can be ignored. Note the problem
does not specify the shortest path, but rather the shortest N -edge path. If we want
the shortest path, we have to modify the problem to make sure the terminal node is
absorbing, i.e. there is an edge of the form (t, t) ∈ G with cost att = 0, see section 5.2.1.
We will return to the problem of search in graphs in much greater details in chapter 7
and chapter 8.

5.1.2 Inventory control example

Let us return to the inventory control problem from the introduction. Let’s assume the
number of periods for planning is N = 2. The observation and action spaces are:

Sk = {0, 1, 2}, Ak = {0, 1, 2}. (5.9)

And the dynamics and cost-functions as:

fk(xk, uk, wk) = max{0,min{2, xk − wk + uk}} (5.10)

We already defined the probability distribution in the problem, however in our new
notation:

Pk(wk = 0|xk, uk) =
1

10
, Pk(wk = 1|xk, uk) =

7

10
, Pk(wk = 2|xk, uk) =

1

5
. (5.11)

and the cost-function is:

gk(xk, uk, wk) = uk + (xk + uk − wk)2, qN(xN) = 0 (5.12)

In our case we will consider the case where N = 2. In this case we can write out the
cost function eq. (5.5) as:

Jπ(x0) = E

[
gN(xN) +

N−1∑
k=0

gk(xk, µk(xk), wk)

]
(5.13)

= Ew0,w1

[
µ0(x0) + (x0 + µ0(x0)− w0)

2 + µ1(x1) + (x1 + µ1(x1)− w1)
2
]
(5.14)

If we substitute x1 = f0(x0, µ0(x0), w0) into this expression it becomes a simple expec-
tation over w0 and w1. We could therefore evaluate the cost of the policy by computing
the expression in the parenthesis for all 9 = 3N−1 combinations of w0 and w1, and if we
do this we obtain the true cost of a policy. Note this approach is not very practical,
since the number of terms we have to evaluate grows exponentially in N − 1.

Optimal policy

The equation eq. (5.5) denotes the average cost of a policy, i.e. if you take a fixed policy
π, initialize it in x0, and allow the system to evolve to step N this will be the expected
reward. If we consider the initial state x0 as fixed, we can consider it as a function of
π.

This allows us to define the optimal cost function, denoted by J∗(x0), by mini-optimal cost func-
tion mizing eq. (5.5) over all admissible policies,

J∗ (x0) = min
π∈Π

Jπ (x0) (5.15)

This function map each initial state x0 to an optimal cost J∗(x0). This allows us to
define the goal of control and reinforcement learning, namely to find a policy which
achieves this minimum

π∗ = argmin
π∈Π

Jπ (x0) (5.16)

In this optimization, the set Π denote the set of all admissible policies (i.e., where
µk(xk) ∈ Ak(xk)). We can at this point make a few observations, although especially
the last may be more obvious when we consider methods for solving the minimization
problem in eq. (5.16)

• The minimization task in eq. (5.16) considers a fixed x0, and therefore the policy
at the first stage µ0 is arbitrary for other states in S0.

• The policy which minimize the expression is not unique; this is both a consequence
of the above point, and the simple fact several points may minimize a function.
For instance, x ∈ {2πn}n minimize sin(x)

• We should worry about the following: the minimizing policy π∗ starting in x0,
and the minimizing policy π∗′ starting in another state x′0, they might disagree
about which action to take later. I.e., if we follow π∗ to arrive at xk for some k,
then it could be the case that following π∗′ from xk to xN would be suboptimal.
If this was the case it would rule out any notion of a single optimal policy as what
a policy did substantially depends on the initial state x0. As it turns out, this is
not a problem, however the proof is the optimality of the dynamical programming
algorithm itself

5.1.3 Example: The chessmatch

Suppose a person (player A) is about to play chess match with an opponent (player B).
Each game in the match can have three outcomes

• Player A wins (and get one point)

• Player B wins (and get one point)

• They draw (and both get 1
2
points)

The players first play two rounds, and if the match is tied they enter sudden death
mode, where they keep playing until one wins a game and thereby the match.

We can turn this into a decision problem by allowing player A to choose between
two styles of play in each game:

Timid play, u = 0 In which player A draws with probability pd and looses with prob-
ability 1− pd

Bold play, u = 1 In which player A wins with probability pw and looses with proba-
bility 1− pw

Player A can never win using timid play, so if the match enters sudden-death mode the
optimal strategy is to always play bold, u = 1. The problem can be formulated as a
basic decision problem as follows:

• N = 2 is the number of games in the ordinary match.

• xk = (ak, bk) is the score of the two players

• uk ∈ {0, 1} = Ak denotes timid/bold play respectively

• The dynamics can be selected as

fk(xk, uk, wk) = wk

• wk contains the rules of the match, such that if for instance we play timid uk = 0
then

Pk(wk = (ak + 0.5, bk + 0.5) | xk = (ak, bk), uk = 0) = pd (5.17)

Pk(wk = (ak, bk + 1) | xk = (ak, bk), uk = 0) = 1− pd (5.18)

If the match is drawn after two games, x2 = (1, 1), it enters sudden-death mode, and
as noted player A will always play bold, and therefore the chance of winning sudden-
death mode is pw.

Since the objective is to win, the cost can only be computed at the end of the match
using x2, defined as:

gk(xk, uk, wk) = 0 (5.19)

gN(xk = (ak, bk)) =

−1 if ak > bk and played A wins

−pw if ak = bk and the match is in sudden-death mode

0 otherwise, i.e. if player A loose

(5.20)

In this definition, −Jπ(x0) = −gN(xN) will correspond to the probability player A wins
the match, hence when we minimize this quantity we are trying to find the bold/timid
policy with the highest chance of winning the overall match.

5.1.4 Open and closed loop

While eq. (5.16) provides us with a well-defined problem, it is an unusual one. Ignoring
the exponential cost of computing the cost function, the minimization is over functions
π. A first question to ask is if we can ignore this, and simply minimize eq. (5.16) over
action sequences u0, . . . , uN−1, selected all at once at stage k = 0 when we only know
x0. This is called an open-loop policy since the decisions only depend on the stageopen-loop

index k, and can be defined as:

J(u0,...,uN−1)(x0) = E

[
gN(xN) +

N−1∑
k=0

gk(xk, uk, wk)

]
(5.21)

(u∗0, . . . , u
∗
N−1) = argmin

(u0,...,uN−1)

J(u0,...,uN−1)(x0) (5.22)

This formulation should be contrasted to our original formulation in eq. (5.16) where we
minimize over functions π and the result is called a closed-loop policy. If a problemclosed-loop

is deterministic, any closed-loop controller can be turned into an open-loop controller
since at each stage k, we know which state xk we will be in, and we can therefore
pre-compute uk = µk(xk). However, for stochastic problems open-loop controllers will
as a rule not be optimal, as the following example shows:

Example: Chess match, continued

Continuing the chess-match example from section 5.1.3, and recall player A has the
option to play timid (which draws with probability pd, and otherwise looses) or bold
(which wins with probability pw, and otherwise looses). We will first consider all of the
open-loop policies; since there are two choices (timid/bold) and 2 rounds there are four
such strategies. The chance of winning are

1. Play timid in both games: We have to draw the two games and then win the
match in overtime. This occurs with probability p2dpw

2. Play bold in both games: We can either win both games (p2w) or win one, loose
the other (pw(1−pw)) and win the final game. The chance of winning is therefore
p2w + 2p2w(1− pw) = p2w(3− 2pw)

3. Bold first game, timid in second: pwpd + p2w(1− pd)

4. Timid in first game, bold in second: Same as above.

The probability of winning under the first policy is always lower than under the two
last, so therefore the maximum chance of winning under an open-loop policy is

max
(
p2w (3− 2pw) , pwpd + p2w (1− pd)

)
= p2w + pw (1− pw)max (2pw, pd) . (5.23)

Let’s compare this to the following closed-loop policy: Suppose a player choose to
play timid if and only if he is ahead in score, and in all other cases play bold. We can
write this as:

µk(xk = (a, b)) =

{
u = 0 if a > b

u = 1 otherwise.
(5.24)

Under this policy the player will first play bold and be ahead with probability pw and
behind with probability pw. In the former case he will then play timid, and in the later
bold. This gives a chance of winning:

pwpd + pw (pw (1− pd) + (1− pw) pw) = p2w (2− pw) + pw (1− pw) pd (5.25)

This probability may be larger than the chance of winning any single game. For in-
stance, if pw = 0.45 and pd = 0.9 it will be approximately 0.53. On the other hand,
the best open-loop policy eq. (5.23) only has a 0.425 chance of winning the match. In
other words, not only is a closed-loop policy superior to the best open-loop policy, more
remarkable even though the chance of winning any single game using either strategy
is less than 50%, combining the different strategies gives us a chance of winning the
match above 50%!.

5.2 State augmentation

We now turn out attention to the situation where the assumptions of the basic problem
appears to be violated, but with a little care only superficially so.

5.2.1 Absorbing states

The first situation we consider is one in which the problem may terminate earlier than
N . For instance, Pacman may win the game or alternatively die before some maximum
time N is reached. This situation is easily treated by introducing two special states

xw = win, xd = dead

then we re-write the dynamics and cost such these states are absorbing and have costabsorbing

0. For e.g. the winning state:

xw = f ′
k(xw, uk, wk), g′k(xw, uk, wk) = 0.

and finally ensure the system must transition into xw correctly:

xk+1 =

{
xw fk(xk, uk, wk) is a terminal (won) state

fk(xk, uk, wk) otherwise
(5.26)

If the cost of winning (or loosing) is associated with a large negative (or positive) cost
this can be handled by giving the agent the extra cost in gN . Thus, as long as we know
an upper-bound on the number of stages, we can easily re-formulate the problem to be
amendable to DP.

5.2.2 An observation about time

We explicitly model individual transition functions fk for each stage k, i.e. as:

xk+1 = fk(xk, uk, wk) (5.27)

however this is strictly speaking not necessary. We could just as well have defined the
states to contain k, i.e. a state xk ∈ Sk could be represented as:

x̃ = (xk, k), x ∈ Sk

In which case we could use a stationary dynamics f̃ as:

x̃k+1 = f̃(x̃k, uk, wk) (5.28)

= (fk(xk, ukwk), k + 1) (5.29)

Thus, using dynamics which refers to time as in fk, rather than f̃ , is a matter of how we
define the state. This observation will be relevant when later consider search methods
in chapter 8.

5.2.3 Time lags /

Suppose the natural formulation of the DP problem also depends on previous time steps
as in

xk+1 = f ′
k(xk−1, xk, uk, wk) (5.30)

Or more generally

xk+1 = fk(xk−d, xk−d+1, . . . , xk−1, xk, uk, wk), d = 1 (5.31)

This can easily be re-cast as a DP problem by introducing an augmented state defined
as

x̃k =

xk
xk−1
...

xk−d+1

xk−d

 (5.32)

The augmented dynamics can now be formulated entirely in terms of x̃k, in which it is
an instance of the basic decision problem

x̃k+1 = fk (x̃k, uk, wk) =

f ′
k(xk, uk, wk)

xk
...

xk−d+1

 . (5.33)

This re-writing is very common in time-forecast models.

5.2.4 Partially observed environments /

Suppose that rather than observing the state xk directly, we only have access to in-
direct observations yk = o(xk). In this case a transition function of the form yk+1 =
fk(yk, uk, wk) would not be correct, as it may be past observations yk−d, yk−d+1, . . . , yk
can provide additional information about xk. We can still cast this as a decision problem
by defining the augmented state:

x̃k =

yk
yk−1
...
y0

 . (5.34)

In this case a model of the form x̃k+1 = fk(x̃k, uk, wk) would still be correct. Obviously,
in many partially observed situations we do not have access to the model, and at any
rate having an ever-expanding state is often computationally prohibited. However, it
is a very common trick in (deep) reinforcement learning, when applied to partially
observed problems like video games, to use an approximation of this by using eq. (5.33)
with for instance d = 4.

5.3 Implementation details

The basic decision problem is our first example of a model of the environment. It ismodel

worth emphasizing the model is not the environment, but rather captures what the
agent knows (or believes) about how the environment works:

Environments The actual (simulation) of the environment

• The environment has an internal state which changes when actions are taken

• The environment has a step-function which takes an action and changes the
state

• Environments can often be derived from models (we can build an environ-
ment which simulates the model)

Models How the agent thinks the environment behaves

• Contains functions which describes how the agent thinks the environment
behaves

• Do not have an internal state

• Can be accurate and complete, or inaccurate and partial

Thus, a model is part of the agent, and a variety of different models can be made to
reflect aspects of the same environment. We will capture this by using separate model
and environment classes; this may appear more complex than simply cramming model

information into the environment class, however, it is better software design, and it will
allow us to equip the same agent with different models.

The model you write will implement different functions corresponding to each part
of the basic decision problem. They will therefore all inherit from the following class:

1 # dp_model.py

2 class DPModel:

3 def __init__(self, N):

4 self.N = N # Store the planning horizon.

5

6 def f(self, x, u, w, k: int):

7 raise NotImplementedError("Return f_k(x,u,w)")

8

9 def g(self, x, u, w, k: int) -> float:

10 raise NotImplementedError("Return g_k(x,u,w)")

11

12 def gN(self, x) -> float:

13 raise NotImplementedError("Return g_N(x)")

14

15 def S(self, k: int):

16 raise NotImplementedError("Return state space as set S_k = {x_1, x_2, ...}")

17

18 def A(self, x, k: int):

19 raise NotImplementedError("Return action space as set A(x_k) = {u_1, u_2, ...}")

20

21 def Pw(self, x, u, k: int):

22 # Compute and return the random noise disturbances here.

23 # As an example:

24 return {'w_dummy': 1/3, 42: 2/3} # P(w_k="w_dummy") = 1/3, P(w_k =42)=2/3.

Thus, when we implement a model of the basic decision problem, we do so by writing
the above functions according to the specification of the problem. Don’t worry, in most
cases they will be very simple.

Chapter 6

Dynamical Programming

In this chapter, we will provide a method, the dynamical programming (DP) algorithm,
for solving the basic decision problem optimally. Not only is this algorithm interest-
ing because it allows us to solve a difficult decision problem, but as highlighted in the
introduction it is the central method in this course: Indeed, the methods we will en-
counter for search, multi-agent games, control and reinforcement learning will be seen
as simplifications and modifications to this algorithm.

6.1 The principle of optimality

The dynamic programming algorithm rests on a very simple idea, the principledynamic program-
ming algorithm of optimality. The name is due to Bellman, one of the great pioneers in artificial
principle of opti-
mality

intelligence, who popularized DP and transformed it into a systematic tool.
The principle of optimality imbue the intuition that for a policy to be globally

optimal, each part of the policy must be optimal as well. More concretely, suppose the
shortest path from Copenhagen to Berlin by car takes us through Odense:

Copenhagen→ Odense→ Berlin

then the principle of optimality says that if we find the shortest path starting in Odense
and going to Berlin, that path cannot be shorter than the shortest path we first had
in mind. The reason should be obvious: If it was the case, then we could switch to the
new path in Odense, and arrive at an even shorter path from Copenhagen to Berlin,
in contradiction with the assumption we had the shortest path to begin with. The
principle of optimality is the workhorse in the DP algorithm which we will use to solve
the basic decision problem momentarily. We will therefore state the PO carefully since
the notation will prove useful.

The first component we need is that of a tail policy, which is a rigorous way oftail policy

referring to the trip from Odense to Berlin above. Consider as usual a policy π =
(µ0, . . . , µN−1). For any for any k = 0, . . . , N − 1, we let

πk = {µk, µk+1, . . . , µN−1} (6.1)

93

denote the tail policy. The tail policy can be thought of as acting on a truncated
decision problem of length N − k, which starts in state xk and ends in stage N . Fortruncated decision

problem this tail policy we can associate a tail cost cost of:
tail cost

Jk,π (xk) = E

{
gN (xN) +

N−1∑
i=k

gi (xi, µi (xi) , wi)

}
(6.2)

And as before we can define the optimal cost of any policy on the tail subproblem as:

J∗
k (xk) = min

πk
Jk,πk(xk) (6.3)

Note that J∗
0 (x0) = J∗(x0). The intuitive statement of the PO is that if we consider

the (globally) optimal policy π∗, then the tail of this policy will also be optimal for the
subproblem. Formally stated:

Definition 6.1.1 (Principle of optimality). Let π∗ =
{
µ∗
0, µ

∗
1, . . . , µ

∗
N−1

}
be an optimal

policy for the basic decision problem, and assume that when following π∗ there is a
positive probability we will find ourselves in state xi at time i. Consider the subproblem
where we start in xi at time i and which to minimize the tail subproblem from i to N :

E

{
gN (xN) +

N−1∑
i=k

gi (xi, µi (xi) , wi)

}
(6.4)

Then the truncated policy π∗,k = (µ∗
i , µ

∗
i+1, . . . , µ

∗
N−1) is optimal for this subproblem:

J∗
k (xk) = Jk,πk(xk) (6.5)

Exactly as before, if π∗ is the optimal route from Copenhagen to Berlin, then
Jk,π∗,k(xk) is distance that route travels from Odense to Berlin, and this distance will
be the shortest between Odense and Berlin J∗

k (xk). The proof of the PO is somewhat
technical, and an interested reader can find it in [Ber05].

6.2 The DP algorithm

The principle of optimality suggests the following idea: Suppose we already knew the
optimal tail policies at stage k for all states xk ∈ Sk. We can then extend this tail
policy to the tail policy starting at stage k− 1 in any given state xk−1 ∈ Sk−1, by using
that according to the PO, the tail of the k − 1-tail policy must be one of the original
k-stage optimal tail policies, each which has the known cost Jk(xk). The DP algorithm
formalizes this idea, and is summarized in theorem 6.2.1.

Theorem 6.2.1 (DP algorithm). For every initial state x0, the optimal cost J∗(x0)
is equal to J0 (x0), and optimal policy π∗ is π∗ = {µ0, . . . , µN−1}, computed by the
following algorithm, which begins by defining

JN (xN) = gN (xN) , xN ∈ SN (6.6)

Algorithm 1 The dynamical programming (DP) algorithm, see theorem 6.2.1☞
1: J ← empty list cost functions N + 1
2: π ← empty list of policies
3: for all x ∈ SN do
4: JN(x)← gN(x) ▷ Implements eq. (6.6)
5: end for
6: for k = N − 1, . . . , 0 do ▷ Note loop starts at k = N − 1 and proceeds backwards
7: for all x ∈ Sk do
8: for all u ∈ Ak(x) do
9: Qu ← 0
10: for all Noise values w s.t. p(w) = Pk(w|x, u) > 0 do
11: Qu ← Qu + p(w) [gk(x, u, w) + Jk+1(fk(x, u, w))]
12: end for
13: end for
14: u∗ = argminu∈Ak(x)

Qu

15: Jk(x) = Qu∗ ▷ Implements eq. (6.7a)
16: πk(x) = u∗ ▷ Implements eq. (6.7b); we use πk = µk as a shorthand
17: end for
18: end for

and then proceeds backward in time from k = N − 1 to k = 0 and for each xk ∈ Sk
computes

Jk (xk) = min
uk∈Ak(xk)

E
wk

{gk (xk, uk, wk) + Jk+1 (fk (xk, uk, wk))} (6.7a)

µk(xk) = u∗k (u∗k is the uk which minimizes the above expression). (6.7b)

Proof. We prove that the sequence of function Jk produces using the DP algorithm in
eq. (6.7) corresponds to the cost of the optimal tail policy defined in eq. (6.3), that is,

Jk(xk) = J∗
k (xk)

= min
πk

E

{
gN (xN) +

N−1∑
i=k

gi (xi, µi (xi) , wi)

}
(6.8)

The proof is by induction starting at k = N and using eq. (6.8) as the induction
hypothesis

Start of induction k = N : For k = N both sides of eq. (6.8) are equal to gN(xN)
by definition

Induction step k < N : Assume for some k < N we have = Jk+1 (xk+1) = J∗
k+1 (xk+1)

by the induction hypothesis. Writing the k-tail policy as

πk = (µk, π
k+1) = (µk, µk+1, . . . , µN−1)

the right-hand side of eq. (6.8) can now be re-arranged to be:

J∗
k (xk) = min

(µk,πk+1)
E

{
gN (xN) +

N−1∑
i=k

gi (xi, µi (xi) , wi)

}
(6.9)

As a first step, we move the expectation inside the parenthesis and use the definition
of the cost of a tail policy:

= min
(µk,πk+1)

Ewk

[
gk (xk, µk (xk) , wk) + Ewk+1:N−1

{
gN (xN)+

N−1∑
i=k+1

gi (xi, µi (xi) , wi)

}]
= min

(µk,πk+1)
Ewk

[
gk (xk, µk (xk) , wk) + Jk+1,πk+1(fk(xk, µk(xk), wk))

]
(6.10)

By this definition, (µk, π
k+1) is the optimal policy for the k-tail problem, and there-

fore by the PO this policy will also be optimal for the k + 1 tail-problem, which has
optimal cost minπk+1 Jk+1,πk+1(xk+1). Therefore:

= min
µk

Ewk

[
gk (xk, µk (xk) , wk) + min

πk+1
Jk+1,πk+1(fk(xk, µk(xk), wk))

]
Which, by definition equal to the optimal tail policy J∗

k+1:

= min
µk

Ewk

[
gk (xk, µk (xk) , wk) + J∗

k+1(fk(xk, µk(xk), wk))
]

We can now apply the induction hypothesis eq. (6.8) and some simple algebra to obtain:

= min
µk

Ewk
[gk (xk, µk (xk) , wk) + Jk+1(fk(xk, µk(xk), wk))]

= min
uk∈Ak(xk)

Ewk
[gk (xk, uk, wk) + Jk+1(fk(xk, uk, wk))]

= Jk(xk)

establishing the induction step. By induction, the hypothesis is true for k = 0, which
gives us our result.

For clarity, the update rules in the DP algorithm have been re-phrased as an al-
gorithm in algorithm 1, which illustrates how the expectations are practically imple-
mented.

6.2.1 Example: The small graph problem

As a first example, we will consider the small graph traversal problem we previously
encountered in section 4.2.2. The graph considered is re-produced in fig. 6.1. Recall the
small graph example does not use the noise terms, which makes it particularly useful

Figure 6.1: Reprint of fig. 4.4. The goal is to find the path with least cost from vertex
2 to 5.

for debugging the DP algorithm. In particular, it is possible to completely omit the
loop over w in algorithm 1, line 10 and simply update Qu as:

Qu ← gk(x, u, None) + Jk+1(fk(x, u, None)). (6.11)

It is recommended you implement this version first (and make sure it works) before
adding the noise terms. The version with noise terms should obviously produce equiv-
alent outputs. Carefully review the method to ensure you understand how and why it
produces the output below:

Stage k = N Because there are 5 vertices in the problem, it can be solved in at most
4 steps. We therefore select N = 4. For initialization we have JN = gN . From the
definition of the environment this is:

J4(5) = 0, J4(s) =∞ for s = 1, 2, 3, 4

Stage k = 3 With eq. (6.11) in mind, the update we perform is equivalent to1:

J3(x) = min
u

[gk(x, u) + Jk+1(fk(x, u))]

Since the cost term J4(x
′) is only finite when x′ = 5, this is equivalent to the cost to go

to node 5 in one step. In other words:

J3(1) = 2, J3(2) = 7, J3(3) = 5, J3(4) = 3

Meanwhile, J3(5) = 0 since it is already in the goal state.

1we suppress the w terms as they are redundant

Stage k = 2 Let’s consider J2(x2 = 1), i.e. the cost-to-go for the first node. It is
defined as:

J2(1) = min
u=1,2,3,4

{g2(1, u) + J3(u)} = min{2, 13, 10, 5} = 2

Since this corresponds to the first action u = 1 we also have µ2(x = 1) = 1; this means
the optimal policy is to stay in vertex 1, then go to vertex 5 in the next move.

One more example: Suppose we are in vertex 2, in this case:

J2(2) = min
u=1,2,3,4

{g2(2, u) + J3(u)} = min{8, 7, 5.5, 8} = 5.5

Which corresponds to µ2(x = 2) = 3, i.e. we go from vertex 2 to vertex 3, and then
later from 3 to 5 at a total cost of 5.5. The remaining steps have been omitted for
brevity.

6.2.2 Example: The chess match

Let us return to the Chessmatch example we encountered earlier. Recall the states are

player A and B’s score xk =

[
ak
bk

]
. To apply the DP algorithm we first initialize

JN(xk) =

−1 ak > bk

−pw ak = bk

0 ak < bk

And each update in eq. (6.7) simplifies to:

Jk(xk) = min
uk∈{0,1}

E [Jk+1(wk)] , wk ∼ Pk(·|xk, uk)

= min

{
pwJk+1

(
xk +

[
1
0

])
+ (1− pw)Jk+1

(
xk +

[
0
1

])
,

pdJk+1(xk) + (1− pd)Jk+1

(
xk +

[
0
1

])}
(6.12)

Stage k = 1 This is a bit daunting, but remembering that k = 1 (because N = 2) we

can first consider the case A is ahead, xk =

[
1
0

]
, in which case eq. (6.12) becomes

J1

(
xk =

[
1
0

])
= min {−pw − (1− pw)pw,−pd − (1− pd)pw}

= −pd − (1− pd)pw (6.13)

(and since the second option was selected the optimal policy is to play timid). Next,
for a drawn game 1, eq. (6.12) gives us

J1

(
x1 =

[
1
2
1
2

])
= min {−pw,−pdpw} = −pw (6.14)

which corresponds to bold play and finally when A is behind we get from eq. (6.12)

J1

(
x1 =

[
0
1

])
= min

{
−p2w, 0

}
= −p2w (6.15)

i.e. to play bold, which in hindsight is obvious since timid play always looses.

Stage k = 0 We can then proceed to find the optimal cost for the start of the match

where x0 =

[
0
0

]
:

J0

(
x0=

[
0
0

])
= min

{
pwJ1

([
1
0

])
+ (1− pw)Jk+1

([
0
1

])
,

pdJk+1

([
1
2
1
2

])
+ (1− pd)Jk+1

([
0
1

])}
= min

{
pw(−pd − (1− pd)pw) + (1− pw)(−p2w),
pd(−pw) + (1− pd)(−pw)2

}
= pw(−pd − (1− pd)pw) + (1− pw)(−p2w)
= −pw(pd + (1− pd)pw + (1− pw)pw) (6.16)

and since the first option was selected, the optimal policy is to play bold. Thus, the
DP algorithm both recovered the best policy (timid if and only if ahead in the match),
but also provided us with the chance of winning the match using the optimal policy.

6.2.3 Example: Inventory control

As a second example, let’s apply the DP algorithm to the inventory control problem.
Recall that N = 3 and there is no terminal cost. We therefore initialize

J3 (x3) = 0 (6.17)

and the algorithm will take the general form:

Jk (xk) = min
uk=0,1,2

Ewk

{
uk+(xk+uk−wk)2 + Jk+1 (max (0,min{xk+uk−wk}))

}
(6.18)

Stage k = 2 In this case the minimization eq. (6.18) becomes

Jk (xk) = min
{
Ewk

[
(xk − wk)2

]
, 1 + Ewk

[
(xk + 1− wk)2

]
, 2 + Ewk

[
(xk + 2− wk)2

]}
(6.19)

The terms can be computed using the definition of the probability density of wk. The
expressions are:

Ewk

[
(xk − wk)2

]
= 0.1x2k + 0.7(xk − 1)2 + 0.2(xk − 2)2 (6.20)

1 + Ewk

[
(xk + 1− wk)2

]
= 1 + 0.1(xk + 1)2 + 0.7x2k + 0.2(xk − 1)2 (6.21)

2 + Ewk

[
(xk + 2− wk)2

]
= 2 + 0.1(xk + 2)2 + 0.7(xk + 1)2 + 0.2x2k (6.22)

Stock Stage 0
cost-to-go

Stage 0
optimal
stock to
purchace

Stage 1
cost-to-go

Stage 1
optimal
stock to
purchace

Stage 2
cost-to-go

Stage 2
optimal
stock to
purchace

0 3.700 1 2.50 1 1.3 1
1 2.700 0 1.50 0 0.3 0
2 2.818 0 1.68 0 1.1 0

Table 6.1: Inventory example results

The possible values of xk is Sk = {0, 1, 2}, and so we obtain:

J2(x2 = 0) = min {1.5, 1.3, 3.1} (6.23)

therefore the optimal action µ∗
2(0) = 1. Proceeding in this manner we get

J2(x2 = 1) = min {0.3, 2.1, 2.1} (6.24)

and so µ∗
2(1) = 0 and J2(1) = 0.3. Similarly we obtain J2(2) = 1.1 and µ∗

2(2) = 0.

Stage k = 1 For completeness, for k = 1 and x1 = 0 we obtain:

J1 (x1 = 0) = min
uk=0,1,2

Ewk

{
u1 + (u1 − w1)

2 + J2 (max (0,min{2, u1 − w1}))
}

= min
{
Ew1

[
w2

1 + J2(0)
]
,

1 + Ew1

[
(1− w1)

2 + J2(max{0, 1− w1})
]
,

2 + Ew1

[
(2− w1)

2 + J2(max{0, 2− w1})
]}

(6.25)

Using what we know about J2 we can evaluate the expressions in the parenthesis to
obtain

J1 (x1 = 0) = min {2.8, 2.5, 3.68}

so the optimal action if we have an empty inventory in stage 1 is to buy a single
item µ∗

1(0) = 1. We can continue in this manner, however since the computations are
probably unlikely to rouse much excitement at this point I have summarized them in
table 6.1.

Thus, for the inventory control example, the optimal policy is to simply buy a single
item if the inventory is empty.

6.2.4 Example: Optimal pacman⋆

As a final case study, let’s try to play optimal Pacman. We will consider three Pacman
games with zero, one and two ghosts respectively, and a single food pellet as shown in
fig. 6.2. The game world is here assumed to be just a 2 × 4 grid, and the initial state

Figure 6.2: Starting position for the three Pacman games we will consider with zero,
one and two ghosts respectively. The game terminates in a win if Pacman eats the food
pellet before stage N without being eaten himself, otherwise the game is lost.

x0 of pacman (and the ghosts) will always be as indicated in the three figures. The
purpose is as usual to eat the food dot and avoid the ghosts. When pacman moves to
the dot the game is won, and when pacman and a ghost shares a tile the game is lost.

Let us start with the simplest case with zero ghosts, and suppose we wish to apply
DP to solve this problem. The first thing we must do is to select N , and in this case
we will choose N = 8.

Zero-ghost pacman

We first see that Pacman can actually solve the problem in k = 3 steps (right, right,
down). This means that when we plan on a horizon of N = 8, the game will at that point
enter an undefined state. We fix this using the absorbing state trick from section 5.2.1
and define the new states win, lose to signify if pacman has lost or won. When Pacman
is in either of these states, only the action stop is available, and pacman always remains
in these states. We can now define the cost-function as gk(xk, uk, wk) = 0 and

gN(xN) =

{
−1 if xN = Win

0 otherwise.

Next, the dynamics. In the case of no ghosts the dynamics is deterministic and is
defined by the game rules, and the Pacman game comes with a function which can easily
allow us to compute the effect of taking an action by Pacman as x.generateSuccessor(0, u)

where x is the game state and u is the given action. The set of available actions can
similarly be found using x.getLegalActions(0) . In both cases, the 0 refers to pacman, and
for instance 1 would refer to the available actions (and outcome of taking an action)
for ghost 1.

When we apply the DP algorithm, the first step requires us to compute JN(xN) for
each xN ∈ SN . In the pacman game this creates a problem, since we have no simple
mechanism available which will provide us with this set, and although the game world
here is so easy it may be possible to explicitly construct the set we should work out
a more general solution to obtain the set of states. A little thought reveals that if we

Game type | S1 | | SN | DP optimal
winrate −J0(x0)

Simulated
winrate

Average game
length

No Ghosts 4 18 1.00 1.00 3.00
One Ghosts 11 118 1.00 1.00 4.00
Two Ghosts 16 781 0.93 0.91 4.78

Table 6.2: Dynamical programming applied to the simple Pacman levels shown in
fig. 6.2.

know the dynamics of the game, we can easily work out the set S1 from S0 and in
general Sk+1 from Sk by simply trying out all available solution. In general, in the
deterministic case, this operation is:

Sk+1 = {fk(xk, uk) | xk ∈ Sk, uk ∈ A(xk)} (6.26)

If we do this, we see that the size of the state spaces changes as 2.

| S0 | = 1, | S1 | = 4, | S2 | = 12, | S3 | = · · · = | SN | = 18

It may appear surprising that there are not | SN | = 8 states (7 which can be occupied
plus win), however Pacman also has an orientation (determined by the previous state),
and even though it is irrelevant insofar as the game rules are concerned, it is counted
as a unique state. There are 2 available orientation for the two left-most states, one
for the upper-right state (pacman faces the wall to the right; after all, he cannot enter
this state from below) and three available orientations for the four middle state and
including the win state this does indeed agree:

2× 2 + 3× 4 + 1× 1 + 1 = 18.

With this information we can apply the DP algorithm. Unsurprisingly, we obtain an
expected cost of −1 (Pacman always wins), however the number of steps may differ
from 3 since it makes no difference if Pacman wins in 7 or 3 steps in terms of the cost.
This problem may be fixed by adding a miniscule constant cost of e.g. 10−8 to each
step, and now we do see pacman perfectly solves the maze, as shown in table 6.2.

6.2.5 Multi-ghost pacman

Multi-ghost pacman requires a slight elaboration on the game rules. For multiple ghosts
the rules are:

• Pacman is labelled 0, the ghosts are labelled 1, 2, . . . Q− 1

2An eagle-eyed student spotted a problem in this counting argument, see https://piazza.com/

class/lcyz0561au01sm/post/21. TL;DR: The counting-argument works for the project, but the
story is a little more complicated for this particular example due to where pacman starts.

https://piazza.com/class/lcyz0561au01sm/post/21
https://piazza.com/class/lcyz0561au01sm/post/21

• When the game is in state xk, and pacman takes action uk, the following occurs:

– Pacman transitions to a new state deterministically, and food Pacman land
on is immediately eaten. If the new state corresponds to a win/loose, the
game terminates

– In turn, 1, 2, . . . ghost p moves. The ghost selects it’s action uniformly at
random from the available actions and moves deterministically. If at any
point a ghost lands on Pacman, the game terminates

• The resulting position is now xk+1

For this type of dynamics, it is convenient to simply let wk be the new state (corre-
sponding to the effect of the procedure above, including the random ghost movement)
and define:

fk(xk, uk, wk) = wk (6.27)

then wk is generated by carrying out the above actions in sequence, which also makes
it easy to track the probabilities. The state spaces also have to be computed. In the
stochastic case this is defined as:

Sk+1 = {fk(xk, uk, wk) | xk ∈ Sk, uk ∈ A(xk), wk st Pk(Wk = wk|xk, uk) > 0} (6.28)

i.e. for each xk, we try each available action uk, and let the set of available state be
those which can be reached with non-zero probability.

6.2.6 One-ghost Pacman

For the one-ghost game we obtain:

| S1 | = 11, | S8 | = 117.

There is still a 100% chance of winning the one-ghost game (the expected cost is
J0(x0) = −1). This may appear strange, as it would seem there is no way to get
past the ghost without a chance the ghost catches pacman, however, pacman exploits
some subtleties in the game rules: In the first move Pacman always chooses the Stop

action. If the ghost go left, Pacman makes a run for the dot and win in three addi-
tional moves (the game terminates as soon as pacman eats the food dot regardless of
whether the ghost move onto pacman on the ghosts turn).

On the other hand, if the ghost goes up, pacman chooses the down action, and in
the next move pacman chooses right; Pacman exploits that if the ghost has gone up
in one turn, the ghost cannot choose down in the next and so the resulting square is
safe. The case where the ghost go right pacman will choose down, right, right, once
more exploiting that the ghost cannot reverse course in one move.

Two-ghost pacman

For two ghosts pacman is not guaranteed to win. It is easy to imagine a case where
two ghosts can adopt a strategy where they will catch pacman with probability 1, and
in that light it may be surprising that the game is still relatively easy and with optimal
strategy we will win about 90% of the games (J0(x0) = −0.898). Another observation
is that the problem has become quite a bit harder and we have:

| S1 | = 16, | S8 | = 768.

6.2.7 Shortcomings of DP

For each new food dot the number of states will (approximately) double, and for each
new ghost the number of states will roughly be multiplied by the number of squares. On
top of that, for each state we have a computational burden corresponding to the number
of actions times the number of possible random disturbances wk. These computations
must be carried out N times.

In practice, this means that a direct application of DP has a limited applicability
due to the computational demands, and would not be suited for the real pacman game.
This does not mean DP is irrelevant. As we will see in this course, these shortcomings
can each be addressed, typically as a tradeoff between exactness versus feasibility. These
various ways to address the shortcomings give rise to central methods in control theory,
search and reinforcement learning.

6.3 Reformulations

In this section, we will discuss two re-formulations of the DP algorithm which have
important applications in control theory, AI and reinforcement learning

6.3.1 Evaluation

Let’s begin with the tail cost defined in eq. (6.2)

Jk,π (xk) = E

[
gN (xN) +

N−1∑
i=k

gi (xi, µi (xi) , wi)

]
. (6.29)

Using that the expectation is a linear operation we can pick out the first cost term:

E

[
gN (xN) +

N−1∑
i=k+1

gi (xi, µi (xi) , wi) + gk(xk, µk(xk), wk)

]
(6.30)

= Ewk

[
gk(xk, µk(xk), wk) + E

{
gN (xN) +

N−1∑
i=k+1

gi (xi, µi (xi) , wi)

}]
. (6.31)

The inner-most expectation is just equal to Jk+1,π(xk+1), with xk+1 = fk(xk, µk(xk), wk),
so therefore this implies:

Jk,π(xk) = Ewk
[gk(xk, µk(xk), wk) + Jk+1,π(xk+1)] . (6.32)

If you compare this to the update rule for the DP-algorithm in eq. (6.7a), it means
there is a simple, DP-like algorithm for evaluating the cost of a policy J0,π(x0). Later
reinforcement learning, this derivation is the equivalent to one of the Bellman-equations,
and the resulting method is called policy evaluation.

6.3.2 Adversarial setting

Suppose at step k the available random disturbances are wk ∈ Wk(xk, uk) and recall
the usual DP algorithm take the form (see eq. (5.5)):

Jπ (x0) = Ewk∈Wk(xk,µk(xk))
k=0,...,N−1

[
gN (xN) +

N−1∑
k=0

gk (xk, µk (xk) , wk)

]
(6.33)

and the goal is to find the optimal policy π∗(x0) = argminπ Jπ(x0). In the so-called
minimax formulation the expectation is simply replaced with a max in the objective:minimax

Ĵπ (x0) = max
wk∈Wk(xk,µk(xk))

k=0,...,N−1

[
gN (xN) +

N−1∑
k=0

gk (xk, µk (xk) , wk)

]
. (6.34)

and the optimal policy is still defined as π∗(x0) = argminπ Ĵπ(x0). The intuitive mean-
ing of this change is that we assume the noise disturbances wk represents the worst case
from our perspective. There are two main applications of this formulation:

Control In this case using the minimax formulation provides a guarantee that the
system will not undergo a disaster because of a particular bad set of control
vectors; this setup is relevant if people may die as a result of failure as in e.g.
aerospace applications and is known as adversarial control.adversarial con-

trol
AI In games, it is referred to as adversarial search. Recall in the pacman example

section 6.2.5, for a single ghost, the noise disturbance was the ghosts move, and
so the adversarial setting implies the opponent play optimally.

Intuitively, the minimax formulation is simply a particular choice of noise distributioni
P (wk|xk, uk), namely the worst distribution from our perspective. It is therefore not
surprising (a reader interested in a formal argument can consult the excellent resource
[Ber05]) that the optimal control rule is exactly as the DP algorithm except the average
is now a maximum (contrast this with eq. (6.7)):

Jk (xk) = min
uk∈Ak(xk)

max
wk

{gk (xk, uk, wk) + Jk+1 (fk (xk, uk, wk))}

µk (xk) = u∗k

(6.35)

6.3.3 Finite-horizon formulation

Our starting point is the DP objective eq. (6.33). The DP algorithm determines the
optimal expected cost function J∗ and policy π∗ by initializing JN(xN) = gN(xN) and
iterating the DP update eq. (6.7). Three observations:

• At any step k = d − 1 of the DP algorithm, it is in fact solving a truncated DP
problem starting at step k = 0 and of length N ′ = d with the new terminal cost:

gN ′(xN ′) = Jd(xd) (6.36)

• The truncated policy is optimal so therefore

gN ′(xN ′) = Jd(xd) = J∗
d (xd) (6.37)

• Since the DP algorithm determines the optimal policy for any problem, it must
also determine the optimal policy in the problem truncated at k.

Putting these observations together we have shown the optimal value function can be
found as

J∗(x0) = argmin
µ0,...,µd−1

E

[
J∗
d (xk+1) +

d−1∑
k=0

gk (xk, µk (xk) , wk)

]
(6.38)

And the d-long policy µ0, . . . , µd−1 will still be optimal, i.e. agree with the first d policy
functions of the optimal policy π∗. In itself this result is not of much use, since in order
to find J∗

d we still have to plan in the full N -step problem. However, it becomes useful
the moment we can make approximations: Assume we have an approximation Ĵd ≈ J∗

d ,
then the N -horizon DP planning problem is reduced to a short-horizon d-long planning
problem. Furthermore, even if the approximation is very poor, we can increase d and
the importance of J∗

d will typically diminish. This is perhaps the single most useful
approximations and is used in an abundance of places:

AI Any sort of complex planning (see following chapters)

Control It is known as model-predictive control (or receding horizon control)model-predictive
control
receding horizon
control

and is the principal way of solving complex control tasks and dealing with model
uncertainty

Reinforcement learning The re-write is the basis of n-step methodsn-step methods

Chapter 7

Shortest path formulation

This chapters deal with the basic decision problem from chapter 6, but with an emphasis
on the deterministic case. In other words, the setting considered here is a special case
where the next state xk+1 and obtained cost is fully determined by xk and uk.

As we saw in section 5.1.4, in this case we can convert our closed-loop controller
into an open-loop one (recall an open-loop controller is one where the actions are de-
termined beforehand). As a consequence, it suffices to search over open-loop policies
π = (u0, . . . , uN−1). As we will see, this greatly simplifies the implementation of DP and
hence makes it applicable to larger problems, and gives rise to the popular search meth-
ods as we will discuss later. The discussion in this chapter will also be useful when we
later discuss multi-agent systems and approximate adversarial search methods familiar
from games such as chess or Pacman.

7.1 Deterministic decision problem

The deterministic decision problem corresponds to the case where the noise dis-deterministic deci-
sion problem turbances can only take a single value and can hence be omitted from the problem

specification:

xk+1 = fk(xk, uk) (7.1)

Jπ(x0) = gN(xN) +
N−1∑
k=0

gk(xk, uk) (7.2)

As discussed in section 5.1.4, in the deterministic case any closed-loop controller can be
converted to an equivalent open-loop one we can therefore simply consider the policy
as being comprised of an N -element list of controls

π = (u0, u1, . . . , uN−1), uk ∈ Ak(xk) (7.3)

107

Figure 7.1: A simple graph of n = 5 vertices

and the objective remains to minimize the cost over all admissible policies:

J∗(x0) = min
π∈Π

Jπ(x0) (7.4)

= min
u0,u1,...,uN−1

[
gN(xN) +

N−1∑
k=0

gk(xk, uk)

]
. (7.5)

Since this is a special case of the basic problem we can simply apply the DP algorithm
to find an optimal solution. However, the problem structure in eq. (7.5) is much simpler
in two important respects:

• There is no longer an expectation

• The minimization is over a vector rather than a function.

The implication of these simplifications is that the solution algorithm can be written
much more efficiently. We already saw a few instances of the deterministic decision
problem, for instance the graph-traversal problem in section 4.2.3 or the zero-ghost
Pacman example in section 6.2.4. Indeed most classical computer science problems fall
within this description, for instance the traveling salesman problem

7.1.1 Traveling Salesman

Consider the graph-traversal problem in fig. 7.1. The traveling salesman problem con-
sists of finding the path which visit all vertices just once, ends up in the same node
as it started in, and has the minimum cost; the name derives from an example where
the verticess are cities, the edge-cost a travel distance, and the traveling salesman must
visit all cities once and end up where she started.

Which edges to traverse can be seen as decisions, however to be able to represent
that a path should visit all vertices we must know which have been visited already. We
can therefore view it as a decision problem where the states are lists of vertices which
have been visited, for instance:

x3 = (1, 2, 4).

Formally, suppose the graph has n vertices S = {1, 2, . . . , n} and an edge-cost Aij. For
the traveling salesman problem the initial state is s = (). We define the actions as the
nodes we can travel to

Ak(xk = i) = {j ∈ S | Aij <∞} (7.6)

The dynamics is now to simply add the selected node to the state

fk(xk = (i0, i1, . . . , ik), uk = j) = (i0, i1, . . . , ik, j) (7.7)

The cost functions are defined as gk(xk, uk) = 0 and the terminal cost at N = n+ 1 is
finite if and only if the path is a solution to the traveling salesman problem, i.e.

gN(xN = (i0, . . . , in+1)) =

{∑n
k=0Aik,ik+1

if i0 = in+1 and all states are visited

∞ otherwise
.

(7.8)

7.1.2 An issue with the DP algorithm

If we try to solve the traveling salesman problem using the DP algorithm the first step
we arrive at is the initialization:

JN(xN) = gN(xN), xN ∈ SN , (7.9)

however, already here we encounter the same problem as in the pacman example from
section 6.2.4: In the traveling salesman example the individual states xN must be N -
long lists of all vertices’s we have traversed1; in other words, to solve the problem, we
must first generate all such lists (i.e., all lists of n vertices’s), and compute their cost.

Since there are n! such lists this is not only unfeasible, once we have the list (and
have computed their terminal costs) we can just select the state with the lowest cost
and return it as an optimal solution. In other words, in this problem, simply initializing
the DP algorithm corresponds to solving the problem using complete enumeration.

This feature, that the state-spaces Sk are difficult to compute, is a general problem
in discrete application, and arises because the DP algorithm proceeds backwards from
k = N to k = 0. The solution is to find a way to run the DP algorithm in reverse,
which is exactly what the forward DP algorithm does.forward DP algo-

rithm

7.2 The deterministic decision problem and graphs

The natural way of introducing the forward-DP algorithm is to use a connection between
the deterministic control problem and graph traversal, and so we will first begin by re-
formulating the decision problem.

In a deterministic problem, any state xk and control uk will result in a transition
from xk to the state xk+1 = fk(xk, uk) with associated cost gk(xk, uk).

Figure 7.2: Transformation of the basic problem into a graph-traversal form. s = x0 is
the initial state (which is considered fixed) and a new terminal node t is added. The
terminal node is connected to all states in SN with a cost of gN(xN). The red inserts
corresponds to the quantities in the graph view, see fig. 7.3.

We can think of this as traversing a graph, where each state xk is a vertex, andgraph

two nodes xk and xk+1 are connected by an edge if there is a control uk such that
xk+1 = fk(xk, uk). In this case, the edge has an associated cost gk(xk, uk), see fig. 7.2.

To complete this identification, we introduce a terminal state t, distinct from allterminal state

other nodes, and consider each state xN ∈ SN to be connected to t with an associated
cost gN(xN).

A control sequence therefore corresponds to finding a path from the initial state x0
(and we denote this by s = x0) to the terminal state t, and the cost of the control
sequence is the sum of cost of the edges traversed.

One slightly unusual property of this formulation is that there may be multiple
edges connecting two nodes xk and xk+1, specifically this will be the case if there are
two distinct actions u′k ̸= u′′k such that

xk+1 = fk(xk, u
′
k) = fk(xk, u

′′
k).

What this means is that the graph we have to find the shortest path in will be a
multigraph, meaning an edge has the form e = (x, u, x′) where x, x′ are the two end-multigraph

nodes and u is used to identify this particular edge, see fig. 7.3. These definitions can
be summarized as follows:

1If the state was just a single vertex, we would have no way to know if xN corresponded to a
traveling salesman path or something else!

Figure 7.3: Illustration of how a basic problem is transformed into a graph. In the
left figure, the state xk has three available actions, two of which brings it to the node
xk+1. This is equivalent to a graph, where the vertices are labeled i = xk, j = xk+1,
there is an edge between i, j if j = fk(i, u) for some u, and the weight in that case is
aki,uk,j = gk(i, uk). Note this graph can have multiple edges connecting the same vertices.

Algorithm 2 Backwards DP in the deterministic case

1: JN+1(t)← 0
2: for k = N, . . . , 0 do ▷ Starting at N instead of N − 1
3: for all i ∈ Sk do
4:

Jk(i) = min
j∈Sk+1,

u∈Ak
ij

[
aki,u,j + Jk+1(j)

]
5: end for
6: end for

aki,u,j =

Cost of transitioning from i ∈ Sk to j ∈ Sk+1 under action u.
I.e. gk(i, u) assuming j = fk(i, u) and u ∈ Ak(i)
(otherwise there is no edge)

 , (7.10)

aNi,·,t =

{
Terminal cost gN(i) of state i ∈ SN
(the dot · means the action is irrelevant)

}
, (7.11)

Akij =
{
Actions available in state i which will allow us to transition
to state j

}
. (7.12)

Finally, we introduce the (extra) set of states SN+1 = {t} to be comprised of our new
terminal node. We can then simply translate the DP algorithm into this new notation
and the result can be found in algorithm 2. Upon termination, the cost of a shortest
path from s to t will be computed as J0(s).

Algorithm 3 Forward DP in tilde-notation

Ensure: J0(s̃) is the cost of the optimal path s→ t
1: J̃N+1(t̃)← 0 ▷ Equivalent to J̃N+1(s) ← 0 by

eq. (7.13)
2: for k = N, . . . , 0 do
3: for all i ∈ S̃k do ▷ Equivalent to i ∈ SN+1−k by

eq. (7.14)

4: J̃k(i)← minj∈S̃k+1,

u∈Ãk
ij

[
ãki,u,j + J̃k+1(j)

]
▷ Equivalent to
minj∈SN−k,

u∈AN−k
ji

[
aN−k
j,u,i + Jk+1(j)

]
by eq. (7.15) and eq. (7.16)

5: end for
6: end for

7.2.1 The forward view of DP

The problem with the DP algorithm is that it proceeds backwards in time, i.e. that
it starts at the states at SN and ends at S0. We can fix this by the following simple
observation based on fig. 7.2: An optimal path from s to t is equivalent to an optimal
path from t to s in a problem where each edge has been reversed but the cost of an
edge is unchanged. In other words, simply flip the direction of the edges in the figure,
start from t, and find the shortest path to s.

The reversed problem will be denoted by a tilde symbol. Specifically, for k =
0, 1, . . . , N it is defined as

t̃ = s, s̃ = t (7.13)

S̃k = SN+1−k (7.14)

ãki,u,j = aN−k
j,u,i , j ∈ SN−k, i ∈ SN−k+1, (7.15)

Ãkij = AN−k
ji (7.16)

and the basic DP algorithm, applied to this problem, can now be seen in algorithm 3.
We can now back-substitute the definition of the tilde symbols in algorithm 3 (shown
by red), and since it is more convenient to let k = 0 and end at N we can re-index the
J symbols. The resulting, equivalent, algorithm is shown in algorithm 4

7.2.2 Search problems and forward-DP

The re-indexed DP algorithm proceeds forward in time, however as stated it still requires
us to access the sets of states Sk without providing a clear mechanism for how to
compute them, and it is not obvious how to implement the minimization problem. A
different, and from an implementation point of view much more useful, view of the
forward DP algorithm can be obtained by considering it as a search problem. This
leads to the following more general definition:

Algorithm 4 Forward DP

Ensure: J̃N+1(t) is the cost of the optimal path s→ t
1: J̃0(s)← 0
2: for k = 0, . . . , N do
3: for all i ∈ Sk+1 do
4:

J̃k+1(i)← min
j∈Sk,
u∈Ak

ji

[
akj,u,i + J̃k(j)

]
5: end for
6: end for

Definition 7.2.1 (Search problem). A search problem is defined as

• A set of states S (the search nodes)

• An initial state s ∈ S

• A goal test which returns true if we are in the terminal state

• A transition function T which returns the set of available edges we can traverse
in state T and their cost

Specifically, the transition function returns a set of available transitions in the form of
triplets:

T (x) = {· · · , (x′i, ui, ci), · · · , } (7.17)

with the interpretation that if (x′, u, c) ∈ T (x) then x is connected to x′ by an edge
(identified by u) and with cost c.

The search-problem does away with the time index k and the maximum number
of steps N and is therefore more general than the DP decision problem we have seen.
To transform a DP problem into a search problem, we will use the we need to in-
clude the state index k into the state, since otherwise this information will be lost (see
section 5.2.1). Asides this the identification is trivial:

Theorem 7.2.2 (The dp problem is a search problem). We can consider an N-step
DP problem as a search problem as follows

• Define a new terminal state t. A valid choice is simply t = "terminal_state" . Also
define a dummy action ut = 0.

• Absorb the time index into the states. If xk = x is the state of the DP problem at
stage k, this will correspond to a new state x̃k = (x, k) in the search problem (see
section 5.2.2)

Algorithm 5 Forward DP for a search problem☞
Ensure: J̃N+1(t) is the cost of the optimal path s→ t
1: J̃0(s)← 0
2: S0 ← {s}
3: for k = 0, . . . , N do
4: Sk+1 ← ∅
5: for all i ∈ Sk do
6: for all (j, u, c) ∈ T (i) do
7: if j /∈ Sk+1 or c+ Jk(i) < Jk+1(j) then ▷ Check if this transition

from i → j is better than
current best estimate

8: Sk+1 ← Sk+1 ∪{j} ▷ Mark state j as visited
9: Jk+1(j)← c+ Jk(i) ▷ Update best estimate of

shortest path from s to j
10: πk(i)← u ▷ Update best policy
11: end if
12: end for
13: end for
14: end for

• Assume x̃ is the current state in the search problem. It can either be x̃ = t or
x̃ = (x, k) where x ∈ Sk. The transition function is defined as:

T (x̃) =

{(t, ut, 0)} if x̃ = t{(
fk(x, uk), uk, gk(x, uk)

)
| uk ∈ Ak(x)

}
if k ≤ N − 1{(

t, ut, gN(xN)
)}

if k = N

(7.18)

The first line in the conditional ensures the terminal state is absorbing. The mid-
dle line provides all possible transitions as obtained by trying all possible actions,
and the last ensures we connect the states at k = N to the goal state (the last
arrows in fig. 7.2)

• The goal test is simply if the current state is equal to t

Using the transition function, we can obtain a practical implementation of algo-
rithm 4 as follows: Firstly, at step k we know Sk. We can then try all transitions
T (xk). If one of these transitions takes us from xk to xk+1, at a lower cost than the
current best estimate of this transition, we update Jk+1(xk). The resulting method is
given in algorithm 5

The re-writing of the DP algorithm to the forward view has important algorithmic
implications. Firstly, it makes it much simpler to implement the environments as we
now only has to implement the transition function, and the algorithm will compute the
intermediate steps along the way.

Figure 7.4: Example pacman level where the goal for pacman is to eat the food dot

Secondly, the algorithm is now real-time. We can delay computing the transitions at
step k until they are required. This makes the algorithm useful for filtering applications.

There are two main drawbacks of the algorithm. The first is we still need to specify
N ; for problems that terminate earlier than N this can be remedied using absorbing
states (section 5.2.1). The second issue is the algorithm requires us to visit all states;
this is necessary to obtain the optimal cost; after all, if we fail to visit a certain edge,
we cannot know if that edge may have had a large negative cost associated with it.
However as we will see in the next chapter, if we make minimal assumptions about the
cost function it is possible to derive variants of the forward algorithm which are much
more efficient.

7.2.3 Example: Shortest-path graph traversal with no restric-
tions

Consider again the graph traversal problem. In this case the nodes of the graph will be
denoted by S = {1, 2, . . . , N} and Aij is the cost of moving from node i to j. We let
Aij =∞ when i, j are not connected by an edge.

The goal of the graph-traversal problem is to find a shortest path from a given
node s ∈ S to t ∈ S, i.e. a sequence of edges (i0, i1), (i1, i2), . . . , (ik, t). To make the
problem well-defined, we allow zero-cost self-transitions Aii = 0 and assume there are
no cycles (i.e. a path which starts and ends at the same node) with negative cost. This
assumptions is required since otherwise we could generate a path of arbitrarily low cost
by repeating the negative-cost cycle again and again.

Assuming there is a path from s to t, the problem is now solvable in N moves. We

Figure 7.5: Forward DP applied to the food search problem using N = 250.

can formulate it as a search problem by defining the transition function as

T (i) = {(j, u0, Aij) | j ∈ S where Aij <∞} (7.19)

The goal test is obviously if the current vertex i is equal to t. Simply applying the
DP algorithm will now find the optimal path with none of the limitations of familiar
graph-traversal algorithms such as non-negative cost.

7.2.4 Example: Pacman food pellet search

As another example, consider the Pacman level in fig. 7.4. This is a scaled-up version
of the zero-ghost example we previously considered in section 6.2.4. Recall Pacman was
rather complicated to solve using DP because we had to define all states Sk iteratively
for all k before we could run the algorithm, see eq. (6.26). When we consider Pacman as
a search problem this issue goes away: We can easily define the DP transition function
fk as in section 6.2.4, and therefore the transition function T is easy to define. We
can now solve any deterministic task using DP search, simply by defining different goal
tests. In our example, the goal test is if all food pellets are eaten, but we could define
the goal as eating a certain number of pellets or visiting certain squares.

The result can be seen in fig. 7.5. We have inserted the optimal path found by
forward-DP search (planning using a horizon of N = 250) as the green line, and the
squares explored, i.e. a square x is red if T (x) has been invoked by algorithm 5. The
shade reflects the order in which Pacman visited them. This visualization is not very
helpful for forward-DP search, as it mostly indicate all squares are visited, but when we
consider more powerful search methods cutting down on the excess red will be a useful
benchmark.

7.2.5 Where to go from here?

The DP algorithm provides an optimal solution in the case of noise, and the forward
DP algorithm is an implementation of the DP algorithm with minimal requirements
on the environment (we only have to specify a transition function) which provides the
optimal solution for deterministic environments.

Both methods suffer from two defects: Firstly, that the transition model is often not
known but has to be learned – we will consider this in more details in later chapters.
Secondly, and from our purpose more importantly, that even if the transition model
is known, the two methods are very demanding in terms of memory and computation
time. As this problem is more fundamental, we will first study how this problem
can overcome by either assuming certain structure to the cost functions (search), or
by allowing solutions which are only approximately optimal (multi-agent search and
reinforcement learning). These strategies will provide us with methods which are of
much greater practical significance than the raw DP algorithm, and the ideas we can
study in this setting are re-used under various incarnation in reinforcement learning
and control theory.

Chapter 8

Search

Search is concerned with finding the path from a start state to a goal state. Potentially,
there may be many possible goal states, and the problem is assumed to be deterministic.
Efficient search methods are of immense practical utility, and in some cases in ways that
are not obvious:

• Path-finding problems (both when using a map or in the real world),

• Robot navigation

• Certain forms of trajectory planning

• Automatic theorem proving (apply axioms in sequence to prove a theorem)

• automatic assembly sequencing

• chip design

• Stocking machines on shop floors

• Computer game AI

The forward DP algorithm is an example of a search algorithm, and it has the benefit
of always finding the optimal path for any cost function provided N is large enough.
The drawback is that it is computationally inefficient.

In this chapter we will investigate ideas for making the forward DP algorithm more
efficient, and our tools will be to either make additional assumptions about the envi-
ronment, or by allowing sub-optimal paths. Asides introducing us to some of the most
important sequential decision methods, the ideas we will see in this section are re-used
in both multi-agent systems, control and reinforcement learning.

8.1 Search methods

If we take a step back, the forward DP algorithm, algorithm 5, works as follows:

118

Figure 8.1: Example of how a generic search method solves a problem. Nodes are
iteratively expanded (i.e., T (i) is called). Expanded nodes are painted red, and once a
node is expanded, the method learns about new potential nodes which can be expanded,
here marked by green; the set of such nodes is called the frontier. The job of a search
method is to determine which of the nodes in the frontier should be expanded next to
find an optimal-cost path to a goal state (indicated by diamonds).

• At step k the algorithm is concerned about the set of states in Sk. These are
visited one at a time, and when a state xk ∈ Sk is visited, the transition function
T (xk) is called to obtain the states in Sk+1 and update the cost-to-go function
J(xk). We call the set of states which have been expanded, i.e. where T (xk) has
been called, the expanded set and it is visualized as the red vertices in fig. 8.2.expanded set

• When a state xk is expanded using T (xk), we learn about new states in Sk+1).
This set of nodes waiting to be expanded is called the frontier and are visualizedfrontier

using green in fig. 8.2

• In summary, just at iteration k begins, the frontier consist of Sk, and in iteration
k the frontier is moved one step to the nodes Sk+1

When we think of a more efficient search algorithm, the foremost choice is the order
in which the elements in the frontier is expanded, and when the algorithm terminates.
Rather than searching over all the states in Sk, a more efficient search method might
begin to expand more promising states first, and which therefore perhaps reach a ter-
minal state earlier. For such a method to be possible we have to make assumptions
about the cost function: The central assumption of this chapter is that the cost
function is non-negative. If this was not the case, it might be that at some high

Figure 8.2: Left: Illustration of the forward-DP algorithm algorithm 5, in which the
states Sk+1 are iteratively defined by exanding states in Sk. Right: This is equivalent
to simply defining a queue of states, the frontier queue, where we add states to one end
and take states from the other.

Algorithm 6 FIFO que☞
1: Maintain a list of items l = [x1, x2, . . . , xk] in memory
2: function Pop()
3: l← [x2, . . . , xk] ▷ Remove first element
4: return x1
5: end function
6: function Insert(x∗)
7: l← [x1, . . . , xk, x

∗] ▷ Append to list
8: end function

value of k, there was a transition with an enormously low cost. The next sections will
show different ways to make use of that assumption.

8.1.1 Frontier queues

As a first step, we note that each set of states Sk are used in only a very limited way
(see fig. 8.2). The states in these sets are used only once when we loop over xk ∈ Sk,
and they are defined only when we insert states into Sk+1. We can visualize this by
imagining all state spaces are concatenated into a large list where we take items from
Sk and insert at the very right-most end:

(S0,S1,S2, . . . ,Sk−1, · · · Sk · · ·︸ ︷︷ ︸
Contains current states xk

, . . .) (8.1)

We can simplify this by discarding all states to the left of xk which are never used.
Formally, this is equivalent to using a queue-structure, which is just a list of states
where all states are added to the right-most end, and states are taken (and removed)
from the left-most end.

(x︸︷︷︸
Current element xk

, x1, x2, . . . , xm, n′︸︷︷︸
New elements added here

). (8.2)

Figure 8.3: A search node is a simple data structure associated with each node in the
expanded set (see fig. 8.2). It tracks the current state xk, the parent node, the action
required to be taken in the parent to end in the current node, and the current best-cost
estimate of the path J(xk).

In general, a datastructure where we can add and remove elements is called a queue,queue

and the particular instance in eq. (8.2), in which the older element is removed, is known
as a first-in first-out or FIFO queue. Pseudocode can be found in algorithm 6FIFO queue

8.1.2 Search nodes

In the forward-DP algorithm we tracked the path-cost and policy separately. For search
algorithms it is common to track these using a single data structure consisting of search
nodes. A search node n is a data structure associated with a particular state x withsearch node

the following fields (see fig. 8.3):

• n.State: The state x to which this node corresponds

• n.Parent: The parent node

• n.Action: Action to take in n.Parent to get to this node

• n.Path-Cost: The path from s to n.State as indicated by the parent pointers

The parent fields tells us which node immediately proceeded this node on the optimal
path from s to n, and the action field which action to take in the parent node to arrive
at n. Together, these allows us to recursively backtrack from a given node towards
the starting state, and thereby get the optimal path. Meanwhile, the Path-Cost field
maintains the cost of the (optimal) path from s to n, corresponding to J0(s).

As a small warmup, let’s try to restructure the algorithm 5 using search nodes and a
FIFO queue. The result can be found in algorithm 7. Note that to turn this formulation

Algorithm 7 Sketch of re-formulation of algorithm 5 using queues and nodes

1: frontier← an empty queue of search nodes to explore
2: n0 ← Node(state=s, cost=0, action=∅, parent=∅)
3: frontier← Insert(frontier, n0)
4: while True do
5: n = Node(state=x, cost=C, action=up, parent=np)← Pop(frontier)
6: for all (x′, u, c) ∈ T (x) do
7: if there is no node n′ ∈ frontier s.t. n′.state = x′ then
8: n′ ← Node(state=x′, cost=c+ C, action=u, parent=n)
9: frontier← Insert(frontier, n′)
10: end if
11: if there is a node n′ ∈ frontier s.t. n′.state = x′ and c+ C < n′.cost then
12: n′.Path-Cost← c+ C ▷ Found a better path to n′, update
13: n′.action← u
14: n′.parent← n
15: end if
16: (Keep track of nodes n corresponding to terminal states)
17: end for
18: end while

into a practical method, we would need to keep track of the nodes corresponding to
terminal states, and at the end of the method return the terminal node with the smallest
cost.

8.1.3 Breadth-First search

Let’s do a bit of exploration of the new notation and how we can find a more efficient
search method. To this end, consider again the Pacman food-pellet problem from
section 7.2.4. The forward-DP solution is re-produced in fig. 8.4, and recall the red
tiles (x, y) indicate which states have been expanded (similar to fig. 8.2), and the shade
corresponds to the order in which the expand-function T is called. In this problem,
each step has a fixed cost of c = 1, and we will for now assume the cost-per-step is a
positive constant. We can speed up the method in two ways:

• Since each step has the same, constant cost c, the first time we get to a goal state
there is no need to keep search and we can terminate the method.

• There is no need to expand the same state twice: Once we have found a path
to a state in k steps, i.e. with cost ck, any other path to that state will either
have cost ck, or a greater cost than ck (in the pacman-example, this can occur if
Pacman backtracks).

To implement the later item, we will keep track of a list of visited states, and only add
states to the frontier if they have not been visited. With these modifications we obtain
algorithm 8:

Algorithm 8 Generic graph-search algorithm. Algorithm 7 but tracking visited states☞
1: visited← empty list of visited states
2: frontier← an empty queue of search nodes to explore
3: n0 ← Node(state=s, cost=0, action=∅, parent=∅)
4: frontier← Insert(frontier, n0)
5: while True do
6: n = Node(state=x, cost=C, action=up, parent=np)← Pop(frontier)
7: if x not in visited then
8: Append x to visited
9: if x is the terminal state then
10: return n
11: end if
12: for all (x′, u, c) ∈ T (x) do
13: if x′ not in visited then ▷ Don’t re-visit nodes
14: n′ ← Node(state=x′, cost=c+ C, action=u, parent=n)
15: frontier← Insert(frontier, n′)
16: end if
17: end for
18: end if
19: end while

When the method is used with a FIFO queue, the resulting method is called
breadth-first search, and it will be optimal in the case where the cost of transi-breadth-first

search tion is constant. The same method applied to the Pacman search problem can be
found in fig. 8.4 (right).

8.1.4 Search performance

We have only loosely talked about search performance, however to compare different
search methods we need a slight bit of notation. For a search problem, one usually
speaks about

• The depth d of a problem we mean the shortest number of steps from the rootdepth

to a terminal node. For the Pacman food pellet problem this is 26

• The branching factor b refers to the to the maximum number of successors anybranching factor

node can have. In the Pacman game it is 5 (number of actions)

• Finally, m will refer to the maximum length of any path; for the Pacman game
m is infinite

And for a given search method we say

• It is complete if it is guaranteed to find a solution if there is onecomplete

Figure 8.4: Left: Forward DP applied to the food search problem from section 7.2.4
using N = 250. The red nodes are the expanded set. Since the cost per step is uniform,
pacman could have terminated the first time he arrived at the food pellet. Right:
Search-node forward DP from algorithm 5 applied to the food search problem from
section 7.2.4 using N = 250. The method is still optimal, and terminates as soon as
the goal state is found, thereby saving computation time.

Search method Cost of path Search nodes
expanded

Unique search
nodes expanded

DP (N=250) 26.0 28556.0 241.0
BFS 26.0 214.0 215.0
DFS 142.0 188.0 189.0
A* (Euclid) 26.0 121.0 122.0
A* (Manhattan) 26.0 92.0 93.0

Table 8.1: Summary of search cost in the Pacman food pellet problem

• It is optimal if the solution is optimal (i.e., has lowest possible cost)optimal

• Efficiency measured as time-complexity, i.e. the number of nodes that are ex-
panded

Breadth-first search is both complete and optimal, assuming all transitions have the
same cost. However breadth-first search is not very efficient. Suppose the problem has
depth d, then an upper-bound on the number of expansions can be found by assuming
the first node has b successors, each of these have b successors (hence, b2 nodes), and
so on up to d. This gives a total cost of

b+ b2 + b3 + · · ·+ bd = O(bd) (8.3)

This means the cost is exponential in d, and usually makes breadth-first search infeasible
if d is of the order of 10. Note this is a worst-case analysis, and for the Pacman game
it is not quite as bad. What saves us is that the maximum number of expansions are
limited by the number of states, and so we only need to perform 214 expansions (the
result of the search is summarized in table 8.1. Note this number is very substantially
smaller than the DP search method; what saves us is the early termination, and that
we maintain a list of visited nodes.

Figure 8.5: Optimality of uniform-cost search. When a node (diamond, green back-
ground) is expanded by uniform-cost search, the path (blue) must be optimal. Other-
wise, there would be another path to the node (red), which would necessarily have to
pass through the frontier. But if so, the place it pass through the frontier would have
a higher cost than the current node (because otherwise we would have selected it for
expansion) and therefore it cannot have a lower total cost.

8.2 Uniform cost search

Breadth-first search is easily generalized to the more interesting case where all tran-
sitions have a non-negative cost. Suppose that the queue operates by not taking the
first-inserted item, but rather the item with the currently lowest estimated cost. In
other words, we always expand the node n on the frontier with the smallest value of
n.Path-Cost. This can be implemented by only modifying the queue in algorithm 8
to a priority queue as indicated in algorithm 9priority queue

Uniform cost search is still optimal, and the proof is guaranteed by the following
argument:

• If a node n is selected for expansion, the optimal path to that node must have
been found: If this was not the case, there would have to be a frontier node on the
optimal path from the start to n. But in that case this node would need to have
a lower cost, and hence it would have to be selected first by the priority queue

• Because the step costs are nonnegative, paths only increase in cost as more nodes
are added. Hence if a goal node is selected for expansion it must be optimal

The argument is also illustrated in fig. 8.5. Suppose the blue path to the node with the
diamond is not optimal, and suppose the red path is in fact the optimal one. In that
case it must pass through the frontier. But since we always select the lowest element
of the frontier for expansion, and since the path increase in cost with more edges, it
cannot in fact be optimal.

The advantage of uniform-cost search is that it will find the optimal path in the
general case, however the time complexity will depend on the cost structure and how

Algorithm 9 Priority queue☞
1: Maintain a list l = [(x1, c1), (x2, c2), . . . , (xk, ck)] of items and their cost memory
2: function Pop(d)
3: Find element xi with lowest cost ci
4: l← [(x1, c1), . . . , (xi−1, ci−1), (xi+1, ci+1), . . . , (xk, ck)] ▷ Remove element with

lowest cost
5: return xi
6: end function
7: function Insert(x∗, c∗)
8: if There is an (xi, ci) in the list where xk = x∗ and c∗ < ci then
9: Overwrite xk with x∗, and set ci = c∗i
10: else
11: Otherwise just append (x∗, c∗) to the list.
12: end if
13: end function

Algorithm 10 Uniform cost frontier☞
1: Let Q be a priority queue
2: function Pop
3: return Pop(Q) ▷ Pop element with lowest cost-to-go
4: end function
5: function Insert(n)
6: Insert(Q, n, n.Path-Cost) ▷ Insert node with priority equal to node cost
7: end function

well a greedy strategy will lead to the goal. When all edges have the same cost, the
method is equivalent to breadth-first search.

8.3 Depth-first search

Depth first search is an approximate search method and makes no claim for optimality.
What depth-first search does is it searches blindly, and as quickly as possible, to the
deepest possible level; the difference is illustrated in figs. 8.6 and 8.7. If it finds a
terminal state it immediately terminates, and otherwise it backtracks, with preference
to backtracking as little as possible, and once more searches to the deepest level. This
strategy can be implemented by simply letting the frontier be a so-called last-in first-out
or LIFO queue, which is characterized by expanding the most recently added node,LIFO queue

see algorithm 11.
DFS is complete assuming the problem has a finite number of states, but will obvi-

ously not find the shortest path (see fig. 8.8). The worst-case performance is also quite
poor, and it may search all possible nodes before finding the optimal solution, even

Figure 8.6: Illustration of breadth-first search. The frontier is expanded at each step
starting from the initial node A

Figure 8.7: Illustration of depth-first search, starting from A and attempting to find
F . Depth-first search searches towards the deepest part of the problem first, and then
tries to backtrack.

Figure 8.8: Depth-first search applied to the Pacman food pellet problem. A path is
found, but it is obviously sub-optimal.

Algorithm 11 LIFO queue☞
1: Maintain a list of items l = [x1, x2, . . . , xk] in memory
2: function Pop
3: l← [x1, x2, . . . , xk−1] ▷ Remove last element
4: return xk
5: end function
6: function Insert(x∗)
7: l← [x1, . . . , xk, x

∗] ▷ Append to list
8: end function

though the optimal solution is only one step from the initial state. Since it can search
to maximum depth before finding the solution, the performance is upper-bounded by
the branching factor raised to the power of the maximum depth:

b+ b1 + · · ·+ · · · bm = O(bm) (8.4)

There are several ways to improve on depth-first search, for instance by first letting
it search to a fixed depth h which is progressively improved; an interested reader can
consult [RN09] for more information.

These shortcomings – that depth-first search is not complete and may visit all nodes
before finding the optimal path – might make it seem irrelevant, however depth-first
search is commonly used in practice, since DFS allows us to search deep at a limited
memory. This is in particular relevant for situations where any solution can be expected
to be optimal or good-enough (a theorem proving system is an example of this).

Algorithm 12 A∗ frontier queue☞
1: Let Q be a priority queue
2: Let h be the heuristic function
3: function Pop
4: return Pop(Q) ▷ Simply call the pop method of the priority que
5: end function
6: function Insert(n)
7: fn ← n.Path-Cost+ h(n.State) ▷ Compute f(n) using the heuristic
8: Insert(Q, n, fn) ▷ Insert node with given priority
9: end function

8.4 Structured search and A∗ /

Informed search refers to the situation where we have external, problem-specificInformed search

knowledge to help us select which nodes to expand. Informed search is generally much
more efficient than uninformed search, and the most widely used variant, A∗, has all
the nice properties (completeness and optimality), works for any non-negative cost
function, and can scale to solve highly complex search tasks such as navigation in e.g.
videogames.

The idea is quite obvious. Consider the BFS method applied to Pacman, as shown in
fig. 8.4. The BFS solution searches away from the starting location with no preference
to any direction. This is obviously a bad idea: Pacman should give preference to states
that are closer to the food pellet, and in particular there is no reason to walk towards
the lower-right corner. This is what we want to inform the search method about.

8.4.1 Heuristic functions

Our approach is very similar to uniform-cost search, but with a small twist. We assume
there is an evaluation function f which evaluate the search nodes n in the frontier,evaluation func-

tion such that f(n) is an cost estimate of how good it would be to expand this node, and
the node in the frontier with the lowest cost estimate is expanded first. In uniform-cost
search, f was simply the current path-cost estimate, but by changing f we can tell
Pacman to never expand more distant nodes.

The optimal choice of f would be the cost of the shortest path from s to t which
passed through n. In this case, we would always expand nodes on the optimal path, and
reach our destination without ever expanding a suboptimal path. We can immediately
get some of the way: We already know that the optimal path from s to n has a cost
of n.Path-Cost, so all we need is an approximation of the cost from n to t; this
approximation is written as h(n) where h is called a heuristic function. This givesheuristic function

the equation:

f(n) = n.Path-Cost+ h(n). (8.5)

A search method which select nodes according to such a criteria is known as A∗ search.A∗ search

Figure 8.9: A∗ search using a Euclidean distance heuristic

Implementing this idea is very easy: We re-use our master search method from algo-
rithm 8, and modify the frontier queue we used in uniform-cost search (section 8.2) to
use f . The result can be seen in algorithm 12

8.4.2 Heuristic functions

As mentioned, the heuristic function h(n) should estimate the distance from n to the
goal, and intuitively the better this estimate is the faster A∗ will find the correct solu-
tion. However, for A∗ to be complete and optimal we need a few more conditions on h.

The most obvious criteria is that the heuristic h(n) never overestimates the cost the
cost from n to t, in other words the heuristic should be optimistic. If this is true, the
heuristic is said to be an admissible heuristic.admissible heuris-

tic The reason why this is important can be grasped intuitively: Suppose our heuristic
sometimes over-estimated the cost from n to the goal. That would mean it could
grossly over-estimate the cost of a node n on the optimal path, and fail to expand
it. Suboptimal paths could meanwhile reach the goal, and the method will terminate
sub-optimally in line 10 of algorithm 8. In practice this criteria is easy to satisfy; in
the Pacman example, we can simply use the Euclidean distance from a state s = (x, y)
to the goal pellet at t = (xg, yg)

h(n = (x, y)) =
√
(x− xg)2 + (y − yg)2 (8.6)

which is obviously optimistic since Pacman cannot walk diagonally and at any rate
must walk around the hole in the middle. The states expanded can be seen in fig. 8.9
and from table 8.1 we see the path is still optimal, and substantially fewer nodes are
expanded.

Figure 8.10: A∗ search using a Manhattan distance heuristic

Admissibility is not quite enough to guarantee optimality. In order for A∗ to be
optimal, the heuristic must be consistent. Consistency carries the same intuition as
the triangle inequality: For any node n, any successor n′, we suppose the shortest path
between n and n′ is cn,n′ . A Heuristic is then consistent if:consistent

h(n) ≤ cn,n′ + h(n′). (8.7)

This condition is natural if we recall the heuristic is supposed to be optimistic: In that
case the true cost of the path to n′ from n, Cn,n′ , should always disappoint the heuristic.
In reality, most reasonable heuristics which are admissible will also be consistent, and
it is for instance the case by the Euclidean heuristic which can easily be seen from the
triangle inequality.

When selecting heuristics, one should look for heuristics which are admissible, con-
sistent, and which are as close to the true distance as possible. For Pacman, an even
better choice is the Manhattan distance

h(n = (x, y)) = |x− xg|+ |y − yg|2 (8.8)

which is the actual distance from the start to the goal state. The result is shown in
fig. 8.10, and in this case Pacman expands no unnecessary nodes.

Chapter 9

Multi-agent systems

This chapter will consider the dynamical programming problem in the non-deterministic
case, i.e. where the dynamics is of the form

xk+1 = fk(xk, uk, wk) (9.1a)

wk ∼ Pk(Wk|xk, uk). (9.1b)

This problem has already been optimally solved in chapter 6, however the dynamical
programming algorithm in the most general form is of limited applicability due to the
computational requirements (the optimal dynamical programming agent for Pacman
should have convinced us of this much) and the assumption the noise model, eq. (9.1b),
is known. This chapter will consider two ways of making the DP algorithm more
practical

• Firstly, the computational requirements, specifically planning on finite horizon as
in section 6.3.3

• Secondly, we will consider the situation where the noise model is not known. Our
primary example will be a chess game, where the noise model is the opponents
moves, and the overall approach is to assume the opponent always plays the best
move.

We will consider multi-agent games, which is particularly welll suited for the methods,
which will lead us to understand e.g. a chess playing engine such as Deep Blue. The
methods have applications beyond video-game playing. In control theory, the methods
are very similar to model-predictive control (MPC), and in reinforcement learning they
offer an important pre-cursor to Monte-Carlo decision trees.

9.1 Multi-agent games

Multi-player games encompas a number of problem formulation, but we will restrict
our attention to the following situation. Firstly, we will focus on competitive games,competitive games

in which we struggle against (rather than corporate with) one or more opponents. We

132

Figure 9.1: Example of a multi-agent game problem. Pacman must capture the two
food pellets while avoiding the three ghosts

assume the game world is fully known, and that the game is zero-sum, which means if
we do well our opponents do poorly and visa-versa. Pacman and chess are examples of
this setting, but not poker since it is not fully observed.

Consider for a moment the game of chess, and suppose we play as white. The state
xk would correspond to the board position at (our) turn, the actions Ak(xk) would be
all legal moves, uk would some particular move of a piece, and the noise disturbance,
wk, would correspond to our opponents move conditional on the board state that arose
after we played move uk in position xk. Hence, the update:

xk+1 = fk(xk, uk, wk) (9.2)

encapsulates two decisions, namely both our and the opponents moves (this is called
two ply in common terminology), and the second decision, the opponents move, isply

similar to ours.
This situation is exacerbated in e.g. Pacman, where wk consist of the moves of

all the other ghosts. Since we want to describe the decision problem from the ghosts
perspective (or black, in the chess game) we will re-formulate the problem to be more
symmetric. The definition of a game, or equivalently a multi-agent search problem, is
given in theorem 9.1.1

Definition 9.1.1. Multiagent search problem Formally, we define a turn-based gamegame

with Q players as consisting of:

• x0: The initial state of the game

• x: A game state, belonging to a state of spaces S. It is assumed that x contains
information about whose turn it is to play

• Player(x): Return which players turn it is to move

• A(x): The available actions for the current player

• f(x, u): The transition model which computes the result of playing move u ∈ A(x)
in state x

• Terminal-Test(x) A terminal test which returns true if the game is over. Ifterminal test

the terminal test is true x is also called a terminal state

• Utility(x, p): The utility function which defines the final numerical valueutility function

for a game which ends in state x for player p. This may be different than the
score-functions

• We follow the convention that player p = 0 refers to us – i.e. we want to maximize
the utility of player 0 – and players p = 1, . . . , Q− 1 are the opponents.

With this terminology, we can define what it means for the game to be zero-sum as
saying the final utility for a terminal state x must be constant:

Constant =

Q−1∑
p=0

Utility(x, p). (9.3)

The later is not a strict requirement since it can be ensured by demanding that if
one player obtains a positive reward, the other players obtain a small negative reward:∑Q−1

p=0 Utility(x, p) = 0 or by simply letting the winner get a score of +1 at the end
of the game and all other obtain a score of 0.

9.2 Expectimax

Expectimax is simply another name for the DP algorithm, in the finite-horizon formu-
lation, applied to a multi-player game. It is easier to first discuss the DP formulation
and only later introduce the specific notation of a multi-agent problem above.

Our starting point will be the same setup as the multi-ghost pacman example de-
scribed in section 6.2.5. Recall we consider a game with Q players (pacman and Q− 1
ghosts), the game state was xk, pacmans move was uk, and all the ghosts moves were
wk. As we saw in the finite-horizon formulation, section 6.3.3, optimally planning on
a long horizon of N is equivalent to planning on a horizon of d assuming the terminal
cost is J∗

d (the optimal cost function for the DP problem starting at step d)

J∗(x0) = argmin
µ0,...,µd−1

E

[
J∗
d (xk+1) +

d−1∑
k=0

gk (xk, µk (xk) , wk)

]
(9.4)

Algorithm 13 Finite-horizon DP

1: function policy(x) ▷ Return (approximately) optimal action in state x0
2: return argminu∈A(x) E [g(x, u, w) + J-star(f(x, u, w), d− 1)]
3: end function
4: function J-star(x, i) ▷ Evaluate J∗

d−i in the finite-horizon problem
5: if i = 0 then
6: return J̃(x) ▷ Evaluating Jd: return the terminal cost approximation
7: else ▷ Do a single DP step
8: return argminu∈A(x) E [g(x, u, w) + J-star(f(x, u, w), i− 1)]
9: end if
10: end function

The first idea is that instead of using J∗
d , which we cannot compute, we will use an

approximation which we can compute J̃ :

J∗
k ≈ J̃ (9.5)

This will allow us to quickly obtain the optimal policy at step k = 0 by planning in
the d-long problem. Then, after we take the optimal action (and the ghosts make their
move) the game transition to state x1 and we plan on a new d-long problem starting in
x1 and once more with terminal cost J̃ .

The second idea is to implement a recursive version of the DP algorithm. I will
assume the various functions are stationary, i.e. the pacman game-rules stay the same
throughout a game, and in this case the optimal action in state x0 is computed as:

u∗ = argmin
u∈A(x0)

Ew0 [g(x0, u, w0) + J1(f(x0, u0, w0))] (9.6)

In turn, we can imagine the functions J∗
k are implemented recursively by considering

the left-hand side of the DP update as being computed by evaluating, by a function
call, the J∗

k+1 function on the right-hand side:

J∗
k (xk) = min

u∈Axk
Ewk

[
g(xk, uk, wk) + J∗

k+1(f(x, uk, wk))
]
. (9.7)

If we put these two ideas together we obtain the method shown in algorithm 13 for
approximately optimal planning in a state x0 The recursive formulation of DP is much
less inefficient, as we may end up evaluating the same states many times. The advantage
it is that it is easier to implement. The rest of the section will consist of adapting this
method to multi-agent games.

9.2.1 Formulating the opponents choice as a DP update

Consider the game of chess. Suppose the board state is xk in turn k, and we play move
uk. The opponent will then see the game state x′k = f(xk, uk). Based on this she will

select her move u′k (this will be equivalent to wk) and the game state in the next turn
will be

xk+1 = f(x′k, u
′
k) = f(f(xk, uk), u

′
k)

In other words, in this case the DP transition model relates to f as

xk+1 = fk(xk, uk, wk) = f(f(xk, uk), u
′
k) (9.8a)

u′k ∼ Pk(·|xk, uk) = P (·|f(xk, uk)) (9.8b)

P (u|x) = {Chance player p = Player(x) play move u in state x} . (9.8c)

This can be generalized to a game of Q players as follows. In a given turn k, we let
x′p, u

′
p be the state and action of player p. In this way a single move is broken up into

the Q plys:

(xk, uk) = (x′0, u
′
0)︸ ︷︷ ︸

Our turn/move

, (x′1, u
′
1), (x

′
2, u

′
2), . . . , (x

′
p, u

′
p), . . . , (x

′
Q−1, u

′
Q−1)︸ ︷︷ ︸

Q− 1 opponents states/moves

, (x′Q, u
′
Q) = (xk+1, uk+1)︸ ︷︷ ︸

Our turn/move

In this representation, x′p+1 = f(x′p, u
′
p). If we assume the cost function can be computed

on a per-ply basis

gk(xk, uk, wk) =

Q−1∑
q=0

gq(x
′
q, u

′
q) (9.9)

a single step fo the DP algorithm can be re-written as:

Jk(xk) = min
uk

Eu′1,...,u′Q−1
[gk(xk, uk, wk) + Jk+1(xk+1)] (9.10)

= min
uk

[
Eu′1Eu′2 · · ·Eu′Q−1

[
g0(x

′
0, u

′
0) + · · ·+ gQ−1(x

′
Q−1, u

′
Q−1) + Jk+1(xk+1)

]]

= min
uk

g0(x′0, u′0) + Eu′1

g1(x′1, u′1) + Eu′2

· · ·Eu′Q−1

[
gQ−1(x

′
Q−1, u

′
Q−1) + Jk+1(xk+1)

]︸ ︷︷ ︸
= Jk,Q−1(x

′
Q−1)

If we focus on the inner-most expectation, it looks very similar to the standard DP
expectation. If we define Jk,Q = Jk+1 we may define Jk,q, for q = 0, . . . , Q− 1, as:

Jk,q(x
′
q) = Eu′q

[
gq(x

′
q, u

′
q) + Jk,q+1(f(x

′
q, u

′
q))|x′q

]
(9.11)

=
∑

u′q∈A(x′q)

Pq(u
′
q|x′q)

[
gq(x

′
q, u

′
q) + Jk,q+1(f(x

′
q, u

′
q))

]
(9.12)

We can iteratively plug in eq. (9.12) into eq. (9.10) to see that

Jk(xk) = min
u∈A(x)

Jk,1(f(xk, u)) (9.13a)

Algorithm 14 Simplified Expectimax search

1: function J-star(x, q, d) ▷ Evaluate state x given it is player q’s turn
2: if d = 0 then ▷ Evaluate the state
3: return J̃(x)
4: end if
5: q′ ← (q + 1 mod Q) ▷ Next agent. If q = Q− 1 this will be q′ = 0
6: if q = 0 then ▷ Players turn, eq. (9.13a)
7: return minu∈A(x) [gq(x, u) + J-star(f(x, u), q′, d− 1)]
8: else
9: return Eu [gq(x, u) + J-star(f(x, u), q′, d)] ▷ Opponents turn, eq. (9.12)
10: end if
11: end function
12: function policy(x) ▷ Compute best action
13: return argmaxu∈A(x) [g0(x, u) + J-star(f(x, u), 1, d)]
14: end function

Agent d = 1 d = 2 d = 3 d = 4

Minimax 1.0 0.5 0.0 1.0
Expectimax 0.0 0.5 1.0 1.0
Alpha-Beta 1.0 0.5 0.5 0.5

Table 9.1: Win rate for multiagent search applied to the pacman level in fig. 9.1

In other words, what we have done is to define Jk,q such that Jk,0 = Jk. We have
then shown that these functions are related such that Jk,0 (our turn) can be computed
in terms of Jk,1 using the min-operation (see eq. (9.13a)), and when it is the opponents
turn, q ≥ 1, they are related by eq. (9.12). This formulation of the DP algorithm is
commonly called Expectimax and we will therefore therefore adopt this term from now
on; the version with the changes discussed is shown in algorithm 14.

What remains is simply an issue of translating the Expectimax-version of the DP
algorithm into the language of a multi-agent game (theorem 9.1.1). To do so, we
note there is no intermediate cost-function gq unless the player is terminated (i.e.
Terminal-Test is true) in which case the Utility is returned). In our implementa-
tion we choose to let J̃ be simply the Utilityfunction, however better approximations
of the true tail cost will lead to better results. A final change of the algorithm is that
we compute the optimal action as part of the method rather than having an additional
minimization step when computing the policy. The resulting method can be seen in al-
gorithm 15, with the changes highlighted in red. Note the minimums have been changed
to maximums because the multi-agent search problem is defined in terms of reward.

How well expectimax works depends on the planning depth. The larger depth,
the more it will resemble an (inefficient!) implementation of the DP algorithm, and

Algorithm 15 Expectimax search☞
1: function Expectimax(x, q, d) ▷ Returns (optimal score, optimal action)
2: if d = 0 or Terminal-Test(x) then
3: return Utility(x), none ▷ Return leaf utility and dummy action
4: end if
5: if q = Q− 1 then ▷ It is the last players turn; reset q and decrease depth
6: Next agent q′ ← 0 and next depth d′ ← d− 1 ▷ End of round
7: else
8: Next agent q′ ← q + 1 and next depth d′ ← d ▷ Within a round
9: end if
10: for all u ∈ A(x) do
11: V, none← Expectimax(f(x, u), q′, d′) ▷ Score of playing action u
12: end for
13: if q = 0 then
14: u∗ ← argmaxu∈A(x,q) Vu ▷ Compute optimal player action
15: return Vu∗ , u

∗ ▷ Return optimal cost, optimal action
16: else
17: return

∑
u∈A(x,q) pq(u|x)Vu, none ▷ Irrelevant dummy action for opponent

18: end if
19: end function
20: function policy(x)
21: v∗, u∗ ← Expectimax(x, 0, d)
22: return u∗

23: end function

thereby provide near-optimal results. We have illustrated the win-rate (obtained by
simulating 10’000 games) of expectimax, when applied to the Pacman game level in
fig. 9.1 in table 9.1, and as shown in the table the win-rate increases when Pacman
plan on a longer (but still fairly shallow all things considered) depth. The winrate
can be compared to the DP algorithm when evaluated using various N , see table 9.2.
The later table includes the estimates cost of the starting state J0, the (simulated) win
percentage, the average length of a game and the size of the state space.

The cost estimate J0 and win-rate agrees as they should, however comparing the
win-rate to expectimax we see expectimax, at the same depth, outperforms the DP
algorithm, and the DP algorithm needs a depth greater than 8 to compete with the
expectimax algorithm using depth 4. The reason for this is that the expectimax al-
gorithm re-plans at each step and so while the policy is shallow, it is more relevant
to the current board configuration. We also see that increasing the depth from 12 to
20 does not change the winrate. This is because the randomness in the game makes
long-term planning irrelevant as the ghosts position cannot be predicted with enough
accuracy. These features are the reason control theory is nearly exclusively concerned
with rolling-horizon controllers.

N J0 Win pct Length |S|

1 0.00 0.00 1.00 12.0
2 0.00 0.00 2.00 41.0
3 0.00 0.00 2.50 155.0
4 0.75 0.72 3.72 278.0
6 0.81 0.81 4.30 1098.0
8 0.82 0.82 4.33 3565.0
12 0.85 0.86 4.54 18956.0
16 0.85 0.84 4.51 37516.0
20 0.85 0.84 4.56 47811.0

Table 9.2: Results of the DP algorithm to the pacman level in fig. 9.1

9.3 Minimax search

In most circumstances, we cannot assume to know the noise distribution Pk(Wk|xk, uk),
however we might know enough of the environment to know which values of the noise
disturbances are possible, denoted by the set Wk(xk, uk). This situation covers most
games, in which wk is a stand-in for the opponents action. It this case, it is often
reasonable to assume the opponent chooses the worst action (from our perspective)
and plan on that assumption. This is known as adversarial search, which we alreadyadversarial

search encountered in section 6.3.2. To recap, it was simply the replacement of the expectation
with a maximum in the DP cost function:

Jπ (x0) = max
wk∈Wk(xk,µk(xk))

[
gN (xN) +

N−1∑
k=0

gk (xk, µk (xk) , wk)

]
(9.14)

The DP algorithm therefore becomes our regular DP algorithm with a max rather than
an expectation, hence the name minimax search:minimax

Jk (xk) = min
uk∈U(xk)

[
max

wk∈Wk(xk,uk)
[gk (xk, uk, wk) + Jk+1 (fk (xk, uk, wk))]

]
. (9.15)

The discussion of expectimax still holds true, and this leads to a simpler algorithm:
Our adversaries simply select the actions which are worst (from our perspective) and
we select the actions that appear best. The listing is given in algorithm 16, and the
consequential changes from the expectimax algorithm are highlighted in red.

If we consider the performance of minimax search in the multi-ghost example, see
table 9.1, we see the win-rate is lower than expectimax. The reason is minimax, by
always assuming the ghosts does the worst possible, is very risk-adverse, and for a game
such as this it means it fails to take necessary risks. We can see this in another way
by looking at the estimated value of the initial state J0(x0) (i.e., simply the output of
minimax/expectimax when called on this state). The expectimax estimate increases
from 9 (+10 bonus from eating the first food pellet), then decreases due to the cost of

Algorithm 16 Minimax search☞
1: function Minimax(x, q, d) ▷ Returns tuple of (optimal score, optimal action)
2: if d = 0 or Terminal-Test(x) then
3: return Utility(x), none ▷ Return leaf utility and dummy action
4: end if
5: if q = Q− 1 then ▷ It is the last players turn; reset q and decrease depth
6: Next agent q′ ← 0 and next depth d′ ← d− 1 ▷ End of round
7: else
8: Next agent q′ ← q + 1 and next depth d′ ← d ▷ Within a round
9: end if
10: for all u ∈ A(x) do
11: Vu, none←Minimax(f(x, u), q′, d′) ▷ Score of playing action u
12: end for
13: u∗ ← maxu∈A(x) Vu if q = 0 else minu∈A(x) Vu ▷ Use min rather than average
14: return Vu∗ , u

∗

15: end function
16: function policy(x)
17: v∗, u∗ ←Minimax(x, 0, d) ▷ Optimal action is u∗

18: end function

Agent d = 1 d = 2 d = 3 d = 4

Minimax 9.0 8.0 7.0 -492.000
Expectimax 9.0 8.0 7.0 326.125
Alpha-Beta 9.0 8.0 7.0 -492.000

Table 9.3: Estimated expected cost J0(x0) for the state in fig. 9.1

moving (−1 per step), and at step 4 it jumps to 326 because expectimax (correctly!)
believes there is a large chance of winning (+500) the game in 4 moves. Minimax is
more pessimistic, and correctly note that if the ghosts do their absolute worst they
will catch Pacman. The pessimism of the minimax agent can often lead to sub-optimal
behavior, such as refusing to do anything because it believes it is doomed anyway.

9.3.1 An issue with expectimax and minimax

If the depth is set to d = ∞, and assuming the cost function is only defined on the
terminal nodes, both methods returns the optimal policy assuming they terminate and
have a complexity of O(bm), where m is the maximum number of plys of the deepest
branch of the game. In most circumstances this is unfeasible and a more shallow depth
is used.

The number of search nodes expanded by expectimax/minimax can be found in
table 9.4, and we see they require just around 6000 search nodes for a depth of just 4.

Agent d = 1 d = 2 d = 3 d = 4

Minimax 33.0 211.0 1160.0 5916.0
Expectimax 33.0 211.0 1160.0 5916.0
Alpha-Beta 26.0 150.0 643.0 1315.0

Table 9.4: Number of search nodes expanded by multisearch agents

This is much greater than DP at the same depth (1100, see table 9.2; the discrepancy
is because the recursive formulation may expand the same node many times if there
are recurrent configurations), but much less than the number of states at N = 20.

For many games the depth required for reasonable play makes expectimax/minimax
unfeasible. For instance, chess games has a branching factor of 20 or more in the early
game and so even just a few plys, which is far too little for reasonable play, is too much.

9.4 Alpha-Beta search //

The problem with minimax is the number of nodes in the game tree grows exponentially
in the branching factor, and for many applications this is simply unacceptable. This
growth is dictated by the nature of the decision problem and so we cannot get rid
of it, but as it turns out we can reduce the exponent by a factor of two while still
returning minimax optimal paths. The technique we will consider here is called alpha-
beta pruning, and it rests on the simple observation that some branches, assuming we
know a bit about them, can be marked as irrelevant.

How does this work? Consider the minimax algorithm for a two-player game where
as usual we attempts to maximize our utility and our opponent tries to maximize it. For
d = 1 the minimax search tree can be visualized in fig. 9.2 (each player has 3 actions).

Since it is our turn, the minimax evaluation for node A is as follows:

Minimax(A) = max [Minimax(B),Minimax(C),Minimax(E)] (9.16)

These three calls to minimax are evaluated on the opponents turn, who will use the
min. In other words, just expanding one of the calls for clarity, we obtain:

max

min

Minimax(E)
Minimax(F)
Minimax(G)

 ,min

Minimax(H)
Minimax(I)
Minimax(J)

 ,min

Minimax(K)
Minimax(L)
Minimax(M)

(9.17)

As the algorithm is called, it will begin to evaluate these branches one at a time.
Suppose we evaluate all nodes except two as follows:

= max

min

7
3,
14

 ,min

2

Minimax(I)
Minimax(J)

 ,min

7
5
4

Figure 9.2: Illustration of minimax search for d = 1. Top-left: Minimax has to search
a small tree (it is assumed we and the opponent have 3 actions), at the root A we
perform a max-operation, the opponent three min-operations, and finally the 9 leaf
states are evaluated. Top-right: Minimax search the tree using a depth-first order,
and we suppose in this case Minimax has just evaluated leaf G to have a utility of 2.
Bottom-left: At this point we know the left-branch has value B = 3, the right-branch
B = 4 (due to the min), and the middle branch must have value less than 2 (dependent
on the value of H and I). Bottom-right: Since we want to compute the Max at the
root, there is no reason to further evaluate the second branch: We know the best action
is E, and has a value of 4.

The left-most branch will be evaluated to min{7, 3, 14} = 3. Meanwhile, we know that
the middle branch is ≤ 2 and the right-most branch is min{14, 5, 4} = 4. Hence, at the
above step the algorithm knows, without evaluating any further nodes, that:

= max [3, C ≤ 2, 4] = 4

This is true regardless of the value of the nodes I and J . In other words, the minimax
structure implies we can sometimes evaluate the tree exactly even without knowing the
value of all the branches.

9.4.1 Alpha-beta pruning

For each state (A,B and so on) we define two numbers α and β. The role of α is to track
the reward we are guaranteed (assuming we make optimal actions), and β tracks the
reward the opponent is guaranteed (assuming maximally adversarial actions). These
numbers are initialized at the root, and passed down the tree: At a Max-node (for
instance, A), once we know a subtree has at least some value, we can update α.

As an example, in fig. 9.2, once the B branch is evaluated this guarantees that α = 3
at the A node. Later, when the D-branch is evaluated, we are guaranteed a utility of
at least α = 4. The value of α = 4 is then passed down to the C-branch, which is a
min-node. Once the min-node evaluates the H branch to 2, it can check that

Utility(H) ≤ α

Figure 9.3: Illustration of alpha-beta search (see text). The alpha-value is a (guaran-
teed) highest utility the max-player is guaranteed. Once the max-player begins to see
what happens at next layer α can be assigned. If we tell α to the min-player at the
middle branch, she can reason certain actions are never going to be used.

the min-node can then conclude that whatever else happens, its result will never be
used. A similar argument can be used to terminate evaluation at a max-node (our
turn), however in that case we need the minimal utility we are already guaranteed. To
make alpha-beta pruning rigorous, we define the values:alpha-beta prun-

ing

α =

{
The highest value the Max-player is so far guaranteed
by taking optimal actions

}
(9.18)

β =

{
The lowest value the Min-player is so far guaranteed by
taking optimal actions (from their perspective)

}
(9.19)

We will provide exact pseudocode for how they are updated momentarily, however their
role is best understood using the example in fig. 9.3:

• Init): We start in node A (max-node), and initially α = −∞ and β = ∞,
signifying no players have any guarantees

• a): We proceed using DFS. At node B (a min-node) there is a for-loop over the
leafs, and β, the min-nodes guaranteed best (minimal!) utility, is updated. Since
the min-node learns E = 3, it updates β = 3 since this is now guaranteed

• b): The min-node iterates over other choices. Since 11 > 3, there is no need to
update β as it would never choose 11

• c): After the G is evaluated node A, a max-branch, knows that the value of
B-branch is 3. It can thus update α = 3 since this value is now guaranteed

• d): We then proceed to C, a min-node, where β is updated. At C the min-node
learns a value of β = 2 is guaranteed, however it also knows that the top-node A
has a value of α = 4 available; hence, there is no need for further tests

• e): The method proceed to the D-branch, where β is updated to 9 for the K-node

• f): After the min-node learns about M = 2 it updates β = 2 since this is now
guaranteed at this node. The evaluation of A, B and C has happened as a loop
in the max-node at A, which tries to find the maximal utility. Since this was
obtained at B = 3, it has α = 3 and returns the action corresponding to B.

The method is implemented in algorithm 17; although the listing is rather dense,
note the max/min steps are nearly identical. In summary, we maintain the α and β
values for each node, however at a max-node only the α-parameter is updated and the
β-parameters are just passed along to be used at the following min-node. Meanwhile,
the rest of the program is similar to minimax, in that we still plan at a maximal depth
of d. The method can be used to compute the optimal action u∗ and utility v∗ for the
player q = 0 as:

v∗, u∗ = Alpha-Beta-Search(x, 0, d, α = −∞, β =∞).

Algorithm 17 Alpha-Beta search

1: function Alpha-Beta-Search(x, q, d, α, β)
2: if d = 0 or Terminal-Test(x) then
3: return Utility(x), none
4: else if q = 0 then
5: return Max-Value(x, q, d, α, β)
6: else
7: return Min-Value(x, q, d, α, β)
8: end if
9: end function
10: function Max-Value(x, q, d, α, β)
11: v∗ ← −∞ ▷ Best (maximal) utility for any action
12: for all u ∈ A(x, q) do ▷ Loop over all actions
13: v ←Min-Value(f(x, u), 1, d, α, β) ▷ Utility of this branch
14: if v > β then return v, u end if
15: ▷ Pruning: If there is a min-node closer to the root

with a guaranteed low cost of β lower than the
current estimate v this branch is never chosen.

16: if v > v∗ then
17: (u∗, v∗)← (u, v) ▷ If the utility of branch u is better, use this branch
18: α← max(α, v∗) ▷ Update the α-value to match best available option
19: end if
20: end for
21: return v∗, u∗

22: end function
23: function Min-Value(x, q, d, α, β)
24: (q′, d′)← (0, d− 1) if q = Q− 1 else (q′, d′)← (q + 1, d) ▷ As in minimax
25: v∗ ←∞ ▷ Score for best branch for min-agent
26: for all u ∈ A(x) do
27: v ←Max-Value(f(x, u), q′, d′, α, β)
28: if v < α then return v, u end if ▷ Prune
29: if v < v∗ then
30: (u∗, v∗)← (u, v)
31: β ← min(β, v∗)
32: end if
33: end for
34: return (v∗, u∗)
35: end function

9.4.2 Comments on efficiency

Alpha-beta search is a more efficient implementation of minimax, and will therefore
find solutions with the same cost (see table 9.1 and table 9.3). However, it can be much
more efficient.

Since whether a node can be pruned depends on the order in which other nodes have
been evaluated beforehand alpha-beta search has the same worst-case performance of
bd as minimax. However, if the nodes are accessed in an optimal order, i.e. the nodes
which actually contains the optimal paths are expanded first, we get a performance of
O(b d

2), meaning we can evaluate a search tree twice as deep. If nodes are expanded in

random order the behavior is O(b 3d
4), i.e. half of the benefit in terms of extra search

depth. Even for the Pacman game this gain is quite substantial (see table 9.4).

9.4.3 Tricks and chess

For chess, alpha-beta search is augmented by a few tricks

• Since alpha-beta search achieves the best performance of O(b d
2) by expanding the

optimal path first, much can be gained by searching the more promising nodes
first. In chess, this is commonly done by considering moves that are a-priori
promising first, such as captures, pawn promotions, checks, moves forward, and
finally moves backwards in that order.

• It is also common to change the Terminal-Test() to stop searching really bad
positions, for instance if the board evaluation fall below some threshold.

• As expectimax and minimax, alpha-beta search can expand the same position
many times. By keeping an index of already evaluated positions the amount of
work can be reduced

• In chess, a very basic utility function tracks the value of the pieces (a pawn is 1
point, a bishop is 3, a queen is 9 and so on), however a real chess engine uses much
more refined features, for instance double pawns, free pawns, king safety, number
of available moves, distance between king and pawns, and so on. Especially for
end-game play these features are important

Up until very recently, Alpha-Beta search, along with move-order heuristics, a carefully
crafted utility functions and pruning methods, was the class of methods which played
chess far better than any other method (deep blue was an alpha-beta search method);
this was possible because chess has a intermediate branching factor. For games such as
go, the branching factor is too high and alpha-beta search, even with modern computer
resources, remains inferior to top human play.

As we will see in the second half of this course, it is possible to re-use the idea of a
game tree, but with a learned utility function and an adaptive approach to exploring
the tree to build a more general class of algorithms, and it is this class of algorithms,
known as monte-carlo search trees which have recently been used to build expert Go
engines and chess engines with performance comparable to the best chess engines1

1For chess, the MCST approaches have a different hardware requirement than normal chess engines,
however it seems at least reasonable to say they have a comparable performance and will likely exceed
chess engines, even using similar computational resources, in the near future

Part III

Control

147

Chapter 10

The control problem

Control theory deals with a similar problem to that which we have already considered,
namely how to make decisions, one after another, so to bring a system into a desirable
state.

However, control theory differs both in the details of how this problem is formulated,
and perhaps more importantly, in what is considered desirable behavior in a controller
and therefore emphasized in control theory:

Formulation The problems treated by control theory (such as temperature manage-
ment of a watertank, a plane autopilot, balancing a Segway, etc.) represents concrete,
physical systems which evolve in continuous time. Accordingly, the time variable should
be considered as a continuous variable t ∈ R, and therefore both the state x(t) and
actions (which we now call control) u(t) are going to be functions of time.control

Emphasis in control theory Control theory is often concerned with robustness,
that is, being able to reason exactly about what the controller does and guarantee it
works. This often mean that the methods used in control theory can appear superfi-
cially simple from a machine-learning background because simpler methods are more
predictable.

Practical problems Control theory face many practical obstacles we have so far
been spared from. In the inventory control example, it was reasonably to assume that
the states xk, actions uk and noise disturbance distributions are fully known. If we try
to apply control theory to a robot, this will most likely no longer be the case:

• The state x(t) is probably not fully known. For instance, if some part of x(t) is
the current location of self-driving robot, we need to solve the problem of figuring
out the locating of the robot given e.g. camera measurements.

• A robot is likely controlled by a specialized robotics-OS, which integrate different
sensory information; these are probably sampled at different speeds, at different
times, and with varying precision precision.

148

• Even if we have a really good CAD drawing of the robot it is unlikely we can
accurately predict its behavior exactly due to friction, wear-and-tear, etc.

The big picture: Models and the real world Control theory grew out of physics,
and the approach to complexity is largely the same: To study simpler, mathematically
well-described models in order to obtain insight and concrete methods. These methods
are then applied to real world problems with the hope the real world is not too different
from the model (but understanding that it is at least a bit different).

The idealized problems we always start with will be differential equations which
arises from classical mechanics. In the following, this will be called the continuous-
time formulation of the problem.continuous-time

There are two operations we will be interested in:

• To be able to accurately predict what the continuous-time do when a control
signal is applied. This will form the basis of building environments which we can
later test the methods in

• To build approximate, and very often discrete, models of the continuous-time
formulations. These will form the basis of our control methods we implement in
the agents.

Note that the real-world (physical) system may differ from the continuous-time model
we use to build our controller. The main takeaway is that we can no longer assume the
model is behaves exactly the same as the environment.

Approach in this course I have chosen to emphasize practical computational tools
for real world optimal control problems. In order to ensure what we are doing is still a
recognizable form of control theory I have made three choices:

• To test the control methods independently on an (reasonably exact) simulation
of the continuous-time control problem. This is our attempt to address that our
control-theory models are likely not an exact representation of the real world.

• We will therefore maintain the clear distinction between agent, environment and
model. This will become more important since the models will typically be ap-
proximate

• The main methods we will focus on are real-world control methods such as iLQR,
direct methods, PID control, etc.

Prerequisites: Control theory will make use of concepts from analysis such as deriva-
tives and ordinary differential equations (ODEs). If the notation is at all unclear,
consider looking at section X.2.

10.1 The continuous-time control problem

In order to solve a problem, we need a precise mathematical formulation. When we
discuss control, we will always assume the dynamics is described by an ODEs (ordinary
differential equation). We already saw an example from the Pendulum environment
(eq. (4.1)), in which the system was characterized by the angle θ, an applied force u,
and satisfied the second-order differential equation:

θ̈ =
g

l
sin(θ) +

u

ml2
. (10.1)

This equation use notation common in engineering and physics, where it is understood
that both θ and u are functions of time and that the dot indicate time derivative (see
section X.2). An equivalent way of writing the problem is therefore

d2θ(t)

dt2
=
g

l
sin(θ(t)) +

u(t)

ml2
.

The variables g, l,m are constants denoting the gravitational constant, pendulum length
and the mass attached to the end of the pendulum.

We can re-formulate any second order differential equation to a first order differential
equation using a simple trick: For each second-order derivative, θ̈, we introduce the new
coordinates x

x =

[
x1
x2

]
=

[
θ

θ̇

]
. (10.2)

Evidently, the derivative of x2 with respect to t is θ̈, and therefore we can re-write the
system as:

ẋ =

[
x2

g
l
sin(x1) +

u
ml2

]
= f(x, u). (10.3)

Where we have introduced the vector-function f .
This approach (i.e., replacing a double-derivative such as θ̈ with two variables x1 = θ

and x2 = θ̇) can be used to get rid of all second-order derivatives.
We will therefore study systems whose behavior from a start-time t0 until and end-

time tF , and for all t ∈ [t0, tF], can be described using a state x(t) ∈ Rn and a control
vector u(t) ∈ Rd, which will evolve as a first-order system of ODEs characterized by a
function f : Rn × Rd × R→ Rn:

ẋ(t) = f(x(t),u(t), t). (10.4)

This function f is called the dynamics of the control problem.dynamics

10.2 Constraints

Any physical system will be subject to constraints, which may either reflect what the
system simply cannot do, what we don’t want it to do, and what we want it to do.

We often distinguish between equality and inequality constraints on a variable x:

Equality constraint: x = c (10.5)

Inequality constraint: a ≤ x ≤ b (10.6)

From a formal perspective we can express the equality constraint as an inequality
constraint by letting a = b = c. At the same time, if we let a = −∞ and b =∞, then
the inequality constraint becomes equivalent to no constraint. It is therefore common
to write all constraints as inequality-constraints.

Simple constraints

These are by far the most common and something we invariantly have to face in nearly
all applications. They take the form:

xlow ≤ x(t) ≤ xupp

ulow ≤ u(t) ≤ uupp

(10.7)

and simply signify the given variables lie in certain ranges.

End-point constraints

The end-points t0 and tF of a robots path are often of particular importance, and so
we might have special constraints which only apply at these. As an example:

x0, low ≤ x (t0) ≤ x0, upp

xF, low ≤ x (tF) ≤ xF,upp.
(10.8)

which could be used to specify that the robot starts in a particular configuration
(x(t0) = x0), or that the robot must end in a particular terminal state (x(t0) = xF)
and absolutely no deviation is allowed.

Time-constraints

The end-times t0 and tF may themselves be considered variable (although often this
will not be the case). For instance, if we launch a satelite into orbit, we probably
know when the launch starts, t0, however we have no interest (and no practical way)
to specify when the sattelite should reach orbit tF . This can be specified as

t0, low ≤ t0 ≤ t0, upp

tF, low ≤ tF ≤ tF,upp.
(10.9)

That the end-time is variable signifies an important departure from the dynamical
programming problem considered in the earlier section and is important in minimum-
time problems (i.e., complete a control task in minimal time). Note not all methods we
will encounter will handle end-time constraints.

10.2.1 Non-linear constraints ⋆

In the exercises we will limit ourselves to linear constraints. However, many constraints
are non-linear. For instance non-linear boundary constraints:

hb (t0, tF ,x (t0) ,x (tF)) ≤ 0, boundary constraint (10.10)

This could be useful if we are planning a robots gait over one full step between time t0
to tF and we want to tell the robot the gait must be periodic x(t0)− x(tF) = 0.

Non-linear path constraints

Some constraints are inherently a function of both the state and action during the
control sequence. Examples include that the limbs of a robot cannot intersect each
other, that the dynamical load on a rocket ship cannot exceed a certain threshold or
that a car must follow a particular path. The general form is:

h(t,x(t),u(t)) ≤ 0 (10.11)

With the understanding h may be a function of arbitrary many output dimensions (this
allows us to specify both upper and lower-bounds).

10.3 Policy and cost

Recall the cost-function for the basic DP problem was a function Jπ(x0) of the policy
π and initial state x0. We will follow this convention and denote the policy as u(t) =
π(x(t), t). The special case of finding an optimal open-loop policy, u(t) = π(t), is
known as trajectory optimization in control theory, and a closed-loop policy is oftentrajectory opti-

mization referred to as a feedback policy.
feedback policy

Closed-loop or open-loop? Although it is true an open-loop policy is sufficient
for the deterministic dynamics defined by f in eq. (10.8), we will later see that both
numerical and practical concerns will in nearly all cases result in the dynamics we plan
according to, and the exact dynamics defined by f , are different. In those cases there
is a great benefit in using closed-loop policies.

Admissible policies It is common to think of the differential equation ẋ = f(x,u, t)
not as generating x, but rather as a constraint: Given the initial and final times t0 and
tF and arbitrary functions x(t),u(t) for t ∈ [t0, tF] we can check if they satisfy the
differential equation as well as whatever other constraints affect the problem.

If this is the case the trajectory (x,u) is said to be admissible as it represents aadmissible

possible solution. If t0, tF and x0 is considered given, then the differential equation will
define x(t) at subsequent time points. In this case we will say the control u is admissible
if the resulting trajectory satisfy whatever other constraints that are imposed on the
problem.

10.3.1 Cost function

Recall the cost-function defined in chapter 5 had the form Jπ(x0) since it was dependent
on both the policy and initial state x0 (but nothing else). As mentioned above, an open-
loop policy will suffice for the (abstract) statement of the control problem, and we will
therefore refer to the cost as Ju. The cost includes t0 and tF since these can be free
variables. If they take a fixed value we will omit them from the problem statement.

The most general form of cost function we will encounter is:

Ju(x, t0, tF) = cF (t0, tF ,x (t0) ,x (tF))︸ ︷︷ ︸
Mayer Term

+

∫ tF

t0

c(τ,x(τ),u(τ))dτ︸ ︷︷ ︸
Lagrange Term

(10.12)

The cost-function is quite similar to the dynamical programming problem we have
previously seen: One term, cF , is equivalent to gN in that it concerns itself with the
end-location of the system (often t0 and x(t0) will be fixed), and the integral of c play
the same role as gk in that it relates to what the system does during the trajectory.

10.4 The continuous-time control problem

The control problem is then stated as minimizing the cost function eq. (10.12) while
ensuring that whatever constraints apply to x, u and t0 and tF are satisfied. Formally,
we define the optimal control and state trajectory u∗ and x∗ as the pair minimizing:

u∗,x∗, t∗0, t
∗
F = argmin

x,u,t0,tF

Ju(x, t0, tF). (10.13a)

(Minimization subject to all constraints) (10.13b)

The minimization occurs over all admissible trajectory-control pairs and is therefore
subject to the constraints imposed on the system, i.e. the dynamics, ẋ(t) = f(x(t),u(t), t)
and whatever other constraints affect the system, for instance x(t) ≤ xupp.

Minimizing over the start-time t0 would be relevant if we were e.g. planning the
trajectory of a Mars-mission since it would allow us to determine the optimal launch
window dependent on the planets configurations. However, no problems in this course
will have this property, and the start-time will always be fixed at t0 = 0, and the start-
position x0 will also be given1. In this case the control will determine x(t) for t > t0
and so we will often refer to the cost-function as Ju(x0, tF).

1Although t0 = 0 I have chosen to include the symbol t0 in the notes and exercises because the
symbol t0 is more informative than just a 0.

10.4.1 Example 1: The pendulum

Recall that the state of the pendulum system can be described as x =
[
θ θ̇

]
and the

dynamics is given in eq. (10.3)

ẋ =

[
x2

g
l
sin(θ) + u

ml2

]
= f(x, u). (10.14)

The control is in this case the torque u(t).
The goal of the pendulum problem is to balance it upright starting from the down-

wards, still position x0 =
[
0 0

]
at t0 = 0. As is always the case, the motor can only

output a finite torque umax.
One way to specify the problem is to say we want the pendulum to arrive at the

upwards, still position within tF = 4 seconds. This gives us the following constraints:

−umax ≤ u ≤ umax (10.15a)

t0 = 0 (10.15b)

x0 =
[
0 0

]⊤
(10.15c)

0 ≤ tF ≤ 4 (10.15d)

xF =
[
π 0

]⊤
(10.15e)

As for the cost, we simply choose to penalize high control values:

Ju(x0, tF) =

∫ tF

0

u(τ)2dτ (10.16)

The form of cost chosen here is an instance of a quadratic cost function which is veryquadratic cost

popular in control theory.

Cost or constraint formulation?

If we consider the role of the cost and constraints we might note most problems can be
formulated using constraints or, alternatively, using cost. For instance, if we wanted to
specify the pendulum should end in the up-right position, we could have considered a
cost-function containing the terms

cos(θ) + λ∥u∥2 (10.17)

and no end-point constraint. The correct choice depends obviously on what we hope
to accomplish with the system, but also on the solution method since some methods
handle constraints quite poorly.

10.4.2 Example 2: The harmonic osscilator

The harmonic oscillator is one of the most important system in physics (see fig. 10.1).
It consist of a spring where one end is fixed at x = 0 (the black square in fig. 10.1), and

Figure 10.1: The harmonic osscilator. A frictionless ball is attached to a spring and
can move back-and-forth. The ball is described by the position x(t) and velocity ẋ(t)

the other end is attached to another block (the gray rectangle) at location x(t) which
can move without friction in the x-direction. It is assumed we can apply a bit of force
to the gray block using a control signal u(t). According to Newtons laws the equations
of motion are:

ẍ(t) = − k
m
x(t) +

1

m
u(t) (10.18)

Here m and k are the mass/spring constant of the oscillator. We can transform it into

the standard representation using the new coordinates x(t) =

[
x(t)
ẋ(t)

]
and this allows

us to write the dynamics as a linear function of x and u:2

ẋ =

[
0 1
− k
m

0

]
x+

[
0
1
m

]
u. (10.19)

The cost function is chosen as a quadratic function of x and u:

J =

∫ tF

0

(
x(t)⊤x(t) + u(t)2

)
dt. (10.20)

This choice of cost will attempt to drive the system towards a state where it is standing
still at x = 0, but due to the term u(t)2 it will attempt to do so using a small control
signal.

The harmonic oscillator is a special case of so-called linear-quadratic problems3

which are very important in control theory and which we will return to in chapter 12.

10.4.3 Example 3: The racecar

As a final problem we will consider the problem of driving a race car through a track.
The racecar, along with the track, is shown in fig. 10.2. The goal is to complete the
track as quickly as possible without driving across the blue boundaries.

2You can verify this is true by plugging in the definition of x to get the two equations: ẋ(t) =
1 · ẋ(t) + 0 and ẍ(t) = − k

mx(t) + 1
mu(t), which are equivalent to eq. (10.18).

3The name is derived from the linear dynamics and quadratic cost-function

Figure 10.2: Car-environment. The car has to complete a track as quickly as possiblê.
The right-pane shows the track we will consider. The track ı̈s designed by a centerline,
and the boundaries are at a fixed distance from the centerline. The lap start is at x = 0.

This is a well-studied mechanical system for obvious reasons and one in which a
great deal can be gained by using the right coordinate system.

The control vector is naturally chosen as:

u =

[
u1
u2

]
(10.21)

where u1 is the steering angle (the angle the front wheel makes with respect to the car
body) and u2 is the throttle (applied to the rear wheels).

One way to describe the car is in terms of the (x, y) location, the velocity in the x and
y-direction, as well as the global orientation of the car body with respect to the track
measured in degrees. However, this representation would pose a number of problems,
such as simply figuring out if the car is on the track or not, as well as measuring how
far along the track the car was, which would be important to define a cost function.

For this reason it is common to use a what is known as a curvilinear abscissa
reference frame to describe a car on a track. The frame is defined with respect tocurvilinear ab-

scissa reference
frame

the center of the track (dotted red line), and represent the car as:

x =

vx
vy
ψ̇
eψ
ey
s

 (10.22)

here, vx is the speed in the longitudinal direction of the car (i.e., the forward-direction
with respect too the card body), vy the lateral speed (perpendicular to vx, i.e. if the

Figure 10.3: The curve linear abscissa coordinate system. The car id described by the
angle wrt. the dotted centerline eψ, the distance from the centerline ey, and distance it
has traveled along the center-line s (indicated by red).

car is slipping), ψ̇ the cars yaw rate (rate of rotation of the car around center axis), and
ey the distance to the center line, eψ the angle between the car body and the tangent
of the center line, and s how far along the center-line the car is, see fig. 10.3.

This is a complicated coordinate system and computing the equations of motion
in this, or even the basic (x, y) coordinate system, requires a good deal of classical
mechanics. However, assume that the dynamics are found, it makes our life much
simpler: s measures how far the car has traveled (i.e., when this reach a certain value
the track is complete) and ey measures the distance to the center-line, i.e. as long as

|ey| <
1

2
{track width} (10.23)

the car is on the track. The cost-function can now be chosen as

Ju(x0, tF) =

∫ tF

0

1dt = tF (10.24)

and minimizing this cost-function, while ensuring eq. (10.23) as well as requiring the
steering angle be limited, that the throttle cannot exceed a certain value, and the car

cannot travel faster than 3m/s, gives us four simple constraints:

−1

2
{track width} ≤ ey ≤

1

2
{track width} (10.25)

vx ≤ 3 (10.26)

−0.5 ≤ u1 ≤ 0.5 (10.27)

−1 ≤ u2 ≤ 1 (10.28)

10.5 Implementation details

Specifying the model

Specifying a control problem in this course is done by implementing the ControlModel

class. As an example, the following implement the pendulum problem:

1 # basic_pendulum.py

2 class BasicPendulumModel(ControlModel):

3 def sym_f(self, x, u, t=None):

4 g = 9.82

5 l = 1

6 m = 2

7 theta_dot = x[1] # Parameterization: x = [theta, theta']

8 theta_dot_dot = g / l * sym.sin(x[0]) + 1 / (m * l ** 2) * u[0]

9 return [theta_dot, theta_dot_dot]

10

11 def get_cost(self) -> SymbolicQRCost:

12 return SymbolicQRCost(Q=np.eye(2), R=np.eye(1))

13

14 def u_bound(self) -> Box:

15 return Box(np.asarray([-10]), np.asarray([10]))

16

17 def x0_bound(self) -> Box:

18 return Box(np.asarray([np.pi, 0]), np.asarray([np.pi, 0]))

Further details on how you use the control model is discussed in the online documen-
tation for this week.

Chapter 11

Simulation

The previous chapter defined the (idealized) continuous control-problem as the dynam-
ics f , a cost function, and a set of constraints. This chapter will consider how we
simulate the effect of a policy u in such a problem and thereby obtain a cost estimate
and trajectory x.

11.1 Exactly solving the dynamics

Before we introduce numerical answers, it is perhaps instructive to consider two exam-
ples where we can obtain an exact solution to this question:

11.1.1 Example A: 1-d problem with no control

Consider the case where u = 0, x is one-dimensional and satisfy the initial condition
x(0) = x0, and where the dynamics and cost-function is chosen as:

ẋ(t) = −ax(t) (11.1)

Ju=0(x0) =

∫ tF

0

x(t)2dt (11.2)

The dynamics is a first-order ODE which can be solved with the usual methods from
high-school to get x(t) = x0e

−at. By substitution we can evaluate the cost to be:

Ju=0(x0) = x0

∫ tF

0

e−2atdt =
x0
2a

(1− e−2atF).

As a small challenge, you can try to solve the problem when u(t) = αx(t).

11.1.2 Example B: The harmonic oscillator

As another example, consider the harmonic oscillator we encountered earlier, and lets
assume that the control signal is again selected as u(t) = 0, that the oscillator starts in

159

a position where it has been displaced by d from the start position: x(0) = d, ẋ(0) = 0.
We then obtain the dynamics and cost:

ẍ = − k
m
x+

1

m
u = − k

m
x (11.3)

J =

∫ tF

0

[
x(t)2 + (ẋ(t))2

]
dt (11.4)

This is again a familiar type of differential equation with a solution:

x(t) = d cos(Ωt), with Ω =

√
k

m
(11.5)

The displacement x1(t) has been plotted in fig. 11.1 (black line) using k = 0.1, m = 2
and an initial displacement of d = 1. For completeness we can compute the cost-function
explicitly1:

J(x(0)) = d2
∫ tF

0

(cos(Ωt)2 + Ω2 sin(Ωt)2)dt (11.6)

= d2
∫ tF

0

[
1 + (Ω2 − 1) sin(Ωt)2

]
dt (11.7)

=
d2

2

(
(Ω2 + 1)tF −

Ω2 − 1

2Ω
sin(2Ωtf)

)
. (11.8)

11.2 Euler integration

Analytically solving ODEs will quickly become intractable, and so we need numerical
recipe for simulating the future trajectories. The simplest method is Euler integra-
tion. Consider the general problem ẋ(t) = f(x(t),u(t), t). A Taylor expansion of ẋ(t)Euler integration

with respect to the time variable gives:

x(t+∆) = x(t) + ẋ(t)∆ +
1

2
ẍ(t)∆2 +O(∆3) (11.9)

We can now simply truncating the Taylor expansion after the first order term, i.e.
assume ∆2 is negligible, and plug in the definition of ẋ. This gives us the following
expression:

x(t+∆) = x(t) + f(x(t),u(t), t)∆

This tells us something important: Given we know what the system is doing at time t,
in state x(t) and with action u(t), we can approximately know the state of the system
at a later time point t+∆. This gives rise to the following simple idea:

1See https://en.wikipedia.org/wiki/List_of_integrals_of_trigonometric_functions.

https://en.wikipedia.org/wiki/List_of_integrals_of_trigonometric_functions

0 20 40 60 80 100
Time/seconds

4

2

0

2

4

Ha
rm

on
ic

os
cil

la
to

r d
isp

la
ce

m
en

t x
1(

t)

True solution
Euler integration, N = 150
Euler integration, N = 1000

Figure 11.1: True solution to the Harmonic oscillator environment eq. (11.5) and Euler
integration using a discretization of N = 150 and N = 1000. Even for an extremely
fine grid Euler integration is not exact for this problem.

We first select a grid size N , define ∆ = tF−t0
N

, and then introduce the N + 1
equidistant time points

t1 = t0 +∆

t2 = t0 + 2∆

tk = t0 + k∆

tN = t0 +N∆ = tF

We can then simply use the above expression to obtain an expression for how the system
will behave at later time points:

x(tk +∆) = x(tk) + ∆f(x(tk),u(tk), tk) (11.10)

If we introduce the shorthand

xk = x(tk), uk = u(tk)

this give rise to the following method:

Definition 11.2.1 (Euler integration). Given an ODE

ẋ = f(x,u, t),

initial condition x(t0) = x0 and an integer N , Euler integration approximate the solu-
tion to the ODE in the interval t0, tF by iteratively computing

xk+1 = xk +∆f(xk,uk, tk) (11.11)

where ∆ = tF−t0
N

is the step-size.

Euler integration has the benefit of being simple, easy to implement, and as N →∞
it will converge to the right trajectory.

11.2.1 Example A continued: Euler integration of a simple 1d
system

Consider the following variant of the system we considered in section 11.1.1, but lets
now include the control signal:

ẋ(t) = −ax(t) + bu(t)

If we apply Euler integration, we get the following simple update rule:

xk+1 = xk −∆axk +∆buk

Note that for any choice actions uk, this can be implemented using a simple for -loop.

11.2.2 Example B continued: Euler integration of the har-
monic oscillator

As a more involved example, we can apply Euler integration to the Harmonic oscillator
example section 11.1.2. In this case we must write the updates in the coordinates

x(t) =

[
x(t)
ẋ(t)

]
(see eq. (10.19)):

ẋ =

[
0 1
− k
m

0

]
x+

[
0
1
m

]
u (11.12)

If we plug this into the Euler update we get:

xk+1 = xk +∆

[
0 1
−Ω2 0

]
xk. (11.13)

An example where the system is simulated for tF = 100 seconds, and using two values
of N , can be found in fig. 11.1. As seen, even for N = 1000 the result is not very
accurate. In the example Euler integration fails to conserve energy, and the simulation
will eventually diverge. Simply put, Euler integration is not to be trusted unless N
very large.

11.3 Runge-Kutta

Runge-Kutta is a family of integration methods for ordinary differential equations which
are more exact than the Euler method. For our purpose, it is sufficient to focus on the
classic Runge-Kutta method (RK4), which I will simply present as a numerical recipe:

0 20 40 60 80 100
Time/seconds

2.5

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

Ha
rm

on
ic

os
cil

la
to

r d
isp

la
ce

m
en

t x
1(

t)

True solution
Euler integration, N = 500
RK4 integration, N = 20
RK4 integration, N = 40

Figure 11.2: Continuing the Harmonic oscillator environment but including two RK4
solution. Even for low N , RK4 remains reasonably precise.

Definition 11.3.1. RK4 The problem we consider is of the form:

ẋ = f(t,x) (11.14)

Assume we discretize the problem using a step-size ∆ and defining tk = ∆k, xk = x(tk),
we then compute xk+1 from xk as

xk+1 = xk +
1

6
∆ (k1 + 2k2 + 2k3 + k4)

where
k1 = f (tk,xk)
k2 = f

(
tk +

∆
2
,xk +∆k1

2

)
k3 = f

(
tk +

∆
2
,xk +∆k2

2

)
k4 = f (tk + h,xk +∆k3)

RK4 integration is much more precise than Euler integration at the same computa-
tional budget, and it is not much more difficult to implement. To use RK4 for a control
problem we use the RK4 algorithm above with the substitution:

f(t,x)← f(x,u)

Algorithm 18 RK4 for simulating a control problem, see theorem 11.3.1☞
Require: Dynamics f , start/end time t0 < tF , grid size N ≥ 1
Require: Initial state x(t0) and control u(t), t ∈ [t0, tF]
Ensure: Approximate trajectory x(t0) = x0, . . . ,xN ≈ x(tF)
1: tk ← t0 +

k
N
(tF − t0)

2: ∆ = tF−t0
N

3: x0 ← x(t0)
4: uk ← u(tk)
5: for k = 0, . . . , N − 1 do
6: Compute

k1 = f (xk,uk)
k2 = f

(
xk +∆k1

2
,u

(
tk +

∆
2

)
, tk +

∆
2

)
k3 = f

(
xk +∆k2

2
,u

(
tk +

∆
2

)
, tk +

∆
2

)
k4 = f (xk +∆k3,u(tk+1), tk+1)

(11.15)

7: xk+1 ← xk +
1
6
∆(k1 + 2k2 + 2k3 + k4)

8: end for

The result can be found in algorithm 18
In fig. 11.2 we see that using just N = 40 grid points Runge-Kutta is in near-perfect

agreement with the true solution, and it is roughly on-par with Euler integration using
N = 1000 time steps. Whenever we wish to test a control signal we should always use
RK42, and whenever we apply Euler integration it should always be assumed that the
result is not very exact.

11.3.1 Evaluating the cost

The cost function is typically fairly smooth (i.e., linear or quadratic) and the choice
of numerical integration scheme will be less important. We will therefore rely on the
simple Riemann approximation which is:∫ tk+1

tk

f(t)dt ≈ (tk+1 − tk)f(tk)

(valid when tk+1− tk is small). The value of the cost function can therefore be approx-
imated by:

J(x0) = cf (t0, tF , x0, xF) + ∆
N−1∑
k=0

c(xk,uk, tk).

2Or a comparable high-order integration scheme

11.3.2 Comments on simulation

The Runge-Kutta method, or a similar high-order method with N chosen reasonably
large (N = 1000 will do in nearly all cases) provides an answer as to what the system
does when we apply a particular control policy u, however it does not tell us how to
find u.

One approach, inspired by the discretization scheme above, is to simply consider u
as only being defined on the grid-points uk, and then select values at the grid-points
which produces trajectories with low cost and which satisfy the constraints. In this
manner a problem of determining a function u : R → Rd becomes one of determining
a finite set of vectors (uk)k. In general, turning a continuous-time control problem into
one defined on a discrete grid is known as discretization.

Discretization methods for simulation, and discretization methods to create a control
problem, has a large overlap, but their purpose is different. When we discretized (in
order to simulate, for instance using RK4), we want to select N as large as possible
because we want to know what the system actually does. For control, each value of uk is
a new vector of variables we have to optimize over (or select using some other method),
and the concern is therefore to select N low enough that the problem remains feasible.

Chapter 12

Linear-quadratic problems

Linear quadratic problems are by far the most important and well-studied class ofLinear quadratic

problems in control theory. The basic feature of the linear-quadratic control problem
is that the dynamics is linear:

ẋ(t) = f(x(t),u(t), t) = Ax(t) +Bu(t) + d (12.1)

We assume t0 = 0 and that the cost-function contains linear, quadratic and constant
terms. In general:

Ju(x0, tF) =
1

2
xT (tF)QFx (tf) + q⊤

Fx(tF) + qc,F

+

∫ tf

0

(
1

2
xT (t)Qx(t) + q⊤x(t) + qc +

1

2
uT (t)Ru(t) + r⊤u(t)

)
dt

(12.2)

This expression is a bit overwhelming, so it is worth emphasizing that by far the most
important terms are the two quadratic terms associated with x and u:

Ju(x0, tF) =

∫ tf

0

(
1

2
xT (t)Qx(t) +

1

2
uT (t)Ru(t)

)
dt (12.3)

For the linear-quadratic problem to be well-defined we require that Q and QF are
positive semi-definite and R is positive definite. If this was no so, the cost could be
made arbitrarily small by choosing e.g. an u such that u⊤Ru was arbitrarily small.

Linear terms in the cost-function: Assuming Q, QF and R meet these require-
ments eq. (12.3) is minimized when x = u = 0. In this case the control sequence u∗

will try to drive the system towards 0.
Suppose on other hand we wanted to drive the system towards goal states xg and

ug. We can modify our quadratic cost function slightly so it is at a minimum at these

166

new values:

Ju(x0, tF) =
1

2

∫ [
(x− xg)

⊤Q(x− xg) + (u− ug)
⊤R(u− ug)

]
dt (12.4)

=

∫ [
1

2
x⊤Qx+ q⊤x+

1

2
u⊤Ru+ r⊤u+ qc

]
dt (12.5)

where: q = Qx∗ (12.6)

r = Ru∗ (12.7)

qc =
1

2
(x∗)⊤Qx∗ +

1

2
(u∗)⊤Ru∗ (12.8)

As the calculation shows the cost-function keep the linear-quadratic form. In other
words, the role of the linear terms has to do with specifying an objective different than
x = 0.

The linear-quadratic problem has the virtue it is one of the few problems in control
theory we can solve analytically. As we will see later, most non-linear problems can
be approximated by a linear-quadratic problem and this will give rise to an important
approximate solution method (iLQR).

12.1 An exact solution to linear problems

As we saw in the example section 11.1, it was possible to exactly solve two simple
linear system without applied control. The solution method can be generalized, and
the resulting method, exponential integration, will allow us to create nearly exact,exponential inte-

gration discrete, model of linear-quadratic systems in the next chapter.
Our starting point is still the linear system dynamics:

ẋ(t) = Ax(t) +Bu(t) + d (12.9)

To solve this in general it is useful to define the so-called Matrix exponential, whichMatrix exponen-
tial for any n× n matrix A is defined using the Taylor series of the exponential function1:

eA =
∞∑
k=0

Ak

k!
= I + A+

1

2
A2 +

1

6
A3 + · · · . (12.10)

The reason we are interested in the matrix exponential is because it satisfy the following
property, which you can easily check by simply differentiating the right-hand side of
eq. (12.10) with respect to t:

d

dt
eAt = AeAt. (12.11)

1The matrix exponential can be imported as from numpy.linalg import expm and then simply used

as expm(A)

We first multiply both sides of eq. (12.9) with the matrix exponential to get:

e−Atẋ(t) = e−AtAx(t) + e−At(Bu(t) + d) (12.12)

Re-arranging the terms:

e−At(Bu(t) + d) = e−AtAx(t)− e−Atẋ(t) = d

dt

[
e−Atx(t)

]
(12.13)

We get rid of the derivative on the right-hand side by integrating from t0 to t:∫ tf

t0

(
d

dt
e−Atx(t)

)
dt =

∫ tf

t0

e−At(Bu(t) + d)dt (12.14)

⇒ e−Atx(t)− e−At0x(t0) =
∫ tf

t0

e−At(Bu(t) + d)dt (12.15)

⇒ x(t) = eA(t−t0)x(t0) +

∫ t

t0

eA(t−τ)(Bu(τ) + d)dτ (12.16)

This is still slightly unwieldy, however, assuming u is constant and A is invertible this
becomes:

x(t) = eA(t−t0)x(t0) +

∫ t

t0

eA(t−τ)(Bu+ d)dτ (12.17)

= eA(t−t0)x(t0) + A−1(eA(t−t0) − I)(Bu+ d) (12.18)

This tells us that when we use linear dynamics, the solution at a later time x(t) can be
computed exactly from x(t0) assuming u is constant in [t0; t].

What if A is not invertible?

The last expression A−1(eA(t−t0)−I) assumes that A is invertible, which naturally raises
the question what happens when A is not invertible. If we think about this as engineers,
it is easy to come up with physical systems where A is not invertible. Therefore, the
problems with A−1 can be expected to go away with a little more mathematical. The
solution for general matrices A turn out to be simple: we can simply use the definition
of the matrix exponential as a Taylor series eq. (12.10) directly, and write the integral
as an infinite sum of terms that don’t depend on A−1.

12.1.1 Example 2: Level flight for a 747

As a more involved example of the generality of the linear-quadratic control problem we
will consider the problem of controlling a Boeing 747 in level flight condition described
by the coordinate system indicated in fig. 12.1.

Figure 12.1: Illustration of coordinate system of Boing 747 level-flight model

A simplified model, suitable for level flight, can be described as the linear model:
u̇
ẇ
q̇

θ̇

 =

−0.003 0.039 0. −0.322
−0.065 −0.319 7.74 0.
0.02 −0.101 −0.429 0.
0. 0. 1. 0.

︸ ︷︷ ︸

A

u− uw
w − ww

q
θ

︸ ︷︷ ︸

x

+

0.01 1.
−0.18 −0.04
−1.16 0.598
0. 0.

︸ ︷︷ ︸

B

[
e
t

]
︸ ︷︷ ︸

u

(12.19)

For the state x, the coordinate u refers to the the speed in the longitudinal direction
and w is the speed in the direction perpendicular to u. The values uw and ww are
constants, signifying the value of u and w relevant for the level flight conditions at
which the model is derived. θ is the angle with respect to the horizontal and q the
angular velocity.

In other words, x1 > 0 will correspond to the increase in airspeed (a small value)
relative to the default airspeed uw. This interpretation explain why x is small and the
dynamics is still ẋ = Ax+Bu. Note the control u corresponds to the elevator angle e
and the throttle t.

The cost function is defined by first defining the output variable y

[
y1(t)
y2(t)

]
=

[
1. 0. 0. 0.
0. −1. 0. 7.74

]
︸ ︷︷ ︸

=P

u(t)− uw(t)
w(t)− ww(t)

q(t)
θ(t)

 (12.20)

The two variables y1 and y2 corresponds to the airspeed and climb rate respectively.
The cost function is then defined using these two variables:

J =

∫ tF

0

(
1

2
∥y∥2 + 1

2
∥u∥2

)
dτ (12.21)

and is seen to have the standard LQ form with R = 1I and Q = P⊤P . For a realistic
airplane there are obviously restrictions on the available controls and possible plane
configurations, however, since the system is formulated as small deviations around the

intended behavior the autopilot will not encounter the boundary conditions. In other
words, the problem is formulated without constraints, and it is assumed some other
part of the autopilot checks if the computed control trajectory is in fact feasible.

Chapter 13

Discretization of a control problem

The previous chapter defined the (idealized) continuous control-problem as the dynam-
ics f , a cost function and a set of constraints. We call this the continuous-time formu-
lation of the control problem. In this section, we will consider how we can transform f
to an (approximate) discrete model fk(xk,uk) which will add additional techniques to
our toolbox.

13.1 Building models by discretization

Suppose we want to build a controller that can balance a physical pendulum robot. In
this case there are two practical limitations:

• For the controller, computing the control signal u(t) given x(t) takes some time,
and can therefore only be done a certain number of times a second

• The robot can only process a limited number of control commands u(t) in a given
time period

To overcome these limitations, many practical control systems plan using a discrete
model of the dynamics. Specifically, a discretization step ∆ is chosen and we then
assume:

• Time is discretized as tk = t0 +∆k, k = 0, . . . , N where tN = tF .

• The agent interacts with the world at time tk, thereby observing xk = x(tk), and
(immediately) sends a control command uk = u(tk)

• It is assumed that when the Agent applies control uk, then this control is applied
constantly to the environment in the time interval [tk; tk+1[(sometimes called
zero-hold), see fig. 13.1

171

Figure 13.1: Zero-hold discretization of a controller: The control signal which is actually
applied to the environment is u(t) = uk for u ∈ [tk, tk+1[

Thus, the agent will plan its controls using a model/cost-function of the form:

xk+1 = fk(xk,uk) (13.1)

Ju=(u0,u1,...,uN−1)(x0) = cf (t0,x0, tF ,xF) +
N−1∑
k=0

ck(xk,uk). (13.2)

where fk and ck needs to be determined. This looks nearly identical to simulation,
and indeed there will be overlap, however it should be emphasized that the model fk
is internal to the agent and one which we have to construct from the true dynamics
ẋ = f(x,u, t) or alternatively, learn. This model will be subject to other demands than
simulation; if the model is defined using a very fine grid, or it is expensive to compute,
it may simply not be feasible to use it for planning. For these reasons it should from
now on, as will nearly always be the case, simply be assumed the model is a fairly
coarse approximation.

13.1.1 Example: The discrete linear-quadratic model

The discrete linear-quadratic model, which we will study in greater detail later,discrete linear-
quadratic model has dynamics of the form:

xk+1 = Akxk +Bkuk + dk (13.3)

Where Ak, Bk and dk are fixed and known. The cost function is assumed to be
quadratic, for instance:

ck(xk,uk) =
1

2
(xTkQkxk + uTkRkuk) (13.4)

cN(xk) =
1

2
xTkQNxk (13.5)

where Qk ∈ Rn×n is positive semi-definite and Rk ∈ Rm×m is positive definite for all
k = 0, . . . , N . The linear-quadratic model is one of the most well-studied objects in
control theory, both because it is flexible and because it allows for quick simulation.

Our task, when we want to use a linear-quadratic model, is therefore to somehow
define Ak and Bk from the true dynamics f .

13.1.2 Discretization using Euler integration

Our main discretization procedure is to simply use Euler integration. Given a dis-
cretization time ∆ we simply define:

xk+1 = fk(xk,uk) = xk +∆f(xk,uk, tk). (13.6a)

Why not RK4? It may appear odd why Eulers method and not e.g. RK4 is a
prevalent discretization method. Arguments in favor of Euler discretization includes
that it is simpler, meaning that if we want to compute gradients of fk it involves less
algebra, and that it is easier to perform error analysis (a subject not covered in this
course). A more honest answer is that the various implementations of control methods
I have looked at when planning this course all appears to use Eulers method and so I
stuck to that choice.

At any rate, a consequence of using Eulers method, especially since the time constant
∆ will often be fairly large, is that the discretized model should always be assumed to
be approximate at best.

13.1.3 The special case of linear dynamics

Linear dynamics can be used to illustrate Euler discretization. Recall linear dynamics
refers to

ẋ(t) = Ax(t) +Bu(t) + d (13.7)

and we consider A and B as independent of time. Simply inserting into eq. (13.6) we
get

xk+1 = xk +∆f(xk,uk) (13.8)

= (I +∆A)xk +∆Buk +∆d (13.9)

If we consider the general form of the discrete linear model xk+1 = Akxk + Bkuk + dk
we quickly see the Euler discretization is equivalent to selecting Ak = I+∆A, Bk = ∆B
and dk = ∆d.

But we can in fact do a lot better. Recall we showed in section 12.1, eq. (12.18),
that:

x(t) = eA(t−t0)x(t0) + A−1(eA(t−t0) − I)(Bu+ d) (13.10)

If we consider the special case where t0 = tk and t = tk+1 = tk +∆, and recall that the
control signal per definition is constant between [tk; tk+1[, then the actual next state
xk+1 will be:

xk+1 = eA∆xk + A−1(eA∆ − I)Buk + A−1(eA∆ − I)dk (13.11)

So if the continuous dynamics is linear, we can obtain an exact1 discrete model by
using the coefficient matrices2 Ak = eA∆, Bk = A−1(Ak − I)B and dk = A−1(Ak − I)d

0 20 40 60 80 100
Time/seconds

2.5

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

Ha
rm

on
ic

os
cil

la
to

r d
isp

la
ce

m
en

t x
1(

t)

True solution
Euler integration, N = 500
RK4 integration, N = 20
Exponential integration, N = 20

Figure 13.2: The harmonic oscillator example but also showing the result using exact
integration method described in section 13.1.3. Since no force is applied, the exact
integration method will agree with the true solution regardless of how low N is.

. This method is called exponential integration, and since the overhead involvedexponential inte-
gration in computing the coefficient matrices (a matrix exponential and a matrix inverse) is

usually negligible, it should always be preferred over Euler integration – unfortunately
it is only applicable to linear models. Figure 13.2 show exponential integration applied
to the Harmonic oscillator environment using a very coarse time discretization. As we
can see, because the force is u = 0 the simulation agrees exactly with the true solution
regardless of N .

13.1.4 Coordinate transformations

In the pendulum example the state is represented as

x =

[
θ

θ̇

]
.

1assuming the control signal u(t) is constant on all intervals [tk, tk+1[
2Although this derivation assumes that A is invertible this is not necessary, and you can apply

exponential integration to systems where A is not invertible such as A = 0

As we already saw, the angular coordinate θ has the annoying property it is periodic in
2π. This will create a problem when we design cost functions since a linear or quadratic
term in θ, which corresponds to the same system configuration, can become arbitrarily
large. This issue is not specific to to the pendulum, but is to some degree present in
any mechanical system described by angles3.

A way to get around this problem is to change the coordinates of the angle to be
expressed in terms of sin and cos. In other words we apply the transformation:

ϕx :

[
θ

θ̇

]
7→

sin(θ)cos(θ)

θ̇

 . (13.12)

This expands the dimensionality of the state from 2 to 3, and has the benefit of making
the cost function easier to express. We can do something similar with the action-vector.
In the pendulum example, recall that u is subject to the constraint: −U ≤ u ≤ U ,
however if we transform u to the new coordinates:4

ϕu :
[
u
]
7→

[
tanh−1 u

U

]
. (13.13)

then the new coordinate vector will lie in]−∞;∞[and will therefore not be constrained.

13.1.5 Discretization the cost

The discretization of the cost is exactly the same as for simulation:

Ju(x0) = cN(xN) +
N−1∑
k=0

ck(xk,uk) (13.14)

cN(xN) = cf (x0, t0,xN , tN) (13.15)

ck(xk,uk) = ∆c(xk,uk, tk). (13.16)

13.1.6 Discretization of an environment

We can now construct a discretized version of any control problem ẋ = f(x,u, t) using
the following recipe:

• Select a discretization time step ∆

• (Optionally:) Select coordinate mappings ϕx and ϕu

3Furthermore it not one we can easily overlook; my own attempts at using control methods such
as iLQR on the Pendulum environment without transformations failed.

4Recall that tanh maps from]−∞,∞[to]− 1; 1[

• Let xd = ϕx(x) and ud = ϕu(u) be the coordinates used in the discrete model.
The Euler discretization of the dynamics is:

xdk+1 = ϕx
(
ϕ−1
x (xdk) + ∆f(ϕ−1

x (xdk), ϕ
−1
u (uk), tk)

)
(13.17)

= fk(x
d
k,u

d
k) (13.18)

• The total cost, as well as the cost obtained in each time step, is given in eq. (13.14).

• In the specific case of linear dynamics we use exponential integration eq. (13.11)
(for simplicity variable transformations are omitted since they are not relevant):

xdk+1 = eÃ∆xdk + (Ã)−1(eÃ∆ − I)(Budk + dk). (13.19)

One slight problem with this expression is what occurs when A is not invertible. The
true answer is the case can be addressed by an appropriate factorization of A, however
I have adapted a much simpler approach by defining Ã = A − 10−6I in the case A is
singular, since this will ensure Ã is non-singular and does not result in a meaningful
change in the dynamics.

13.2 Notes on implementation

Please consult the online documentation for examples on how to discretize your own
ControlModel . I have created models and environments corresponding to the systems we
will often work with, for instance the Pendulum.

As an example, the following code define a continuous-time pendulum model (with-
out coordinate transformations), simulate the effect of a policy, and plot the trajectory:

1 # chapter7contiuous/model_example_plot.py

2 cmodel = PendulumModel()

3 x0 = cmodel.x0_bound().low

4

5 def policy(x, t):

6 return [3 * np.sin(2 * t)]

7

8 xx, uu, tt = cmodel.simulate(x0, policy, t0=0, tF=10)

9 plt.plot(tt, xx[:, 0], label="$\\theta$")

10 plt.plot(tt, uu[:, 0], label="u")

The simulated trajectory is shown in fig. 13.3 The simulator uses RK4 on a fine grid,
and can be considered the ground-truth effect of the policy. Note the policy has to
return a list (or 1-d numpy array), because the action is always a vector.

13.2.1 Discretized model

It is easy to specify coordinate transformations (see the online documentation). This
examples show the pre-made Pendulum model with the sin/cos coordinate transforma-
tion applied.

0 2 4 6 8 10
Time/seconds

3

2

1

0

1

2

3

4 u

Figure 13.3: Simulated trajectory of the pendulum-environment

1 # chapter7contiuous/model_example.py

2 dmodel = DiscreteSinCosPendulumModel()

3 ud = sym.symbols(f"u0:{dmodel.action_size}")

4 xd = sym.symbols(f"x0:{dmodel.state_size}")

5 x_next = dmodel._f_discrete_sym(xd, ud, dmodel.dt)

6 print("First coordinate of f_k(x,u,t)", x_next[0]) # The symbolic expression for the first coordinate of the Euler update

7 theta = np.pi/4

8 x = [np.sin(theta), np.cos(theta), 0.5] # Get a state.

9 u = [1] # Get an action

10 print(dmodel.f(x,u))

The script evaluates the dynamics xk+1 = fk(x0, uk = 1) and produces the output:

1 First coordinate of f_k(x,u,t) sin(0.02*x2 + atan2(x0, x1))

2 [0.71414238 0.70000048 0.7531149]

Note the discretized pendulum now has an observation space of three coordinates to
reflect the coordinate change.

13.2.2 Models to environments

Transforming a discrete model to an environment can also be done easily (see the on-
line documentation). The following example shows an interaction with the Pendulum-
environment corresponding to the previous model. Note that it has an action-space
and the familiar step and reset -functions:

1 # chapter7contiuous/model_example.py

2 env = GymSinCosPendulumEnvironment()

3 env.reset() # Reset both the time and state variable

4 u = env.action_space.sample()

5 next_state, reward, done, _, info = env.step(u)

6 print("Current state: ", env.state)

7 print("Current time", info['time_seconds'])

This produces output

1 Current state: [-2.92865580e-04 -9.99999957e-01 2.92618767e-02]

2 Current time 0.02

13.2.3 Training control methods

The Agent / train interface does not change. All we need to remember is that the state
s now corresponds to x and the reward is equal to minus one times the cost.

Let us try to let a random agent interact with our pendulum model. This is accom-
plished in the usual way:

1 # chapter8discretization/random_agent.py

2 env = GymSinCosPendulumEnvironment()

3 agent = RandomAgent(env)

4 stats, trajectories = train(env, agent, num_episodes=1, return_trajectory=True, verbose=False)

5 print("Total cost: ", stats[0]['Accumulated Reward'])

6 print("Trajectory length/steps: ", stats[0]['Length'])

7

8 plt.plot(trajectories[0].time, trajectories[0].state[:,0], label="$\\sin(\\theta)$")

9 plt.plot(trajectories[0].time, trajectories[0].state[:,1], label="$\\cos(\\theta)$")

10 plt.xlabel("Time/seconds")

11 plt.legend()

12 savepdf("random_agent_pendulum_b")

With output

1 Total cost: -30091.075409434303

2 Trajectory length/steps: 250

The environment terminated after 5 seconds (this is easy to set, see the online
documentation), which for ∆ = 0.02 corresponds to 250 steps (250 = 5

0.02
). This

mean the environments step-function is called 250 times, the agents policy (and train)-
function is called 250, however we end up with 251 different states, since at the last step
we still obtain a final state. For this reason the trajectories x-value as plotted above
actually have length 251.

0 1 2 3 4 5
Time/seconds

1.0

0.8

0.6

0.4

0.2

0.0

0.2

0.4 sin()
cos()

Figure 13.4: Plot of sin(θ(t)) and cos(θ(t)) arising letting a random agent interact with
the pendulum environment.

Chapter 14

PID Control

Proportional-integral-derivative (PID) control takes a very direct approach to control,
namely to simply define the control law u(t) directly from x(t) without using a model
of the environment. It is therefore entirely heuristic and requires tuning by an engineer.

Despite the simplicity, it is said 90% of all control applications uses variations of
PID control. This includes everything from large industrial plants to the read-head in
a magnetic hard drive, and from air-condition units to the original Apollo 11 moon
lander.

The principle is quite simple. Suppose we have to heat up a swimming pool using a
heating element. In this case we observe the temperature x(t), which is a single number,
and we want to keep the temperature at a target temperature x∗. Our available control
is a heating element where we can control the watts applied u(t) (also a single number).

We could either try to come up with a model of the swimming pool, which would
be difficult, or we could adopt a simple rule updating u(t) in each time step:

u(t)←

{
u(t) + {small amount} if x(t) < x∗

u(t)− {small amount} if x(t) ≥ x∗
(14.1)

PID control builds on this idea, but also overcomes some of the limitations of this
approach.

14.1 The P in PID ensures we reach our goal

The P in PID is for proportion, and is the most important term. Consider a problem
analogous to the swimmingpool, namely the problem of controlling a 1d train on a
track. The train has a location x(t), we can apply a force u(t) in the forward direction,
and the train always starts at x(0) = −1. The goal for the train is to reach (and stand
still) at the destination at x = 1.

The problem is formally equivalent to the Harmonic oscillator with k = 0, and so
the train is described using the position and velocity. For simplicity we will just keep
referring to x(t) as the x-position.

180

Figure 14.1: A sketch of the locomotive environment. The locomotive has to drive to
the target x∗ = 0 indicated by the red triangle on the track. The locomotive starts at
x(0) = −1 and can apply a force u(t) in the forward/backward direction.

Suppose we define the goal as x∗ = 0. The simple rule, increase force u(t) if
x(t) < x∗, can be defined by defining the error:

e(t) = x∗ − x(t) (14.2)

And then apply a control signal:

u(t) = Kpe(t) (14.3)

The name, proportional, exactly refers to how the magnitude of the control is propor-
tional to how far away from the goal we presently are. The full method, including two
terms we have not discussed yet, can be found in algorithm 19, and the simple controller
described in this section is recovered if we set Kp > 0 and Ki = Kd = 0.

If we apply the method to the locomotive problem we obtain the result in fig. 14.2,
here using two values of Kp. We see that when Kp is low, the magnitude of u(t) will
be low, hence the system slowly reaches the goal at x∗ = 0, but then overshoots; after
it overshoots the train begins to slowly break, and then overshoots the goal again in
the opposite direction. Since there is no friction in the train system it will in fact keep
oscillating/overshooting.

14.2 The D in PID control oscillations

The D-term stands for derivative and is intended to fix the problem of oscillations/over-
shooting.

Let’s consider the problem focusing on the orange curve in fig. 14.2. The error
starts out at e(0) = 1, giving rise to a control u(0) = Kd. The error then decreases,
and so will u(t) – but not fast enough to avoid overshoot! What we want is to add the

0 2 4 6 8 10 12 14
Time/seconds

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

x(
t)

Kp = 5
Kp = 40

Figure 14.2: Train control using various values of Kp. The figure show the x-position
of the train and the goal is to get to the position x(t) = 0 while the train is standing
still.

following rule: If the error is positive but decreasing, then don’t let u(t) be as large as
it otherwise would be. If the error is decreasing or not is measured by the derivative
de(t)
dt

, and so what we want is:

u(t) = Kpe(t) +Kd
de(t)

dt
(14.4)

We cannot compute this exactly but we can approximate it:

de(t)

dt
≈ e(t)− e(t−∆t)

∆t

Where ∆ is the discretization time. The update rule is now:

u(t) = Kpe(t) +Kd
e(t)− e(t−∆)

∆
(14.5)

So what we need is a way to keep track of e(t) at the previous time step. The perfor-
mance of the new controller is illustrated in fig. 14.3. If Kd is relatively low, we still see
the oscillating effect. If Kd is increased to a high value, here Kd = 100, then the con-
troller becomes hesitant and only reaches the target x∗ = 0 very slowly. A reasonable
middle-ground can be found with a bit of tuning, in this case Kd = 50.

0 2 4 6 8 10 12 14
Time/seconds

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

x(
t)

Kp = 40, Kd = 10
Kp = 40, Kd = 50
Kp = 40, Kd = 100

Figure 14.3: PID control for the train using Kp = 40 for various values of Kd

14.3 The I in PID fix droop

Lets suppose the train is put on an inclined plane as illustrated in fig. 14.4. Our
Kp = 40, Kd = 50 controller will no longer fare well. The reason is that if the train
is standing still at the target, e(t) = 0, then ė = 0 and u(t) = 0, in which case the
slope would drag the train downwards. Thus, the PD-controller cannot stand still at
e(t) = 0, but will in fact reach an equilibrium at around x(t) = −0.6. This effect is
called droop and is illustrated in the right-hand pane of fig. 14.4: the train never reach
the target x∗ = 0.

The way to overcome this is to add a new term which, in effect, says: Whatever else
is true, if e(t) > 0 for a long time, keep increasing u(t). The meaning of being low for
a long time can be implemented using the integral I(t) =

∫ t
0
e(τ)dτ and so we obtain

the ideal controller:

u(t) = KP e(t) +KI

∫ t

0

e(τ)dτ +KD
de(t)

dt
(14.6)

To implement a discrete version of this, note the integral term can be discretized as:

I(t) =

∫ t−∆

0

e(τ)dτ +

∫ t

t−∆

e(τ)dτ = I(t−∆) +∆e(t) (14.7)

And so to implement this method, all we need is a way to store the old value of the
integral I(t−∆) and update it in each step. As shown in fig. 14.5 this overcomes the
problem of droop:

0 2 4 6 8 10 12 14
Time/seconds

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

x(
t)

Kp = 40, Kd = 50

Figure 14.4: Locomotive on an inclined plane. The Kp + Kd-controller con no longer
stand still at xt = x∗ since when e(t) = 0, the controller will apply no force u(t) = 0,
and so the train will slide backwards. This is called droop.

14.3.1 Tuning PID controllers

We can summarize these observations as follows:

• Set Ki = Kd = 0. Then select Kp so high the system reaches the desired state
reasonably quickly. Ensure the boundary conditions are not violated.

• If the system oscillates or overshoots dramatically, add a derivative term.

• If the system experience droop, add an integral term

• In both cases, consider reducing Kp a little for stability.

This is only scratching the surface. There exist a large literature on tuning PID con-
trollers and many practical issues such as multiple targets, better estimation of deriva-
tives, stability, etc. etc.

14.4 Example: The car-model

The car model has two control parameters: The angle of the front wheels with respect to
the body, u1(t), and the engine force u2(t). This does not exactly match our formulation
since we considered the case of a single input x and a single control u, however, we can
use two PID controllers for the two output parameters.

Recall the state-vector x(t) contained some rather complicated terms, however,
three of the coordinates capture our attention:

• x1 = vx: The velocity in the direction of the car frame, i.e. forward

• x4 = eψ: The angle the car body forms with the centerline. I.e. if this angle is 0,
we are driving in the same direction as the centerline, and if it is positive we are
steering towards the right-most barrier.

0 2 4 6 8 10 12 14
Time/seconds

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

x(
t)

Kp = 40, Ki = 0, Kd = 50
Kp = 40, Ki = 10, Kd = 50

Figure 14.5: Locomotive on the inclined plane. When we set Ki > 0, the train will
increase u(t) in proportion to the total area of the error, thereby eventually overcoming
the incline and reach x(t) = x∗.

• x6 = ey: How far, in the perpendicular direction, the car is from the centerline of
the track.

The first idea is to make the car drive at a constant (slow) velocity. We can accomplish
this by letting x1 be the input to a PID controller, u2 (engine force) the output (as
computed by the PID), and then let x∗ be some (low!) desired velocity. It is now a
simple matter of choosing Kp, Ki, Kd, which in this case can be done by choosing only
Kp.

The steering wheels are a bit more tricky. One idea is to use a separate PID
controller with x5 be the input and u1 as the output. If x5 > 0, it means that we are
to the right of the centerline, in which case we should steer left, in other words when
the PID computes a control output of u(t) and we apply u1(t) = u(t) to the car (as a
practical matter, if we drove in the clockwise direction, we would apply −u(t)).

The result of the controller, using Kp = 1 (for the angle controller) and Kp = 1.5
(for the velocity controller) and a target of 0.3 for the velocity (all other terms are set
to zero) is shown in fig. 14.6 as well as the path taken by the car (black)

We see the PID controller gets the job done, in the sense no constraints are violated
and we eventually get to the goal in about 70 seconds, however it is awfully slow and not
very stable, and experience oscillations in x5 (distance to center-line) both due to the
curvature of the track, which the controller is blissfully unaware of until it begins to go
straight in a curve, as well as overshooting since when it drives towards the center-line

Algorithm 19 PID controller☞
1: Kp, Ki, and Kd

2: ∆ time between observations xk (discretization)
3: x∗ Control target
4: eprev ← 0 ▷ Previous value of error
5: function Policy(xk) ▷ PID Controller called with observation xk
6: e← x∗ − xk ▷ Compute error
7: I ← I +∆e ▷ Update integral term
8: u← Kpe+KiI +Kd

e−eprev
∆

▷ PID control signal, including derivative term
9: eprev ← e ▷ Save current error for next iteration
10: return u
11: end function

0 10 20 30 40 50 60 70
Time/seconds

0.3

0.2

0.1

0.0

0.1

0.2

0.3

velocity x1
ey (distance to centerline)

4 3 2 1 0 1 2 3

1

0

1

2

3

4

5

6

Figure 14.6: PID control of the car model using just the Kp terms. The car tries (and
succeeds) at driving with a constant (low) velocity and steers towards the centerline.
We see the car experience oscillations/overshooting.

at an angle it will automatically overshoot.
One fix is to include a derivative term, however an alternative idea is to use the

information in x4, the angle with the centerline. The intuition is this angle may in-
crease rapidly if the car enters a curve and so there may be benefit in also using this
information. Doing this is quite simple: we just let the input to the PID controller
could be

x(t) = x4(t) + x5(t).

This works better, in the sense of reducing the oscillations and allowing the car to travel
at a greater speed, however I have not tried to extensively tune the parameters to the
PID controllers and I am curious how fast the car could theoretically go using PID.

Chapter 15

Direct methods

As we in section 5.1.4, a deterministic problem can be solved using open-loop control.
That is, an optimal policy is just a sequence of actions found by optimization. Since the
models used in control, ẋ = f(x,u, t) is deterministic one should expect optimal control
is intrinsically tied to simple optimization. We will therefore explore optimization-based
methods to optimal control in this chapter.

15.1 Optimization

Since this chapter will treat optimization, it is useful to discuss optimization from an
abstract point of view before proceeding.

15.1.1 Non-linear optimization

A general non-linear optimization problem, sometimes known as a non-linear pro-
gram, typically take the following abstract definition for a minimization problem overnon-linear pro-

gram z ∈ Rn:

minz E(z) subject to
h(z) = 0
g(z) ≤ 0
zlow ≤ z ≤ zupp

(15.1)

For some functions E, h and g. The goal is to find the optimal z∗ which minimizes
this expression.

There are no general ways to solve such a problem, however, assuming the problem
is not too complicated methods such as sequential convex programming may yieldsequential convex

programming good results. We will therefore assume we have access to a way of solving such a
problem in section 15.3 without understanding how it works.

What is important is to note that for these methods to work well, we need an
initial guess for the solution (and the performance depends on how good that guess
is; for instance if it satisfy the constraints), and it is recommended we can compute
gradient/Hessian of E as well as the Jacobians of g and h.

187

15.1.2 Linear-quadratic optimization

Quadratic programming is a particular case of the above problem where the cost isQuadratic pro-
gramming quadratic, the constraints are linear, and Q is symmetric Q = Q⊤

minimize 1
2
xTQx+ cTx

subject to Ax ≤ b
and Fx = g

(15.2)

In the case where Q is positive definite and the problem is not very large (which is the
case relevant to us) it can be assumed the problem can be solved using simply library
calls.

15.2 Optimizing the discrete problem

Consider the case of the linear-quadratic regulator with dynamics

xk+1 = Akxk +Bkuk + dk (15.3)

and a quadratic cost function

Ju0,...,uN−1
(x0) = x⊤

NQNxN +
N−1∑
k=0

(x⊤
kQkxk + u⊤

k Rkuk). (15.4)

We will also assume the system is subject to linear constraints such as F ′x = h′ and
F ′′x = h′′. Since the cost function is at most quadratic it is little surprise this problem
can be put into the form of a quadratic program by collecting all N control vectors uk
into one large vector and consider the problem as a quadratic programming problem in
this vector.

However, we can do better. A problem with this approach is that small initial
changes in controls near k = 0 may result in large changes at subsequent times, and
so the problem is not very stable. A better approach is to also consider the N state-
vectors x1, x2, . . . ,xN as part of the optimization problem. The new problem therefore
becomes a N(d+n)-dimensional optimization problem over x = (x1,u0, . . . ,xN ,uN−1)
defined as:

minimize: x⊤
NQNxN +

N−1∑
k=0

(x⊤
kQkxk + u⊤

k Rkuk) (15.5a)

simple constraints: F ′x ≤ h′, F ′′x ≤ h′′, (15.5b)

and dynamic constraints: Akxk +Bkxk + dk − xk+1 = 0 (15.5c)

In other words, we adopt a strategy of expanding the conditionality of the optimization
problem and adding new constraints to account for the dynamics in eq. (15.2), but at
the same time the overall problem becomes more numerically stable.

15.2.1 Transcription Methods

The choice we made above, between optimizing just the action values (known as shoot-
ing) or optimizing both state and action values (as we in fact did, known as colloca-shooting

tion) is a fundamental choice in any numerical algorithm for optimizing a discretizedcollocation

problem. The later method, collocation, produces more numerically stable algorithms
and is therefore preferred in a variety of contexts. It also easier to implement, since
modern optimization software for quadratic programs allows us to specify cost-functions
and constraints on a per-variable basis as in eq. (15.5), rather than requiring us to figure
out what the matrices Q and q are in eq. (15.2), it is easy to implement.

15.2.2 Comments about optimizing the discrete problem

The disadvantage of optimizing the discrete control problem as in eq. (15.5) is that
if N is large, the optimization may be numerically costly (to the point of becoming
unfeasible), and furthermore, that although we solve the discrete problem exactly the
actual environment will diverge from this solution due to the discretization error. That
is, our closed-loop controller cannot be trusted after a certain number of time steps.
While this might discourage us from using the method directly, both limitations can
be addressed to produce powerful control methods as we will see in algorithm 29 and
when we discuss the LMPC controller in section 18.3.

15.3 Direct collocation

In this section, we will consider an important class of solution methods which assume

• We assume we have a very good approximation to the underlying dynamical model
ẋ = f(x,u) and

• We are concerned with planning an optimal trajectory.

Examples of such situations could be to bring a satellite into orbit or landing a space
shuttle. Within this class of problems, direct collocation methods (or simply directdirect colloca-

tion methods methods) is perhaps the best method for trajectory optimization, and it has the benefit
of easily incorporating non-linear constraints and non-typical cost functions.

The easiest way to think about direct methods is as an extension of the simple
discrete optimization approach in the previous chapter, but applied directly to the
dynamical model f rather than a discrete approximation.

15.3.1 Problem formulation

The problem we consider is the general optimal control problem discussed in chapter 10.
Recall that t0 and tF refer to the start and end-time of the control and the functions x(t)

and u(t) are defined for t ∈ [t0, tF]. Given this, we consider the familiar cost-function:

cf (t0, tF ,x (t0) ,x (tF)) +

∫ tF

t0

c(τ,x(τ),u(τ))dτ (15.6)

Note this cost function depends on t0, tF and u, but also x since we are using a
collocation method. The cost function is subject to a number of constraints. Most
importantly that x and u must obey the system dynamics

ẋ(t) = f(x(t),u(t), t), t ∈ [t0, tF] (15.7)

as well as whatever constraints the system may be subject to. These can either relate
to what the system does on the path, i.e. for t ∈]t0, fF [,

xlow ≤ x(t) ≤ xupp , path bound on state,
ulow ≤ u(t) ≤ uupp , path bound on control.
h(x(t),u(t), t) ≤ 0, path constraint.

(15.8)

Or the constraints can be applied to the start and end-times of the system:

t0low ≤ t0 ≤ t0upp , bounds on initial time,
tFlow ≤ tF ≤ tFupp , bounds on final time,
x0, low ≤ x (t0) ≤ x0, upp , bound on initial state,
xF, low ≤ x (tF) ≤ xF, upp , bound on final state.

(15.9)

Conceptually, the goal is simple: Define the free variables as Z = (t0, tF ,x,u), then
maximize the non-linear function eq. (15.6) subject to the constraints eq. (15.7), eq. (15.8)
and eq. (15.9). We want to do this using a non-linear program in the form described in
eq. (15.1), and so our main challenge is to discretize u and x which are functions.

15.3.2 Collocation

All discretization methods take the same starting point. We assume the time coordinate
t, which goes from t0 to tF , has been discretized into N + 1 time points

t0 < t1 < t2 < · · · < tk < · · · < tN−1 < tN (15.10)

In the simplest case, which we will follow here, this is done by defining each time point
as:

tk =
k

N
(tF − t0) + t0. (15.11)

The main observation is that the time points are functions of t0 and tF . Given this we
also define hk = tk+1 − tk for k = 0, . . . , N − 1.

Next, we represent the functions x(t) and u(t) by their values in t0, . . . , tN . I.e. we
introduce theN+1 decision-variables x0, . . . ,xN ∈ Rn and theN variables u0, . . . ,uN−1 ∈

Rd. These 2N + 1 variables therefore have to be optimized over and will be part of z
in the non-linear program (see eq. (15.1)).

What remains is two things: We have to represent the cost function eq. (15.6) in
terms of xk and uk, and we have to translate the system dynamics constraint eq. (15.7)
as well as the other constraints eq. (15.8) and eq. (15.9) into constraints on the variables
xk and uk.

Trapezoid collocation

The simplest way to accomplish this is using trapezoid collocation. Trapezoid col-trapezoid collo-
cation location is the geometrically obvious approximation of an integral∫ xk+1

xk

f(x)dx ≈ 1

2
(xk+1 − xk)(f(xk+1) + f(xk)) (15.12)

which implies:

∫ xN

x0

f(x)dx ≈ 1

2

N−1∑
k=0

(xk+1 − xk)(f(xk+1) + f(xk)) (15.13)

to all continuous aspects of the optimization problem. For instance, the cost function
eq. (15.6) becomes a sum:

cf (t0, tF ,x (t0) ,x (tF)) +

∫ tF

t0

c(τ,x(τ),u(τ))dτ (15.14)

≈ cf (t0, tF ,x0,xN) +
N−1∑
k=0

hk
2

(ck+1 + ck) (15.15)

ck = c(xk,uk, tk) (15.16)

The system dynamics constraints ẋ(t) = f(x(t),u(t), t) from eq. (15.7) can be dis-
cretized by integrating both sides from tk to tk+1 and using the trapezoid quadrature
rule: ∫ tk+1

tk

ẋ(t)dt =

∫ tk+1

tk

f(x(t),u(t), t)dt (15.17)

≈ hk
2
(f(xk+1,uk+1, tk+1) + f(xk,uk, tk)) (15.18)

The left-hand side is the integral of a derivative which can be solved∫ tk+1

tk

ẋ(t)dt = x(tk+1)− x(tk) = xk+1 − xk (15.19)

Combining these, and using fk = f(xk,uk, tk) as a shorthand, we have derived the N
collocation constraints:collocation con-

straints

xk+1 − xk =
hk
2
(fk+1 + fk). (15.20)

Other constraints

The remaining constraints are easily dealt with simply by translating them to apply at
the discrete time-points:

x(t) ≤ xupp → xk ≤ xupp (15.21a)

h(x(t),u(t), t) ≤ 0 → h(xk,uk, tk) ≤ 0 (15.21b)

x (tF) ≤ xF,upp → xN ≤ xF,upp . (15.21c)

15.3.3 Constructing the solution

In summary, the problem of optimizing the trajectory x(t) and u(t) has been re-cast
as minimizing the cost function eq. (15.15) with respect to all free variables (xk)k,
(uk)k and t0, tF . Once this minimization has been accomplished we are left with the
optimal value of the knot-points x∗

k,u
∗, and from these we have to re-construct the

corresponding optimal trajectory x∗(t) and u∗(t). The control trajectory is recovered
using simple linear interpolation. To keep the mathematics simple suppose t ∈ [tk, tk+1]
and define τ = t− tk then:

u(t) ≈ uk +
τ

hk
(uk+1 − uk) . (15.22)

To recover x(t) from xk, recall the only approximation affecting the systems trajectory
has been the collocation constraint eq. (15.18). If we define f(t) = f(x(t),u(t), t) as
a shorthand, this approximation is exact if f vary linearly between tk and tk+1, and so
we have implicitly made this assumption. We can therefore assume f(t) can be linearly
interpolated for t ∈ [tk, tk+1]:

f(t) ≈ fk +
τ

hk
(fk+1 − fk) (15.23)

To find x(t) for t ∈ [tk, tk+1] we can simply integrate the above to get the quadratic
approximation while using that ẋ(t) = f(t):

x(t) =

∫ t

tk

ẋ(t)dτ + x(tk) (15.24)

=

∫ t

tk

(
fk +

t− tk
hk

(fk+1 − fk)

)
dt+ xk (15.25)

= xk + τfk +
τ 2

2hk
(fk+1 − fk) . (15.26)

A combined method

With this information we can state the direct solution method. There are three main
steps:

• Define all free variables/quantities t0, tF and xk, uk.

Algorithm 20 Direct solver☞
1: function Direct-Solve(N , guess=(tg0, t

g
F ,x

g,ug))
2: Define z ← (x0,u0, . . . ,xN−1,uN−1, t0, tF) as all optimization variables
3: Define grid time points tk =

k
N−1

(tF − t0) + t0, k = 0, . . . , N − 1 ▷ eq. (15.11)
4: Define hk, fk = f(xk,uk, tk) and ck = c(xk,uk, tk).
5: Define Ieq and Iineq as empty lists of inequality/equality constraints
6: for k = 0, . . . , N − 2 do
7: Append constraint xk+1 − xk =

hk
2
(fk+1 + fk) to Ieq ▷ eq. (15.20)

8: Add all other path-constraints eq. (15.21) to Iineq and Ieq
9: end for
10: Add possible end-point constraints on x0,xF and t0, tF to Ieq and Iineq
11: Build optimization target E(z) = cf (t0, tF ,x0,xN−1) +

∑N−2
k=0

hk
2
(ck+1 + ck)

12: Construct guess time-grid: tgk ← k
N−1

(tgF − t
g
0) + tg0

13: Construct guess states zg ← (xg(tg0),u
g(tg0), · · · ,xg(t

g
N−1),u

g(tgN−1), t
g
0, t

g
F)

14: Let z∗ be minimum of E optimized over z subject to Ii and Ieq using guess zg

15: Re-construct u∗(t),x∗(t) from z∗ using eq. (15.22) and eq. (15.26)
16: Return u∗,x∗ and t∗0, t

∗
F

17: end function

• Solve the optimization of eq. (15.15) subject to all constraints using a non-linear
program solver eq. (15.1)

• Re-construct the solution x(t) and u(t)

As mentioned in the beginning, a non-linear solver is sensitive to the initial guess. We
will therefore assume we have access to guesses tg0 and t

g
F of t0 and tF as well guesses for

the controls and trajectories xg and ug. We will return to this problem in section 15.3.4.
But assuming a guess is found, the method is sketched in algorithm 20

15.3.4 Guesses and the iterative method

Whether the simple collocation method algorithm 20 works in practice depends criti-
cally on the goodness of the initial guess of the trajectory xg and ug. The most primitive
way of obtaining such a guess is by guessing the values of the end-points tg0, t

g
F , guess

a value of x and u at the end-points, and then linearly interpolate:

xg(t) = xg(tg0) + (t− tg0)(xg(t
g
F)− xg(tg0)). (15.27)

A full discussion can be found in [Kel17a]. Whether one uses linear interpolation or
a more sophisticated method, a much better initialization strategy is obtained by first
running the method using a very small value of N and a poor guess (our implementation
we use linear interpolation) to obtain x∗,u∗ and t∗0, t

∗
F , and then use these values as a

new guess for the method using a higher value of N . The reason why this work is that
when N is low, the optimizer is more likely to overcome a poor initial guess than when

Algorithm 21 Iterative direct solver☞
Require: An initial guess zg0 = (xg,ug, tg0, t

g
F) found using simple linear interpolation

Require: A sequence of grid sizes 10 ≈ N0 < N1 < · · · < NT

1: for t = 0, T do
2: x∗,u∗, t∗0, t

∗
F ← Direct-Solve(Nt, z

g
t)

3: zt+1 ← x∗,u∗, t∗0, t
∗
F

4: end for
5: Return u∗,x∗ and t∗0, t

∗
F

Parameter Value

Gravitational constant 9.82
Pole mass 0.80
Pole length 1.00
Max torque 6.00

Table 15.1: Pendulum model parameters

N is higher and the optimization problem is correspondingly harder. Pseudo-code for
this approach can be found in algorithm 21.

Direct methods using trapezoid collocation provides a powerful methodology for
trajectory optimization and according [Bet10] compares favorable to the (theoretically
more sophisticated and not covered by this course) class of indirect methods. Since it
uses the system dynamics ẋ = f directly, the only approximations are in the approx-
imation of the cost-function eq. (15.15), which is less important, and in the trapezoid
collocation constraint eq. (15.18).

15.3.5 Example: Pendulum swingup

Consider once again the Pendulum problem in the θ, θ̇ parameterization. The goal is to
bring the pendulum upright and still exactly at time tF . The parameters can be found
in table 15.1

Ju(x0, tF) =
1

2

∫ tF

0

∥u(t)∥2dt. (15.28)

We applied the method using grid refinement of N = 10 and then N = 60, and it is
instructive to look at the intermediate results. If we first consider the grid-refinement
(see fig. 15.1) we notice the predictions of the direct method (black) agree with the
boundary conditions, but to not agree with the result of simulating the resulting policy
using RK4 and the exact dynamics; despite this the policy nevertheless manage to
bring the actual system to an upright state. The experiment is repeated using the
N = 10 solution as initialization and using N = 60 gridpoints and we obtain almost
perfect agreement between simulation and prediction (see fig. 15.2) The right-pane of

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time/seconds

0

2

4 Direct state prediction x(t)
RK4 exact simulation

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time/seconds

4

2

0

2

d dt

Figure 15.1: Pendulum solver using iteratively refined Grid. Here shown using initial
N = 10 grid

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Time/seconds

0

1

2

3

4

Direct state prediction x(t)
RK4 exact simulation

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Time/seconds

3

2

1

0

1

2

3

To
rq

ue
 u

Direct action prediction u(t)

Figure 15.2: Pendulum solver using a refined grid of N = 60. Right-most figure also
shows the action u

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Time/seconds

0

2
Direct state prediction x(t)
RK4 exact simulation

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Time/seconds

4

2

0

d dt

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Time/seconds

6

4

2

0

2

4

6

To
rq

ue
 u

Direct action prediction u(t)

Figure 15.3: Pendulum solver using a refined grid of N = 60 and a final time of tF = 2.
The action constraint is now active because more torque has to be applied.

Figure 15.4: Illustration of the cartpole system

the figure also shows the action vector. As we see, there is a near-perfect agreement
between prediction and outcome (except for the very end of the simulation) and the
actions are in this case so small that the constraint is not active. To examine the effect
of the constraint tF was reduced to 2 seconds and the experiment was repeated. This
gives the state/action trajectory shown in fig. 15.3

15.3.6 Example: Cartpole swingup

In the cartpole problem, a pendulum is affixed to a cart on a track and the goal is to
swing the pendulum upright. The coordinates of the system is the cart location x and
velocity ·x as well as the angle the pendulum form with the up-right direction θ and
angular velocity, see fig. 15.4. The available control is the force (applied to the cart) in
the forward/backward direction.

We will consider the same cartpole problem described in [Kel17b]1 (see table 15.2),

where the goal is to swing the pole from a stationary downwards position x =
[
0 0 π 0

]⊤
1Notice [Kel17b] use a different parameterization of the system such that down is θ = 0. The

difference is due to there being two versions of the cartpole dynamics, one is wrong and use θ = 0 and
the other is correct and use θ = π. We use the correct dynamics.

Parameter Value

Gravitational constant 9.81
Cart mass mc 1.000000
Pole mass mc 0.300000
Pole length 0.500000
Maximum force -20.000000

Table 15.2: Cartpole model parameters

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Time/seconds

0.0

0.5

1.0

x

Direct state prediction x(t)
RK4 exact simulation

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Time/seconds

0

2

dx dt

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Time/seconds

0

2

4

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Time/seconds

5

0

d dt

Figure 15.5: Clockwise: Position, velocity, angle, angular velocity of cart in the cartpole
swingup task described in [Kel17b].

to the upwards position at a distance of x = d from the start position, i.e. to

x =
[
1 0 0 0

]⊤
at exactly tF = 2 seconds. These requirements are implemented

as constraints, and we add a square penalty for the applied force u as for the pendu-
lum. I used a grid refinement scheme of N = 10, 20, 70.

Example: Cartpole swingup minimum time

Finally, we will consider a minimum-time formulation of the cartpole swingup problem,
where the cost function is just Ju(x0, tF) = tF

2. the swingup task is much harder to
optimize since the minimum-time formulation means the constraints are more active,
however the grid-refinement scheme N = 8, 16, 32, 70 produce reasonable results. The
task completes in just under 1.3 seconds and the state trajectory is visually quite
interesting and adapts a different strategy (see fig. 15.6, bottom).

15.3.7 Example: Brachistochrone /

The history of the brachistochrone problem goes back to the later 17th century when
it was first posed by the mathematician Johann Bernoulli. The problem is easy to

2The example is adapted from an online source https://github.com/MatthewPeterKelly/

OptimTraj/blob/master/demo/cartPole/MAIN_minTime.m which can be consulted for the exact pa-
rameters.

https://github.com/MatthewPeterKelly/OptimTraj/blob/master/demo/cartPole/MAIN_minTime.m
https://github.com/MatthewPeterKelly/OptimTraj/blob/master/demo/cartPole/MAIN_minTime.m

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.2

0.1

0.0

0.1

0.2

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.2

0.1

0.0

0.1

0.2

Figure 15.6: Top: Illustration of the pendulum trajectory in the cartpole example from
[Kel17b]. Bottom: Cartpole trajectory when using a minimum-time cost function.

describe: Suppose we want to build a track, starting in the position (x, y) = (0, 0), and
ending when x = xB. Assuming that the bead slide friction-less along the track, only
influenced by gravity, what shape should the track be to minimize the travel time?

0.0 0.2 0.4 0.6 0.8 1.0
x-position

0.8

0.6

0.4

0.2

0.0

0.2

y-
po

sit
io

n

Figure 15.7: Right: Sketch of brachistochrone curve and coordinate system. Right:
Solution found using direct methods.

The problem can be solved using variational calculus, however we will treat it as a
control problem. The dynamics can be described using the speed of the bead v, the
current angle of the bead with vertical u(t), and the x, y position of the bead x(t) and
y(t). The state is therefore:

x(t) =

x(t)y(t)
v(t)

 . (15.29)

We can consider u(t) as the control, since specifying u is equivalent to specifying the
track. Therefore, the problem of finding the optimal track is equivalent to solving a
control problem with the familiar cost Ju(x0, tF) = tF , initial state x0 = 0 and final
state constraint affecting the single coordinate x(tF) = xB. The dynamics can be found
using high-school physics as:

ẋ = v sinu, ẏ = −v cosu, v̇ = g cosu. (15.30)

Where g is the gravitational constant. The optimal solution can be found in fig. 15.7
(right); I use N = 10, 30 but the problem is comparably easier to solve.

Brachistochrone with a dynamical constraint //

We will now consider a more challenging variant of the Brachistochrone problem where
an angled slab with equation y(t) = −1

2
x(t) − h has been inserted, blocking the path

of the bead (see fig. 15.8). We can still solve the problem, all we have to do is to add
the dynamical path-constraint of the form h(x) ≤ 0 and then translate that constraint
to be active in each knot-point, i.e. add the N constraints: h(xk) ≤ 0, k = 0, . . . , N to
the problem. The specific form of the constraint is obviously that

y(t) ≥ −1

2
x1(t)− h. (15.31)

15.4 Additional issues //

The direct optimization method can be modified and expanded upon in a number of
ways.

Hermite Simpson quadrature Throughout we have used the trapezoid quadrature
rule to approximate integrals. A higher-order method can be obtained by using Hermite-
Simpson quadrature which is the rule:∫ tF

t0

w(τ)dτ ≈
N−1∑
k=0

hk
6

(
wk + 4wk+ 1

2
+ wk+1

)
(15.32)

0.0 0.2 0.4 0.6 0.8 1.0
x-position

0.8

0.6

0.4

0.2

0.0

0.2

y-
po

sit
io

n

Figure 15.8: Sketch of restricted Brachistochrone problem and solution found with
Direct methods.

The notationwk+ 1
2
meansw has been evaluated at the mid-point of tk and tk+1. Applied

similar to the trapezoid rule we obtain the new collocation constraint:

xk+1 − xk =
1

6
hk

(
fk + 4fk+ 1

2
+ fk+1

)
(15.33)

Again the notation fk+ 1
2
means f evaluated at the mid-point of tk and tk+1. This can

in turn be approximated as:

xk+ 1
2
=

1

2
(xk + xk+1) +

hk
8

(fk − fk+1) (15.34)

Which can then form the basis of a computational procedure by simply replacing the
collocation constraint in line 7 of algorithm 20. Note other tweaks are required when
re-covering the paths u(t) and x(t) after optimization. For more details see [Kel17a].
Note the Hermite-Simpson collocation procedure trades accuracy for a more complex
optimization task and so trapezoid collocation is still superior in some cases, particular
for large problems (see [Bet10]).

Error analysis A second simple tweak is to compute the approximation error in the
trapezoid constraint and use this to determine if N should be increased. Methods for
doing so are quite simple. For instance, suppose x and u is the solution path found by
the direct method, then we can define the error as:

ε(t) = ẋ(t)− f(x(t),u(t), t) (15.35)

which will be zero if the solution path in fact satisfy the system dynamics (can you see
why?). We can therefore define a local interpolation error as: ηk =

∫ tk+1

tk
|ε(τ)|dτ . See

[Kel17a] and [Bet10] for a further discussion.

Intelligent mesh refinement Whether the found trajectory will in fact be repre-
sentative of what the system does depends on N , however a too large N makes the
optimization intractable. An important extension to the method is obtained by com-
puting the local error ηk for each interval [tk, tk+1], and then rather than increasing N
globally in algorithm 21, we simply split those intervals in two where the error exceed
some threshold (for instance, we split a certain number of time intervals and choose
those where the error is the largest). This is a fairly simple-to-implements but important
technique which is further discussed in [Kel17a] and [Bet10].

15.5 Bibliographic Notes

A broad and accessible introduction to direct methods for trajectory optimization is
presented in [Kel17c]. This tutorial also features a discussion of trajectory optimization
for hybrid systems, which we have not discussed in this section, as well as numerical
solver features. For a more comprehensive review of direct methods for trajectory
optimization by the same author with an emphasis on collocation methods, see [Kel17a],
and for the readers who wish to delve into the state-of-the-art of direct solvers with a
focus on large problems I would recommend [Bet10].

Chapter 16

Linear-quadratic regulator

In this section we will address an important subclass of continuous state and action
space problems for which dynamic programming can be applied exactly. In this setting,
we assume linear dynamics and quadratic costs, and the problem setting is referred to
as the linear quadratic regulator (LQR) problem. This LQR setting is important for
several reasons. First, as a local stabilizing controller, it is a core tool that is often a
first (effective) approach for a wide variety of problems. Second, as we build up open-
loop trajectory optimization methods later in the class, the LQR approach will often
be used to provide local tracking of these trajectories. Finally, tracking LQR paired
with a forward rollout step will form the basis of one of the most powerful nonlinear
trajectory optimization methods that we will see in this class1.

16.1 The Linear Quadratic Regulator in Discrete Time

We will fix the dynamics of the system to be discrete time (possibly time-varying)
linear,

xk+1 = Akxk +Bkuk (16.1)

and the cost function as quadratic

c(xk,uk) =
1

2
(xTkQkxk + uTkRkuk) (16.2)

cN(xk) =
1

2
xTkQNxk (16.3)

where Qk ∈ Rn×n is positive semi-definite and Rk ∈ Rm×m is positive definite for all
k = 0, . . . , N . Importantly, we assume xk and uk are unconstrained for all k. To
perform DP recursion, we initialize

J∗
N(xN) =

1

2
xTNQNxN :=

1

2
xTNVNxN . (16.4)

1The presentation in this chapter is based on https://github.com/StanfordASL/AA203-Notes.

202

https://github.com/StanfordASL/AA203-Notes

Then, applying the DP algorithm eq. (6.7a) directly, we have

J∗
N−1(xN−1) =

1

2
min

uN−1∈Rm

{
xTN−1QN−1xN−1 + uTN−1RN−1uN−1 + xTNVNxN

}
(16.5)

By inserting the dynamics eq. (16.1) this becomes:

J∗
N−1(xN−1) =

1

2
min

uN−1∈Rm

{
xTN−1QN−1xN−1 + uTN−1RN−1uN−1 (16.6)

+ (AN−1xN−1 +BN−1uN−1)
TVN(AN−1xN−1 +BN−1uN−1)

}
.

Rearranging, we have

J∗
N−1(xN−1) =

1

2
min

uN−1∈Rm

{
xTN−1(QN−1 + ATN−1VNAN−1)xN−1 (16.7)

+ uTN−1(RN−1 +BT
N−1VNBN−1)uN−1

+ 2uTN−1(B
T
N−1VNAN−1)xN−1

}
.

We can find the optimum by setting the derivative equal to zero2

∂J∗
N−1

∂uN−1

(xN−1) = (RN−1 +BT
N−1VNBN−1)uN−1 + (BT

N−1VNAN−1)xN−1 (16.8)

and setting this to zero yields

u∗
N−1 = −(RN−1 +BT

N−1VNBN−1)
−1(BT

N−1VNAN−1)︸ ︷︷ ︸
=LN−1

xN−1 (16.9)

which we write
u∗
N−1 = LN−1xN−1 (16.10)

which is a time-varying linear feedback policy. Plugging this policy into (16.6),

J∗
N−1(xN−1) =xTN−1(QN−1 + LTN−1RN−1LN−1 (16.11)

+ (AN−1 +BN−1LN−1)
TVN(AN−1 +BN−1LN−1))xN−1.

Because the optimal policy is always linear, and the optimal cost-to-go is always
quadratic, the DP recursion may be recursively performed backward in time and the
minimization may be performed analytically3

2More formally, RN−1 +BT
N−1VNBN−1 > 0, and therefore, any local minima is a global minima

3Again a technical note: The cost-to-go remains a positive semi-definite quadratic function of the
state.

Basic discrete LQR: Continuing with the DP recursions to k = 0 we obtain the
discrete-time LQR controller, which simply consist of:

1. VN = QN

2. Loop for k = N − 1, . . . , 0:

(a) Lk = −(Rk +BT
k Vk+1Bk)

−1(BT
k Vk+1Ak)

(b) Vk = Qk + LTkRkLk + (Ak +BkLk)
TVk+1(Ak +BkLk)

(c) u∗
k = Lkxk

(d) J∗
k (xk) =

1
2
xTk Vkxk

There are several implications of this recurrence relation. First, even if A,B,Q,R are
all constant (not time-varying), the policy is still time-varying. Why is this the case?
Control effort invested early in the problem will yield dividends over the remaining
length of the horizon, in terms of lower state cost for all future time steps. However,
as the remaining length of the episode becomes shorter, the tradeof shift in the favor
of the immediate control effort, and so the actions will tend to become smaller.

However, for a time-independent system, if the feedback gain Lk approach a con-
stant as N → ∞. This time-invariant policy is practical for long horizon control
problems, and may be approximately computed by running the DP recurrence relation
until approximate convergence.

16.1.1 Example: Double integrator

Our first problem will concern a well-studied electronic component namely the double
integrator. The system evolves as:

xk+1 =

[
1 1
0 1

]
︸ ︷︷ ︸

=A

xk +

[
0
1

]
︸︷︷︸
=B

uk (16.12)

and, assuming x=

[
xk,1
xk,2

]
, it has the cost function:

J(x0) =
N∑
k=0

1

2ρ
x2k,1 +

N−1∑
k=0

1

2
u2k (16.13)

This corresponds to the familiar QR cost with Qk = QN =

[
1
ρ

0

0 0

]
and R = 1. If we

plug this into the LQR algorithm we obtain, at each time step k, the policy:

πk(xk) = Lkxk, (16.14)

and we can use these to simulate the optimal trajectory, starting in x0 =

[
1
0

]
, computing

controls using uk = πk(xk), and determining xk+1 using eq. (16.12). For different values
of ρ and planning for N = 20 steps we obtain the trajectory seen in fig. 16.1.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Steps k

0.0

0.2

0.4

0.6

0.8

1.0

x 1
=

 x
[0

]

Double integrator
rho=0.1
rho=10
rho=100

Figure 16.1: Trajectory of xk,1 for the double integrator trajectories with different cost-
functions determined by ρ. The system attempts to control xk,1 to 0, and ρ represents
a trade-of between the action-term and the cost-term in the cost-function.

0 2 4 6 8 10
Time/seconds

0.0

0.2

0.4

0.6

0.8

1.0

Po
sit

io
n

x(
t)

= 0.1 (Euler discretization)
= 0.1 (Ei discretization)

0 2 4 6 8 10
Time/seconds

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Ac
tio

n
u(

t)

= 0.1 (Euler discretization)
= 0.1 (Ei discretization)

Figure 16.2: Double-integrator example. Result of applying the discrete controller,
computed using the Euler-discretized dynamics in section 16.1.1 (∆ = 1), to an envi-
ronment governed by the actual dynamics eq. (16.16). Euler discretization produces
such a bad model the optimal LQR controller is in fact quite bad. In this case the
problem can be solved by using exact exponential discretization.

16.1.2 Example: Double integrator revisited

The double-integrator problem from section 16.1.1 is perhaps a bit abstract, however
it is in fact an example of the harmonic oscillator from section 10.4.2 using k = 0 and

0 2 4 6 8 10
Time/seconds

0.0

0.2

0.4

0.6

0.8

1.0

Po
sit

io
n

x(
t)

= 0.1 (Euler discretization)
= 0.1 (Ei discretization)

0 2 4 6 8 10
Time/seconds

2.5

2.0

1.5

1.0

0.5

0.0

0.5

Ac
tio

n
u(

t)

= 0.1 (Euler discretization)
= 0.1 (Ei discretization)

Figure 16.3: Same experiment as in fig. 16.2 but using ∆ = 0.1. In this case the Euler
discretization is more exact and produces a much better controller.

m = 1, in which case the dynamics is described by the x-position as:

ẍ(t) = u(t) (16.15)

or using the x(t) =

[
x(t)
ẋ(t)

]
representation:

ẋ(t) =

[
0 1
0 0

]
x(t) +

[
0
1

]
u(t) (16.16)

and cost function:

J(x0) =
1

2
x(tF)

⊤Qx(tF) +

∫ tF

0

(
1

2
x(t)⊤Qx(t) +

1

2
u(t)⊤Ru(t)

)
(16.17)

with Q =

[
1
ρ

0

0 0

]
and R = 1. The discrete double-integrator example is recovered using

tF = 20, ∆ = 1 and Euler discretization. Since Euler discretization is known to be
sub-optimal, we should ask what occurs if we apply the controller computed from the
Euler discretized model in section 16.1.1 to a system governed by the actual dynamics
in eq. (16.16) (Euler) versus an equivalent controller which uses exponential integration
to obtain the Ak and Bk matrices as described in section 13.1.3.

The resulting state-trajectory x(t) and actions u(t) are shown in fig. 16.2. Clearly,
the Euler integration trajectory is bad, and we stress this is simply what would have
occurred had we applied the optimal controller calculated in the previous section to
the actual system dynamics. As shown in the example, exponential integration, which
is exact, completely solves this problem, however it is not an option which will be
generally available. In this case the only solution is to reduce ∆. Comparable result
using ∆ = 0.1 are shown in fig. 16.3, and in this case Euler integration fare much better.

0 2 4 6 8 10
Time/seconds

2

0

2

4

6

8

10

Ou
tp

ut

Airspeed
Climb rate

0 2 4 6 8 10
Time/seconds

0

1

2

3

4

5

Co
nt

ro
l a

ct
io

n

Elevator
Throttle

Figure 16.4: Boing level flight when the desired output corresponds to an extra airspeed
of 10 ft/sec and a climb rate of 0

16.1.3 Example: Boing 747 flight

Recall the Boing 747 autopilot example discussed in section 12.1.1. Suppose we want
the autopilot to change from level flight x(t) = 0 to flight corresponding to a new
airspeed and climb rate corresponding to y∗; we assume we plan over a horizon of 10
seconds with a time discretization of ∆ = 0.1 seconds.

Recall the Boing problem defines the airspeed y1 and climb rate y2 as:

yk =

[
y1
y2

]
=

[
1. 0. 0. 0.
0. −1. 0. 7.74

]
︸ ︷︷ ︸

=P

xk (16.18)

One way to implement the change is therefore to ensure the cost function is at a
minimum at y∗:

J(x0) =
N−1∑
k=0

(
1

2
∥yk − y∗∥2 + 1

2
∥uk∥2

)
(16.19)

and simply apply LQR using N = 100. The result of changing the airspeed to 10 and

maintaining the climb rate, i.e. y∗ =

[
10
0

]
, can be found in fig. 16.4. We observe that

since the problem plan on a finite horizon it chooses to set the actions u = 0 near the
end of the simulations since at that point subsequent small deviations from the target
y∗ are relatively less important than the cost of the actions themselves, but asides that
the controller easily manage the maneuver.

16.1.4 LQR with Additive Noise

We have so far considered LQR without disturbances. We will now extend the LQR
controller to the setting in which additive Gaussian noise disturbs the system. The

system dynamics are
xk+1 = Akxk +Bkuk + ωk (16.20)

where ωk ∼ N (0,Σω), and the stage-wise cost is

ck(xk,uk) =
1

2
(xTkQkxk + uTkRkuk). (16.21)

with terminal cost 1
2
xTNQNxN . We wish to minimize the expected cost. The cost-to-go

is
J∗
k (xk) = xTk Vkxk + vk. (16.22)

where Vk is a positive definite matrix as in the deterministic case, and vk is an additive
constant term. We leave the proof of this cost-to-go to the reader. Plugging into the
Bellman equation, we have

J∗
k (xk) = min

uk∈Rm
E
[1
2
xTkQkxk +

1

2
uTkRkuk + vk+1 (16.23)

+
1

2
(Akxk +Bkuk + ωk)

TVk+1(Akxk +Bkuk + ωk) + vk+1

]
= min

uk∈Rm

{1

2
xTkQkxk +

1

2
uTkRkuk + vk+1 (16.24)

+ E
[1
2
(Akxk +Bkuk + ωk)

TVk+1(Akxk +Bkuk + ωk)
]}
.

Following the same minimization procedure as for LQR, we see that the policy is iden-
tical to that in Section 16.1. Then, plugging the policy back in to the dynamic pro-
gramming recursion, we have

J∗
k (xk) = xTk (Qk + LTkRkLk + E[(Ak +BkLk + ωk)

TVk+1(Ak +BkLk + ωk)])xk + vk+1

(16.25)

= xTk (Qk + LTkRkLk + (Ak +BkLk)
TVk+1(Ak +BkLk))xk + tr(ΣωVk+1) + vk+1

(16.26)

where tr(·) denotes the trace. The equality between (16.25) and (16.26) holds as

E[(Ak +BkLk)
TVk+1ωk] = 0 (16.27)

for zero-mean ωk, and E[ωT
k Vk+1ωk] = tr(ΣωVk+1). Note that this is identical to the

noise-free DP recursion, with the exception of the added trace and constant terms which
capture the role of the additive noise. Thus, we have two recursive update equations

Vk = Qk + LTkRkLk + (Ak +BkLk)
TVk+1(Ak +BkLk) (16.28)

vk = vk+1 + tr(ΣωVk+1) (16.29)

where the first is the standard Riccati recursion, and the second captures the additive
constant term.

In summary, we have reached the surprising outcome that with additive Gaussian
noise, we obtain the same optimal policy as in the deterministic case. The total cost
has increased, but it is typical to not store the constant term in the DP recursion, as
it does not impact the policy.

16.1.5 LQR with (Bi)linear Cost and Affine Dynamics

The previous two subsections have presented the most common formulation of the
LQR setting. In this subsection, we will derive the discrete time LQR controller for
a more general system with bilinear/linear terms in the cost and affine terms in the
dynamics. This derivation will be the basis of algorithms we will build up in the
following subsections. More concretely, we consider systems with stage-wise cost

c(xk,uk) =
1

2
xTkQkxk +

1

2
uTkRkuk + uTkHkxk + qTk xk + rTk uk + qk, (16.30)

terminal cost

cN(xk) =
1

2
xTkQNxk + qTNxk + qN , (16.31)

and dynamics
xk+1 = Akxk +Bkuk + dk. (16.32)

The cost-to-go will take the form

Jk(xk) =
1

2
xTk Vkxk + vTk xk + vk. (16.33)

Repeating our approach from the last subsection, we have

J∗
k (xk) = min

uk∈Rm

{1

2
xTkQkxk +

1

2
uTkRkuk + uTkHkxk + qTk xk + rTk uk + qk (16.34)

+
1

2
(Akxk +Bkuk + dk)

TVk+1(Akxk +Bkuk + dk)

+ vTk+1(Akxk +Bkuk + dk) + vk+1

}
.

Rearranging, we have

J∗
k (xk) = min

uk∈Rm

{1

2
xTk (Qk + ATk Vk+1Ak)xk +

1

2
uTk (Rk +BT

k Vk+1Bk)uk (16.35)

+ uTk (Hk +BT
k Vk+1Ak)

Txk + (qk + ATk VK+1dk + ATk vk+1)
Txk

+ (rk +BT
k Vk+1dk +BT

k vk+1)uk + (vk+1 +
1

2
dTk Vk+1dk + vTk+1dk)

}
.

Solving this minimization problem, we see that our optimal controller takes the form

u∗
k = lk + Lkxk. (16.36)

Where the matrices used to compute Lk and lk are defined in algorithm 22.

16.1.6 Regularization

Assuming the matrices Qk are positive semi-definite and the matrices Rk are posi-
tive definite the discrete LQR controller is guaranteed to not diverge. However, if the

Algorithm 22 Discrete LQR☞
Require: A problem of horizon length N and a problem A0, A1, . . . Bk, Qk, etc. re-

turn An optional regularization parameter µ (default µ = 0)
1: Initialize VN = QN ; vN = qN ; vN = qN
2: for k = N − 1 to k = 0 do
3: Compute intermediary matrices

Suu,k = Rk +BT
k (Vk+1 + µI)Bk (16.37a)

Sux,k = Hk +BT
k (Vk+1 + µI)Ak (16.37b)

Su,k = rk +B⊤
k vk+1 +B⊤

k Vk+1dk. (16.37c)

4: Compute control matrix/vector:

Lk = −S−1
uu,kSux,k (16.38)

lk = −S−1
uu,kSu,k (16.39)

5: Compute quadratic approximation of cost-to-go

Vk = Qk + ATk Vk+1Ak − LTk Suu,kLk (16.40)

vk = qk + ATk (vk+1 + Vk+1dk) + STux,klk (16.41)

vk = vk+1 + qk + dTk vk+1 +
1

2
dTk Vk+1dk +

1

2
lTk Su,k (16.42)

6: Vk ← 1
2
(Vk + V ⊤

k) ▷ Ensure symmetric for numerical stability
7: end for
8: In a state xk, the control law is u∗

k = lk + Lkxk
9: The cost-to-go is Jk(xk) =

1
2
xTk Vkxk + vTk xk + vk.

matrices are poorly conditioned (meaning they are close to not being positive semidef-
inite/positive definite) the method can be numerically unstable, and this will be a
practical issue in the next section. For this reason we follow [TET12] and include a
regularization parameter µ ≥ 0 such that µ = 0 corresponds to the deviation above.
We will return to this parameter in chapter 17.

16.2 Bibliographic Notes

A comprehensive coverage of linear quadratic methods for optimal control is Anderson
and Moore [AM07]. LQG is covered in discrete time in [BBBB95].

Chapter 17

Iterative LQR

In the previous chapter, we saw that a generic linear/quadratic control problem in
which the dynamics had the form:

xk+1 = Akxk +Bkuk + dk (17.1)

could be solved using LQR to yield a controller of the form uk = Lkxk+lk. Despite LQR
being a powerful approach to optimal control, it suffers from a handful of limitations.
First and foremost, it assumes the dynamics are (possibly time-varying) linear, and the
cost function is quadratic. In this chapter we will expand this method to include (some)
non-linear problems of the form

xk+1 = fk(xk,uk) (17.2)

and a general cost function ck. The approach will be typical for designing feedback con-
trollers, namely to linearize around some operating point. This is an effective method
for designing regulators, which aim to control the system to some particular state.

17.1 Linearization

Suppose we want to balance the pendulum model upright. Recall in our sin, cos,
θ̇ coordinate system this corresponds to driving the pendulum towards the up-right
state:

x̄ =

01
0

 (17.3)

at which we will apply no force ū = 0. Many non-linear control problems can be defined
as finding such as special state, and the rest of the discussion will apply to any such
desired state (x̄, ū). Assume the system is actually in the state xk and that we apply
control uk. The dynamics can now be Taylor expanded to first order to give us the

211

approximate dynamics:

xk+1 = fk(xk,uk) (17.4)

≈ fk(x̄, ū) +
∂fk
∂x

(x̄, ū)︸ ︷︷ ︸
Ak

(xk − x̄) +
∂fk
∂u

(x̄, ū)︸ ︷︷ ︸
Bk

(uk − ū) (17.5)

Where Ak and Bk are the Jacobians of the dynamics. We can re-arrange this expression
to yield:

xk+1 ≈ Akxk +Bkuk + fk(x̄, ū)− Akx̄−Bkū︸ ︷︷ ︸
dk

(17.6)

Since the dynamics is independent of time, meaning fk = f0, we can therefore simply
compute the two matrices A0 and B0 and the vector d0 and we have reduced the
non-linear problem to a linear control problem. The cost-function can also be Taylor

expanded, here written in condensed form using zk =

[
xk
uk

]
and z̄ =

[
x̄
ū

]
to give the

quadratic cost function:

ck(xk,uk) ≈ ck(x̄, ū) + (∇zck(x̄, ū))
⊤ (zk − z̄) +

1

2
(zk − z̄)⊤Hz̄(zk − z̄) (17.7)

To bring this cost-function into a more familiar format we define the terms:

ck = ck(x̄, ū) (17.8a)

cx,k = ∇xck(x̄, ū), cu,k = ∇uck(x̄, ū) (17.8b)

cxx,k = Hxck(x̄, ū), cuu,k = Huck(x̄, ū) (17.8c)

cux,k = Jx∇uck(x̄, ū) (17.8d)

The last term is the Jacobian of the gradient, i.e. the i, j entry of cux,k is
∂2

∂ui∂xj
ck(x̄, ū).

The cost-function can now be written in the standard quadratic format:

ck(xk,uk) ≈
1

2
x⊤
k cxx,kxk +

(
cx,k + x̄⊤cxx,k

)⊤
xk + u⊤

k cux,kxk (17.9a)

+
1

2
u⊤
k cuu,kuk +

(
cu,k + ū⊤cuu,k

)⊤
uk (17.9b)

+ ck − c⊤x,kx̄− c⊤u,kū+
1

2
x̄⊤cxx,kx̄+

1

2
ū⊤cuu,kū+ ū⊤cux,kx̄ (17.9c)

Note in these terms all the gradients/Hessians are evaluated in the expansion point
(x̄, ū) and are therefore independent of the current state/control (xk,uk). This gives
rise to the method defined in algorithm 23

Note we use the first control law at all future time points. This is because the
method is usually intended to stabilize the system around x̄, ū, and therefore just
using the first law, which is intended to control the system on the longest horizon, is a

Algorithm 23 Linearized LQR☞
Require: Given a problem horizon N (for instance N = 50), and an expansion point

(x̄, ū) corresponding to where the system is expected to be
1: Compute A,B,d by linearly expanding around (x̄, ū) using eq. (17.5) and eq. (17.6).

Note these matrices/vectors are constant since we are expanding around a single
fixed point.

2: If cost is not quadratic, construct quadratic approximation of cost function using
eq. (17.9). Else just use the cost matrices.

3: Use algorithm 22, with constant linear dynamicsA,B, d and cost matricesQk, Rk, qk
(typically also constant), to obtain controller Lk, lk for k = 0, . . . , N − 1.

4: In a state xk, the control law is u∗
k = l0 + L0xk

5: The cost-to-go is Jk(xk) =
1
2
xTk Vkxk + vTk xk + vk

reasonable simplification. For the same reason N should just be chosen as reasonably
large.

Linearized LQR can be expected to work only when the states xk,uk are close to
the expansion point (x̄, ū). Furthermore, since we linearly approximate the (already
approximate) discrete model fk, it is an approximation on top of an approximation,
which means there is no guarantee it will work. In practice, it stabilize e.g. the
pendulum model, and is a good starting point for more powerful methods.

17.1.1 LQR Tracking around a Nonlinear Trajectory

In the previous linearization method, we assumed the expansion point was fixed and
selected beforehand as a point which we wished to stabialize around. We can turn this
into a more powerful iterative method by letting the expansion point reflect the actual
state the system is in.

As a first step, assume we are given a nominal trajectory which satisfy our discretenominal trajec-
tory dynamics:

x̄k+1 = fk(x̄k, ūk), for k = 0, . . . , N − 1. (17.10)

In reality, such a trajectory is easily computed by setting x̄0 equal to the initial state
of the system and then simulating the system using for instance ūk = 0.

We proceed as the linerized case by simply Taylor expanding around the nominal
trajectory:

xk+1 ≈ f(x̄k, ūk)︸ ︷︷ ︸
=x̄k+1

+
∂f

∂x
(x̄k, ūk)︸ ︷︷ ︸
Ak

(xk − x̄k) +
∂f

∂u
(x̄k, ūk)︸ ︷︷ ︸
Bk

(uk − ūk) (17.11)

The only difference is the matrices Ak and Bk will now depend on time, since they are
expanded around the nominal trajectory.

We now make the following observation. Suppose we define the deviations in state/-
control as:

δxk = xk − x̄k, δuk = uk − ūk. (17.12)

We can then move the term x̄k+1 to the left-hand side in eq. (17.11) which allows us to
rewrite the system in terms of deviations, to get

δxk+1 = Akδxk +Bkδuk (17.13)

which is linear in δxk, δuk. We can similarly quadratically expand an arbitrary cost
function to obtain the usual quadratic form:

ck(δxk, δuk) =
1

2
δx⊤

k cxx,kδxk + c⊤x,kδxk +
1

2
δu⊤

k cuu,kδuk + c⊤u,kδuk + δu⊤
k cux,kδxk + ck

(17.14a)

cN(δxN) =
1

2
δx⊤

Ncxx,NδxN + c⊤x,NδxN + ck (17.14b)

In other words, considered as a function of (δxk, δuk), the entire problem is of the
linear-quadratic form. We can therefore apply LQR to the problem to obtain the
optimal controller (Lk, lk). When this controller is in (deviation) state δxk, it computes
(deviation) optimal control:

δu∗
k = Lkδxk + lk. (17.15)

If we re-insert the definition of δxk, δuk we obtain the optimal response in state xk as:

u∗
k = ūk + Lk(xk − x̄k) + lk. (17.16)

To summarize, given any nominal trajectory (x̄k, ūk), we can compute a response u∗k
in each state using the linearized model. Since the nominal trajectory should ideally
be close to the optimal path, we can therefore compute a new nominal trajectory by
setting x̄0 equal to the initial state x0, and then compute the following states by
letting ūk = u∗

k computed using eq. (17.16) and using eq. (17.10) to compute x̄k+1.
The procedure is then repeated using the new nominal trajectory until (presumed)
convergence, see algorithm 24.

Algorithm 24 Basic iLQR☞
Require: Given initial state x0

1: Set x̄k = x0, ūk = 0 (or a random vector), Lk = 0 and lk = 0
2: x̄k, ūk ← Forward-Pass(x̄k, ūk, Lk, lk) ▷ Compute initial nominal trajectory

using eq. (17.10) .
3: for i = 0 to a pre-specified number of iterations do
4: Ak, Bk, ck, cx,k, cu,k, cxx,k, cux,k, cuu,k ← Get-derivatives(x̄k, ūk)
5: Lk, lk ← Backward-Pass(Ak, Bk, ck, cx,k, cu,k, cxx,k, cux,k, cuu,k, µ)
6: J (i) ← Cost-of-trajectory(x̄k, ūk)
7: x̄k, ūk ← Forward-Pass(x̄k, ūk, Lk, lk)
8: end for
9: Compute control law πk(xk) = ūk + lk + Lk(xk − x̄k)
10: return {πk}N−1

k=0

11: function Forward-pass(x̄k, ūk, Lk, lk) ▷ Forward-simulation of dynamics
12: Set x0 = x̄0

13: for all k = 0, . . . , N − 1 do
14: u∗

k ← ūk + Lk(xk − x̄k) + lk ▷ see eq. (17.16)
15: xk+1 ← fk(xk,u

∗
k)

16: end for
17: return xk,u

∗
k

18: end function
19: function Get-Derivatives(x̄k, ūk)
20: Obtain Ak, Bk and ck, cx,k, etc. by expanding around x̄k, ūk using eq. (17.10).
21: return (Ak)k, (Bk)k, (ck)k, (cx,k)k, (cu,k)k, (cxx,k)k, (cux,k)k, (cuu,k)k
22: end function
23: function Backward-pass(Ak, Bk, cx,k, cu,k, cxx,k, cux,k, cuu,k, µ) eq. (17.14)
24: Compute Lk, lk using dLQR with µ, algorithm 22 ▷ Obtain control law
25: end function
26: function Cost-of-trajectory(x̄k, ūk)
27: return cN(x̄N) +

∑N−1
k=0 ck(x̄k, ūk)

28: end function

0.0 0.5 1.0 1.5 2.0 2.5 3.0

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00 Closed-loop (xk)
Open-loop uk

iLQR prediction xk

0 25 50 75 100 125 150 175 200
iLQR Iterations

102

103

104

Co
st

 fu
nc

tio
n

es
tim

at
e

J

Figure 17.1: Basic ILQR algorithm 24 applied to pendulum problem. Plots show cos(θ)
and includes the iLQR predictions x̄k (dotted) as well as result of using an open-loop
control with uk and closed loop controller π(xk). Right pane shows the estimated cost
function.

0.0 0.5 1.0 1.5 2.0 2.5 3.0

1.0

0.9

0.8

0.7

0.6

0.5

0.4

Closed-loop (xk)
Open-loop uk

iLQR prediction xk

0 25 50 75 100 125 150 175 200
iLQR Iterations

2 × 103

3 × 103

4 × 103

6 × 103

Co
st

 fu
nc

tio
n

es
tim

at
e

J

Figure 17.2: Pendulum evaluated similar to fig. 17.1 but using a different seed

17.1.2 Example: Pendulum and basic ILQR

We applied the basic ILQR algorithm to the pendulum environment using N = 50.
Recall the pendulum environment is parameterized in terms of sin(θ) and cos(θ) such
that cos(θ) = 1 is the upright position, and we included a term in the cost function
proportional to − cos(θ) to encourage the standing-up position (the other terms are
quadratic and selected from the defaults from the openai gym implementation but
scaled). As an experiment, we plot both the (predicted) nominal trajectory x̄k, as well
as the outcome of using either open-loop control using the nominal actions ūk as well
as proper closed-loop control using the control matrices eq. (17.16). We also included
a plot of the cost function J(x̄0) for the nominal trajectory during training, and the
result can e found in fig. 17.1.

We see the closed-loop is superior to the open-loop controller since the system
eventually deviate from the nominal trajectory. The cost function behaves fairly nicely,
however it does increase during some basic ILQR iterations. Note that while this
result is encouraging, it is also quite seed dependent, and it is instructive to include
a trajectory for which the simulation fails (the only difference is the seed is changed

0.0 0.5 1.0 1.5 2.0 2.5 3.0

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00 Closed-loop (xk)
Open-loop uk

iLQR prediction xk

0 10 20 30 40 50
iLQR Iterations

102

103

Co
st

 fu
nc

tio
n

es
tim

at
e

J

Figure 17.3: Same as fig. 17.1 but using ILQR algorithm 25

from 1 to 2), see fig. 17.2. As seen in the figure the trajectory is very poor, and the
cost-function oscillates at a high value. What happens is that the nominal trajectory
flip between two configurations.

17.2 Iterative LQR

Algorithm 24 is an improvement on the simple linearization procedure, however, it
leaves out several details which are critical for obtaining a good performance. The first
is it would benefit from using a convergence criteria. In [TL05], the authors stop when
the update to the nominal control action sequence is sufficiently small. In [LK14], the
authors iterate until the cost of the trajectory (with some additional penalty terms)
increases. Finally, a variety of convergence criteria are based on expected trajectory
improvement, computed via line search [JM70, TET12].

Furthermore, as the example showed, the method is prone to making too large
updates to the nominal trajectory which gives rise to oscillating behavior. An addi-
tional complication is due to the quadratic expansion of the cost-function. For general
cost-functions, the matrices Suu,k may become ill-conditioned, and we may experience
divergence when computing the control laws Lk = S−1

uu,kSux,k.
We will describe one approach for fixing these issues proposed by [TET12] (note the

article includes additional details and some nice experiments). The idea is quite simple:
Firstly, the problem of oscillatory behavior is fixed by replacing eq. (17.16) with the
modified update:

u∗
k = ūk + Lk(xk − x̄k) + αlk, 0 ≤ α ≤ 1 (17.17)

To understand this update, if α is small, αlk will vanish, and in this case u∗ = ūk, and
therefore lowering α will tend to eliminate oscillatory behavior.

The second change is the introduction of an regularization parameter µ in the dLQR
algorithm algorithm 22 to avoid numerical underflow. The procedure can now be out-
lined as follows:

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

0.2

0.0

0.2

Figure 17.4: Trajectory of cartpole using ILQR from algorithm 25. Cart starts to the
left, drives quickly to the right and stabilize. See section 17.2.1

• Initialize regularization parameter to a fairly low value µ

• In the forward pass Line 7 of algorithm 24, use eq. (17.17), but try a range of
α-values, starting at α = 1 and reducing α to 0

• For each α-value check if the cost J (i) decreases relative to J (i−1). If so, accept
this α and decrease the regularization parameter µ by a small amount

• If no α-value works, increase the regularization parameter µ by a small amount

In [TET12] the small amount above is dynamically tuned using a third variable ∆. The
update equations are

Increase µ

∆← max (∆0,∆ ·∆0)
µ← max (µmin, µ ·∆)

(17.18)

Decrease µ

∆← min
(

1
∆0
, ∆
∆0

)
µ←

{
µ ·∆ if µ ·∆ > µmin

0 if µ ·∆ < µmin

(17.19)

The full method can be found in algorithm 25. Note the parameter α is passed to
the Forward-Pass method, and the only change is the method update u∗

k using
eq. (17.17). Similarly, in the Backwards-pass method, the regularization parameter
µ is simply passed along to the discrete LQR method.

If we re-do the experiment from section 17.1.2 we get the result shown in fig. 17.3.
The method seems to converge every time and to a better solution.

Both iLQR, and the extension DDP (see [TET12]) are local methods. Full dynamic
programming approaches yield globally optimal feedback policies. In contrast, iLQR

Algorithm 25 iLQR☞
Require: Given initial state x0

1: µmin ← 10−6, µmax ← 1010, µ← 1, ∆0 ← 2 and ∆← ∆0

2: Initialize x̄k, ūk as before
3: for i = 0 to a pre-specified number of iterations do
4: Ak, Bk, ck, cx,k, cu,k, cxx,k, cux,k, cuu,k ← Get-derivatives(x̄k, ūk)
5: Lk, lk ← Backward-Pass(Ak, Bk, ck, cx,k, cu,k, cxx,k, cux,k, cuu,k, µ)
6: J ′ ← Cost-of-trajectory(x̄k, ūk)
7: for α = 1 to a very low value do
8: x̂k, ûk ← Forward-Pass(x̄k, ūk, Lk, lk, α)
9: Jnew ← Cost-of-trajectory(x̂k, ûk)
10: if Jnew < J ′ then
11: if 1

J ′ |Jnew − J ′| < a small number then
12: Method has converged, terminate outer loop and return
13: end if
14: J ′ ← Jnew

15: x̄k ← x̂k and ūk ← ûk
16: α accepted: Update ∆ and µ using eq. (17.19) ▷ Reduce regularization
17: Break loop over α
18: end if
19: end for
20: if No α-value was accepted then
21: Update ∆ and µ using eq. (17.18) ▷ Increase regularization
22: end if
23: end for
24: Compute controller {πk}N−1

k=0 as before from Lk, lk

and DDP yield nominal trajectories and local stabilizing controllers. However, these
local controllers are often sufficient for tracking the trajectory. As they are local method,
choice of initial control sequence is important, and poor choice may result in poor
convergence. Additionally, we have not considered constraints on either state or action
in the derivation of iLQR or DDP. This is currently an active area of research [XLH17,
TMT14, GB17].

17.2.1 Example: Cartpole

Our last example will concern the more challenging cartpole environment. We consider
a fairly short-term trajectory optimization problem where the distance from top position
is penalized heavily. The non-linesearch variant of ILQR failed completely on this task,
whereas iLQR finds a good trajectory usingN = 50 as shown in fig. 17.5. The trajectory
is also illustrated in fig. 17.4

0.0 0.2 0.4 0.6 0.8
Time/seconds

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

co
s(

)

Cartpole environment T = 50
Closed-loop
Open-loop uk

iLQR rediction xk

Figure 17.5: ILQR solution to the Cartpole problem. The figure shows cos(θ) such that
cos(θ) = 1 corresponds to the upright position

17.3 Bibliographic Notes

A comprehensive coverage of linear quadratic methods for optimal control is Anderson
and Moore [AM07]. LQG is covered in discrete time in [BBBB95]. The original,
comprehensive reference on DDP is [JM70], but a large body of literature on the method
has been produced since then. The original papers on iLQR are [TL05, LT04].

Chapter 18

System estimation

System estimation is a topic in control theory where we wish to apply model-based
planning, but the model is not fully known so we have to learn it from observations.

This setup is fairly close to reinforcement learning in spirit, however, since the
methods are focused on learning a model (rather than a value function, as will be the
case in reinforcement learning) the resulting methods will be quite dissimilar.

Model based learning is often difficult to get to work well and has found most
success for fairly low-dimensional problems, however, when it works the methods are
far superior to e.g. reinforcement learning.

18.1 Introduction

Lets consider a setup similar to the linear quadratic regulator, but in a simplified setting
to avoid needless clutter:

xt+1 = Axt +But + d (18.1)

and as usual we have to determine the controls ut to minimize the N -step cost function:

J =
N−1∑
t=0

[
x⊤
t Qxt + utRut

]
+ x⊤NQxN (18.2)

Obviously, if A,B,Q and R were all known this problem could be solved using the
standard LQR, however the setup we are interested in is one where Q and R is known
(this is a realistic assumption since they denote what we think is desirable behavior),
however A and B are not known.

Let us assume we have simulated the system a number of times, and thereby obtained
several observed trajectories r = 1, . . . , R of the form:

(x
(r)
t)N

(r)

t=0 , (u
(r)
t)N

(r)−1
t=0 . (18.3)

From these trajectories, we want to estimate A, B and d in eq. (18.1). Note that
since the observed trajectories are from the physical system, they may not exactly obey

221

eq. (18.1) due to noise or because the model is not completely linear. In other words
we assume the trajectories obey:

x
(r)
t+1 = Ax

(r)
t +Bu

(r)
t + d+ ϵ

(r)
t , t = 0, . . . , N r − 1, r = 1, . . . , R (18.4)

for (small) noise factor ϵ
(r)
t . The problem can now be stated as follows: Determining

A, B and d such that eq. (18.4) is true for all i, r and while minimizing the cost:

R∑
r=1

Nr∑
t=0

∥ϵ(r)t ∥2. (18.5)

18.1.1 Solving the problem

A few simplifications will help us greatly. The first is the observation that which
trajectory r and time index t a set of observations x

(r)
t , u

(r)
t and x

(r)
t are from is

irrelevant; all that matters is the transition took place. We can therefore consider all
D = N (r) − 1 + · · ·NR − 1 transitions as one large dataset indexed as:

xi = x
(r)
t (18.6)

ui = u
(r)
t (18.7)

x′
i = x

(r)
t+1 (18.8)

In which case eq. (18.4) can be written as

x′
i = Axi +Bui + d+ ϵi, i = 1, . . . , D. (18.9)

We can simplify the problem even further by observing that in these n equations the
rows of A, B, d and ϵi can be specified independently of each other; changing one row
does not alter whether the equations relating to another row are true or not. We will
therefore focus on just a particular row ℓ in eq. (18.9). Assuming

x′
i =

x
′
i,1
...
x′i,n

 , A =

a
⊤
1
...
a⊤
n

 , B =

b
⊤
1
...
b⊤n

 , ϵi =

ϵi,1...
ϵi,n

 . (18.10)

then eq. (18.9) can be written as

x′i,ℓ = a⊤
ℓ xi + b⊤ℓ ui + cℓ + ϵi,ℓ (18.11)

=
[
a⊤
ℓ b⊤ℓ cℓ

] xiui
1

+ ϵi,ℓ (18.12)

This is perhaps beginning to look familiar. In fact if we define

yi = x′i,ℓ, zi =

xiui
1

 , w =

aℓbℓ
cℓ

 (18.13)

Algorithm 26 Linear dynamics estimation☞
Require: A sequence (xi,ui,x

′
i)
D
i=1 such that x′

i immediately follows xi when taking
action xi ▷ see eq. (18.4) and eq. (18.9)

Require: λ ≥ 0 and weights ki ▷ Default: ki = 1
1: Construct Z using eq. (18.15) and eq. (18.13)
2: for ℓ = 1, . . . , n do ▷ n is the dimensions of xi
3: Construct y using eq. (18.13)

4: w ←
(
Z⊤KZ + λI

)−1
Z⊤Ky. ▷ eq. (18.21)

5:
[
a⊤
ℓ b⊤ℓ cℓ

]
← w⊤ ▷ Unpack by matching dimensions

6: end for

7: Gather A =

a
⊤
1
...
a⊤
n

 , B =

b
⊤
1
...
b⊤n

8: return A, B, d

We get that (18.12) is simply:

yi = z⊤
i w + ϵi (18.14)

or in vector/matrix notation:

y = Zw + ϵ, Z =

z⊤
1

z⊤
2
...
z⊤
D

 (18.15)

(we have dropped the subscript ℓ from ϵi for simplificty). The objective is still to
minimize ϵi, i.e. the error function

∑D
i=1 ϵ

2
i , however, for reasons that will be apparent

later we generalize this error function slightly to be of the form:

E(w) =
D∑
i=1

kiϵ
2
i + λ∥w∥2 (18.16)

for a sequence of non-negative weights ki and a regularization term λ. This problem
is exactly equivalent to the simple, linear regression problem except for the presense of
the weights λi. Solving the problem is not hard. If we define the diagonal weight-matrix

Kij =

{
ki if i = j

0 otherwise
. (18.17)

we can re-write the cost function eq. (18.16) to

E(w) = ϵ⊤Kϵ+ λw⊤w (18.18)

Algorithm 27 Linear dynamics estimation and MPC☞
Require: λ ≥ 0
Require: Control horizon N ▷ Typically quite short
1: Buffer← () ▷ an empty list
2: for t = 0, 1, . . . do
3: xt ← Current environment state
4: if Buffer is too small then ▷ Buffer too small for estimation
5: ut ← random action
6: else
7: Get all transitions (xi,ui,x

′
i)i in Buffer.

8: Estimate A,B,d using algorithm 26 with λ
9: Obtain control laws (Lk, lk)

N−1
k=0 using LQR algorithm 22

10: ut ← L0xt + l0
11: end if
12: Take action uk, observe next state xt+1

13: Append (xt,ut,xt+1) to Buffer.
14: end for

Inserting eq. (18.15), differentiating with respect to w, and setting the derivative equal
to zero gives:

0 = ∇wE(w) = ∇w

[
(y −Zw)⊤K (y −Zw) +w⊤w

]
(18.19)

= Z⊤KZw −Z⊤Ky +w (18.20)

Solving this gives the near-familiar expression;

w =
(
Z⊤KZ + λI

)−1
Z⊤Ky. (18.21)

Pseudo-code is provided in algorithm 26

18.1.2 Using the linear dynamical model

The method for estimating the linear dynamical system algorithm 26 can be used by
simply collecting a lot of data, estimate A, B and d, and then applying LQR to obtain
a controller. However, it is instructive to consider a model which tries to control the
system while it is learning the dynamics. We can easily do this using MPC as illustrated
in algorithm 27. This algorithm converges fairly quickly, however it suffers from the
problem that it estimate the matrices A, B, d based on all data in each step. Obviously
the matrices (and therefore control laws) will change very little with a lot of data, and
so it may make sense to stop training once buffer reaches a particular size.

Algorithm 28 MPC and local Linear estimation☞
Require: Control horizon N ▷ Typically quite short
Require: Number of linerarization points K
1: for t = 0, 1, . . . do
2: xt ← Current environment state
3: if Buffer is too small then
4: ut ← random action
5: else
6: if t = 0 then
7: x̄k ← x0, ūk ← random action ▷ Initialization
8: end if
9: (x̄k, ūk)

N−1
k=0 ← (x̄k, ūk)

N
k=1 ▷ Shuffle since one time step has elapsed

10: for k = 0, . . . , N − 1 do
11: Compute local neighborhood NK(x̄k, ūk)
12: Ak, Bk,dk ← Linear regression algorithm 26 using NK(x̄k, ūk)
13: end for
14: x̄k, ūk ←Solve((Ak, Bk,dk)

N
k=0, xt)

15: Take action ū0, observe next state xt+1

16: Append (xt, ū0,xt+1) to Buffer.
17: end if
18: end for
19: function Solve((Ak, Bk,dk)

N
k=0, xt)

20: Obtain control laws (Lk, lk)
N−1
k=0 using LQR using Ak, Bk and dk ▷ algorithm 22

21: x̄0 ← x0

22: for k = 0, . . . N do
23: ūk ← Lkx̄k + lk
24: x̄k+1 ← Akx̄k +Bkūk + dk
25: end for
26: return (x̄k, ūk)k
27: end function

18.2 Non-linear problems

Recall the iLQR algorithm in it’s basic form algorithm 24 solves a non-linear control
task using a linear controller. It does so by maintaining a path (x̄k, ūk)k it linearises
the system around, i.e. approximate the dynamics as:

xk+1 ≈ A(xk − x̄k) +B(uk − ūk) + d (18.22)

iLQR then proceeds using discrete LQR. Thus, for us to do something similar, all
we need are good approximations of A, B, d which are approximately valid near x̄k
and ūk. We can find these using local linear regression, which simply means thatlocal linear re-

gression

0 1 2 3 4 5 6
Time/seconds

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

co
s(

)

ILQR
Direct
MPC-LQR

Figure 18.1: Non-linear MPC on pendulum environment

instead of considering the full dataset

(z1, y1), . . . , (zD, yD) (18.23)

from the buffer we only use those observations where zi is close to (x̄i, ūi). Concretely,
define the K-nearest neighborhoood as

N (z̄ = (x̄, ū)) = {K nearest (zi, yi) measured by d(zi; z̄) } (18.24)

Where we have introduced a general distance d. The method can then be summarized
as follows:

• Initialize (x̄k, ūk) over a planning horizon L

• For each k

– Compute neighborhood N (x̄k, ūk)

– Obtain linearized problem Ak, Bk, dk based on neighborhood

• Solve LQR problem of horizon length L using dynamics (Ak, Bk,dk)
L
k=0 and cost

matrices defined by problem

• Update (xk,uk)
L
k=0 to agree with trajectory defined above

There are a few outstanding details, but the full procedure can be found in algorithm 28.

0 2 4 6 8 10
Time/seconds

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

co
s(

)

ILQR
Direct
MPC-LQR
MPC-opt

Figure 18.2: Non-linear MPC on pendulum environment

18.2.1 Example: Pendulum swingup

We apply the method to the pendulum swingup task. The environment is simulated
over a slightly longer time horizon and the method is trained on data from 8 trajectories
using a time discretization of ∆ = 0.08 seconds, MPC horizon length of L = 12 and
a local neighborhood size of 40. The time discretization and horizon length had to be
tweaked for the method to work, as had to the cost function. We compared against a
ILQR solver and an open-loop direct trajectory planner. The result can seen in fig. 18.1,
where we have repeated the experiment 10 times to get an idea about the variability.

The methods all achieve swingup, but have some problems stabilizing the pendulum
thereafter (this is why the direct solver appears to fare badly, even though it does in
fact plan well until stabilization).

It is interesting iLQR and MPC appear to work roughly equally well on average. I
think this can be attributed to the planners being approximately similar except one uses
MPC and (approximated) matrices which are however quite stable. ILQR would likely
benefit from better initialization and I suspect all controllers tend to be too conservative
when estimating the applied action signal, i.e. boosting u slightly may be of benefit (I
suspect this is due to the Euler discretization).

18.2.2 MPC and optimization

In algorithm 28 we used LQR for simplicity. An alternative approach is to simply find
the optimal controls by optimizing the N -step control problem. Since we re-compute
the control trajectory once we use the first control ut = ū0 the resulting controller
will still be closed-loop, and the use of an optimizer allows us to take constraints into
account. Doing this is simply a matter of changing the Solve(· · ·) method as indicated

Algorithm 29 Alternative solve method☞
1: function Solve((Ak, Bk,dk)

N
k=0, x0)

2: Build cost-function as

J(x0) = cf (xN) +
N−1∑
k=0

(ck(xk,uk)) (18.25)

3: Determine (x̄k, ūk) by minimizing J(x0) according to (xk,uk) subject to xk+1 =
Akxk +Bkuk + dk and whatever other constraints affect the problem

4: return (x̄k, ūk)k
5: end function

in algorithm 29

18.2.3 Example: Pendulum swingup and optimization

We repeated the pendulum swingup task but included result for the optimization-based
controller algorithm 29. The optimizer appears to be on-par with the other methods.
It is unclear why the optimizer appears to favor larger action values.

18.3 Learning-MPC and the racecar /

Learning-MPC (LMPC) can be considered a state-of-the-art approach to real-time
learning and control which treats the challenging racecar problem we discussed in sec-
tion 10.4.3. It has been the subject of a handful of recent papers and the reader is
encouraged to look at the video online1 of how it can quickly learn to control a racecar
[RZB18, RB17b, RB17a]. We will follow the implementation available online2 since
the description in the references disagree in minor ways and does not fully match the
implementation.

LMPC is essentially algorithm 28 using the optimality-based solver in algorithm 29,
but with a few tweeks.

18.3.1 Problem formulation

Recall the car-environment (fig. 18.3) is about completing a small track as quickly as
possible (i.e., lowest lap time). As we saw in section 10.4.3 it consist of a rather complex
6-dimensional coordinate system x where the car is parameterized according to how
much of the lap it has completed, x6(t), and how far it is from the centerline, x5(t).
The two actions is the steering angle and the acceleration. The car is subject to three

1http://www.mpc.berkeley.edu/research/adaptive-and-learning-predictive-control
2https://github.com/urosolia/RacingLMPC

http://www.mpc.berkeley.edu/research/adaptive-and-learning-predictive-control
https://github.com/urosolia/RacingLMPC

Figure 18.3: Car-environment. Reproduced from fig. 10.2

constraints, namely that it cannot drive over the sides (simple linear constraint on x5)
and simple linear constraints on u(t).

The interaction with the environment is in a single episode consisting of a small
number ≈ 10 laps. The coordinate x6(t) tracks the distance traveled within the lap and
is therefore reset every time it pass start.

The environment is formulated as a minimum-time problem, i.e. at each time-step
until a lap is completed the system simply obtains a cost of

ck(xt,ut) = 1 (18.26)

Therefore, the cost of lap is the number of time-steps it took to complete the lap.
As a final comment, before the method is applied to the system it is assumed data

from two completed tracks have been recorded into the buffer using another method
than LMPC. In practice, this occurs using a PID controller (which we have already
seen) and a different, simple procedure which will not be discussed here.

18.3.2 Linearization

The first noteworthy observation is in how the system is linearized. Firstly, instead of
considering data from all laps, the method only use data from the last two completed
laps (hence why it is initialized with two laps above).

To determine each Ak, Bk and dk, the method use a combination of analytical ap-
proximations and regression. Specifically, recall from eq. (17.6) we can always obtain a
linear approximation of the discrete model of the form

xk+1 ≈ Aakxk +Ba
kuk + fk(x̄, ū)− Aakx̄−Ba

kū︸ ︷︷ ︸
da
k

(18.27)

This model can then be combined with the local linear regression model; i.e. we take
some rows from the analytical approximation above and some rows of the analytical
approximation model. The reason we would want to do this is because some coor-
dinates of the curve-linear coordinate system depend on each other in a complicated
way dictated by the track geometry which is assumed known; others, such as how the
motor acceleration affects the speed, depends on car-specific parameters which should
be estimated by regression.

These changes are very simple in practice. When we in eq. (18.24) compute the
neighborhood, we do so by first computing the scaled distance:

d(z = (x,u), z̄ = (x̄, ū)) =
(x1 − x̄1)2

100
+ (x2 − x̄2)2 + (x3 − x̄3)2 + ∥u− ū∥2. (18.28)

Then we select (no more than) 40 points where this distance is less than a critical value
of h = 5.

Given this distance to each of the at most 40 points in the neighborhood we also
compute the kernel weights in the cost function eq. (18.16) using the EpinichikowEpinichikow

kernel:

ki =

(
1− d(zi, z̄i)

2

h2

)
3

4
, zi ∈ N (z̄). (18.29)

Since the distances are capped at h this is always non-negative.
This brings us to the linear regression. Recall that in the ordinary case, see

eq. (18.12), we determine each row aℓ, bℓ and cℓ of the relevant matrices through
the linear regression problem

yℓ = a⊤x+ b⊤ℓ u+ cℓ (18.30)

where y is the state immediately proceeding x. As mentioned, we only solve this for
the first three rows ℓ = 1, 2, 3, and we do not consider all the input features: once more
this is done on a consideration only the first three states should be used for estimation,
as well as the natural intuition that the throttle of the car, u1, only affect the velocity
in the x-direction x1. Specifically for ℓ = 1, 2, 3 we consider the reduced regression
problems:

ℓ = 1 : y1 =
[
A11 A12 A13

] x1x2
x3

+B12u2 + c1 (18.31)

ℓ = 2 : y1 =
[
A21 A22 A23

] x1x2
x3

+B21u1 + c2 (18.32)

ℓ = 3 : y1 =
[
A31 A32 A33

] x1x2
x3

+B21u1 + c2 (18.33)

All these regression problems can be solved using the method algorithm 26. This is
done for each k, and the estimated part of Ak, Bk and dk above are used to over-write
corresponding entries in the linearized version of the system matrices eq. (18.27).

18.3.3 The terminal cost approximation

The final point we need to cover is the definition of optimization target eq. (18.25) from
algorithm 29.

J(x0) =
N−1∑
k=0

(ck(xk,uk) + cf (xN)) (18.34)

Since the (true) objective, as given in eq. (18.26), is that the car obtains a cost of 1
unit until it completes the lab this function presents the problem that the cost-terms
ck are all constant (and hence independent of the state) as long as the planning horizon
is shorter than it takes to complete the lab.

To fix this we need a non-trivial definition of cf , and recall from the finite-horizon
formulation section 6.3.3 that cf should ideally be the optimal cost-to-go starting in
xN and taking optimal actions. Naturally we don’t know what this is, but it can be
approximated.

To do this, LMPC finds the K = 44 points from the last two laps closest to the
predicted end-point x̄N , from now denoted by xi ∈ SN .

For all observations x′
i ∈ SN we know how long it actually took to drive to the finish

starting from x′
i, and we denote that number by Qi. We could approximate cf (xN) as

Qi if xN = x′
i for some i and otherwise ∞. This has the benefit of also ensuring the

planner plans to a state with a known future trajectory, but it has the disadvantage
of making the optimization very difficult. A smarter approach is to introduce the K
variables α1, . . . , αK restricted so that

αi > 0,
N∑
i=1

αi = 1 (18.35)

and assume that

xN =
N∑
i=1

αix
′
i + ρ (18.36)

cf (xN) =
N∑
i=1

αiQi (18.37)

The first line says that xN should be a weighted average of the points we have already
seen, i.e. be somewhere inside the convex hull of the set SN . The variable ρ is a slack-
variable restricted to be very small. The second line implies that once we know which
x′
i are the most relevant, the expected remaining cost should be a (weighted average) of

their expected costs Qi. In addition to these changes, the optimization problem is also
changed to add a cost for large controls ∥uk∥2 as well as a new term which accounts
for controls not being allow to differ too much ∥uk+1 − uk∥2. The later is common in
robotics applications to encourage smooth control trajectories; as an example, fig. 18.4

0 2 4 6 8 10
Time/seconds

6

4

2

0

2

4

6

To
rq

ue
 u

ILQR
Direct
MPC-LQR
MPC-opt

Figure 18.4: Actions in non-linear MPC on pendulum environment

shows the action u(t) for the various methods applied to the pendulum environment,
and for all methods except the direct method we see quite erratic action paths.

With these changes, the final cost minimized in eq. (18.25) is therefore:

J(x0) =
K∑
i

αix
′
i + ρ⊤Qρρ+ 5

N−2∑
k=0

∥uk+1 − uk∥2 +
N−1∑
k=0

∥uk+1∥2 (18.38)

where Qρ is a diagonal matrix such that Qρ,11 = Qρ,5 = 100 and Qρ,22 = Qρ,33 = Qρ,44 =
Qρ,66 = 5.

Conclusion

There are many details in the above and one can easily get lost in that the method
turns out to be fairly simple: First we perform the linear regression to get (Ak, Bk,dk)k,
then we perform the optimization of the target eq. (18.38) subject to the constraints
eq. (18.35), eq. (18.36), and the usual linear constraints on the inputs uk. Note that in
this problem we also optimize over ρ and α, however asides that it is simply a linear-
quadratic problem (with the small details it is combined with a linearized version of
the model and the specific choices of how the closest neighbors are computed).

Many of these details could likely be done differently. One example is that the
implementation computes SN as those observations closest to the current state xt rather
than x̄N ; this is hard to make sense of, since the current state seems to have little to
do with the tail cost N steps in the future, whereas x̄N has the advantage of being our
current prediction of where the car will be in N steps.

Chapter 19

Preparing for RL

This chapter will serve as a bridge between the notation of the previous chapters and
the Markov decision process (MDP) notation used in ”Reinforcement learning: An
introduction” [SB18]. The section assumes the reader has read the first few chapters in
this references and will attempt to clarify a few points that might seem vague.

19.1 Markov Decision Process

The description of an MDP in [SB18] follows a familiar scheme. Time is indexed as
t = 0, 1, 2, . . . and the state at time t is denoted st and the action the agent took
as at. The agent then transition to st+1 and obtains a reward rt+1 for the transition
(st, at, st+1). Note the shift in time index.

Random variables /

As the reader might have noticed the above description does not mention the equivalent
of a random disturbance wk. This is because [SB18] choose, as is common in the MDP
literature, to describe all quantities in terms as random variables. Recall a random
variable signifies the outcome of an experiment, for instance for a roll of two dies we
can define a random variable S to signify the sum of the eyes, and then let S = 3 denote
the event their sum is 3. There are advantages and disadvantages to this choice:

• It creates a more compact notation which is compatible with the technical liter-
ature of MDPs

• It makes it a bit easier to get confused when thinking in-depth about what the
notation actually mean. Recall a random variable is defined as a function from
the sample-space to the set the quantity can lie in. In the die-example, the sample
space was all pairs {(i, j)|i, j = 0, . . . , 6} and S((i, j)) = i + j. In reinforcement
learning the sample space is what is technically known as a filtration, and it is
much more difficult to actually define St beyond it’s intuitive meaning.

233

[SB18] follows the convention of using upper-case letters such as St to signify a random
variable and st it’s outcome.

Obviously everyone who reads the algorithms in [SB18] understands that when they
see St in an algorithm, they should insert the value st when they implement it, and
everything just works. However, in my view the fk, gk notation easier to understand
since it is easier to relate to a randomly generated number wk and that the function
involved, fk and gk, are indeed just ordinary functions.

Transition probability

Rather than using noise disturbances, [SB18] describe the problem using transition
probabilities:

p (s′, r | s, a) .= Pr [St = s′, Rt = r | St−1 = s, At−1 = a] (19.1)

Importantly, these transition probabilities obey the Markov property, meaning the
future only depends on the present and not the past.

Pr [(Rt+1, St+1) | (St, At, St−1, At−1, . . . , S0, A0)] = Pr [(Rt+1, St+1) | (St, At)] . (19.2)

19.1.1 The terminal time

Most environment we will consider will be episodic, meaning they eventually terminate
at a time T , giving rise to an episode (or in our language, trajectory):

S0, A0, R1, S1, A1, R1, S2, . . . ST−1, AT−1, RT , ST . (19.3)

This gets us to a technical point which [SB18] does state but in my view benefit from
emphasis: What is it specifically that determines T in each time step? Since T is defined
as a random variable, it could in principle depend on all sorts of things such as:

• The state ST−1 and AT−1

• The state ST−1 and AT−1 and ST

• Just ST

The first option would for instance mean the agent could take an illegal action in a
certain state and therefore the environment terminates (regardless of whether the state
ST is a legal state), and the middle option is in fact what is implemented in OpenAI
Gym’s Discrete environment.

The correct way to define T is fortunately the simplest: First we define the set of
all states as St ∈ S and assume it is divided into two sets N and T

S = N ∪ T (19.4)

which are non-overlapping N ∩ T = ∅. The set T are the terminal states, i.e. the
terminal time T is defined as the first time t the environment enters T :

T = min {t | St ∈ T } . (19.5)

Therefore, ST ∈ T and St ∈ N for t = 0, . . . , T − 1. Since the environment is now
terminated, there are no subsequent states, rewards and actions. This means that the
transition probability density p(s′, r|s, a), considered as a function p of (s, a, r, s′), is
not defined for s ∈ T since there can in fact be no s′. In other words it is a function:

p : N ×A× R× S → [0, 1]. (19.6)

This has some important consequences. When we define a policy as the state-action
probability:

π(a|s) = Pr [At = a | St = s] (19.7)

Then it is only defined for s ∈ N , i.e. π : N ×A → [0, 1]; whenever you try to call the
policy on a state st ∈ T , your code should give an error.

This also means that the value and action-value functions, defined using Gt =∑T−1
k=0 γ

kRt+k+1:

Vπ(s) = E [Gt | St = s] , Qπ(s, a) = E [Gt | St = s, At = a] (19.8)

are not defined for s ∈ T , i.e.

vπ : N → R, Qπ : N ×A → R. (19.9)

This is an important point, since many reinforcement learning algorithms are typeset
in such a way it seems like we should use Vπ(ST). Consider TD Learning:

Vπ(St)← Vπ(St) + α [Rt+1 + γVπ(St+1)− Vπ(St)] (19.10)

When t = T −1 it indeed seems like we should use Vπ(ST). A common recommendation
is to define Vπ(s) = 0 for s ∈ T (which produce the right result for TD learning),
however this idea runs into problems when we use function approximators which all of
a sudden needs to be evaluated in ST . The right way to solve the problem is to consider
what actually occurs at t = T − 1 and realize that, by the derivation of TD learning,
the update rule is actually:

Vπ(St)← Vπ(St) + α [Rt+1 − Vπ(St)] (19.11)

and then implement this update rule. The above points might appear too exotic to
be of real importance, however, I have seen serious implementation of research code
where the authors try to access a neural approximation of Vπ(ST = s) for s ∈ T only
to get in troubles, and then try to fix the problem in various ways presented as special
optimizations/adaptations of the method.

In fact the question has a very clear answer if we simply consider the definition of the
value function and realize the code was buggy the moment we tried to compute Vπ(ST).
It is for the same reason the course software often define terminal states as something
silly like terminal_state = "terminal state" ; it is a good habit to think of the terminal states
as something which truly look nothing like the regular states in N .

As a final note, [SB18] does make this distinction in [SB18, Section 3.3], using S+ for
all states and S for non-terminal states N , however I think it is a point which is easily
overlooked, since this distinction is only introduced after the transition probabilities
are introduced in [SB18, Section 3.1] (see e.g. definition p : S × R × S × A → [0, 1]).
These two definitions are not compatible, since the definition of p would imply the
environment never terminates.

19.1.2 Implementation of an MDP

It is perhaps useful to see a practical example of this distinction. An MDP is im-
plemented as the MDP class. I have made convenient functionality to convert a Gym
environment to an MDP, and in this case we will convert the Frozen Lake environment.
The states/non-terminal states can be computed using:

1 # mdp.py

2 mdp = GymEnv2MDP(gym.make("FrozenLake-v1"))

3 print("N = ", mdp.nonterminal_states)

4 print("S = ", mdp.states)

5 print("Is state 3 terminal?", mdp.is_terminal(3), "is state 11 terminal?", mdp.is_terminal(11))

Which produces output

1 N = [0, 1, 2, 3, 4, 6, 8, 9, 10, 13, 14]

2 S = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]

3 Is state 3 terminal? False is state 11 terminal? True

Compare to the first exercises where we worked with the frozen lake environment.
The MDP class itself is relatively straight-forward. The only slightly tricky part is that
because we want to be able to define MDPs over infinite state sets, then rather than
explicitly defining S and N , we define a mdp.is_terminal(state) function to check if a state
is terminal or not. The above lists are then computed only if they are requested. The
following example sums up the remaining functionality we will need, namely a way to
compute the transition-probabilities p(s′, r|s, a):

1 # mdp.py

2 state = 0

3 print("A(S=0) =", mdp.A(state))

4 action = 2

5 mdp.Psr(state, action) # Get transition probabilities

6 for (next_state, reward), Pr in mdp.Psr(state, action).items():

7 print(f"P(S'={next_state},R={reward} | S={state}, A={action}) = {Pr:.2f}")

Which computes the probability of transitioning to states 4, 1, 0 given we take action
2 in state 0 (the initial state):

1 A(S=0) = [0, 1, 2, 3]

2 P(S'=4,R=0.0 | S=0, A=2) = 0.33

3 P(S'=1,R=0.0 | S=0, A=2) = 0.33

4 P(S'=0,R=0.0 | S=0, A=2) = 0.33

Appendix A

Proof of principle of optimality

A.1 Principle of optimality

Recall that the principle of optimality (PO) claims that:

Definition A.1.1 (Principle of optimality). Let π∗ =
{
µ∗
0, µ

∗
1, . . . , µ

∗
N−1

}
be an optimal

policy for the basic decision problem, and assume that when following π∗ there is a
positive probability we will find ourselves in state xi at time i. Consider the subproblem
where we start in xi at time i and which to minimize the tail subproblem from i to N :

E

{
gN (xN) +

N−1∑
i=k

gi (xi, µi (xi) , wi)

}
(A.1)

Then the truncated policy π∗,k = (µ∗
i , µ

∗
i+1, . . . , µ

∗
N−1) is optimal for this subproblem:

J∗
k (xk) = Jk,πk(xk) (A.2)

The other proof of the PO I am aware of makes use of certain inequalities and
analysis to establish the claim [Ber05], however I thought it would be useful to provide
a more direct proof which makes use of the same intuition as the Copenhagen-Berlin
example. Before we proceed, we need a few definitions:

• The PO assumes that x0 is fixed. In other words, imagine S0 = {x0} for simplicity

• We say a state xk occurs under π if there is a positive chance of reaching xk,
starting in x0 and following π. Equivalently, we say xk is reachable from x0reachable

(under π)

• Given a policy π and a reachable state xk, a trajectory starting in xk, is simply
the sequence of states, actions and disturbances that arose from a roll out starting
in xk, and is denoted by τ . Since the policy is fixed, this can be fully specified by
stating which disturbances occurred:

τxk = (xk, wk, wk+1, . . . , wN−1)

238

because from xk we can compute the actions as π(xk), and given actions and
disturbances wk we can compute xk+1 and so on

• We can compute the probability of a trajectory as simply

P (τxk) =
N−1∏
ℓ=k

Pk(wℓ | xℓ, µℓ(xℓ))

• Given a reachable state xk and a policy π, we can define the set of all possible
trajectories starting in xk as:

T (xk) = {τxk |P (τxk) > 0}

• The cost-function is just an average over all possible trajectories. We can therefore
re-structure it as simply

Jπ(x0) =
∑

τ∈T (x0)

P (τ)

[
gN(xN) +

N−1∑
k=0

g(xk, µk(xk), wk)

]
(A.3)

Proof. The proof of the PO is by induction over N , where the claim is the PO holds
for any k ≥ 1. We prove this claim by induction over N , starting at N = 1; in this case
all tail policies are empty and therefore by definition optimal.

Induction step: For the induction step, assume that N ≥ 2 and the claim holds
for all smaller values of N . We consider π∗ fixed and assume a xk is reachable from
x0 under π∗, and have to show eq. (A.2). To this end, assume the minimum of the
left-hand expression is achieved using a policy πk,opt = (µopt

k , µopt
k+1, . . . , µ

opt
N−1), i.e.

πk,opt = argmin
πk

E

{
gN (xN) +

N−1∑
i=k

gi (xi, µi (xi) , wi) | xk

}
(A.4)

The claim is therefore equivalent to showing

Jk,πk,opt(xk) = Jk,πk,∗(xk). (A.5)

We prove this by contradiction. Assume this was not the case, and the optimal tail
policy was in fact an improvement on the tail of the optimal policy:

Jk,πk,opt(xk) < Jk,πk,∗(xk). (A.6)

Intuitively, what we want to do is stitch together πk,opt and π∗ and show that π∗ was in
fact not optimal. To do this, consider all trajectories starting in xk which are possible
when following πk,opt Tπk,opt(xk). Given this set, we can define the set of states we might
reach starting from xk:

R = {xℓ | xℓ is on a trajectory τ ∈ Tπk,opt(xk)} (A.7)

We can then stick together the policies by defining a new policy π̂ as

µ̂ℓ(xℓ) =

{
µopt
ℓ (xℓ) if xℓ ∈ R
µ∗
ℓ(xℓ) otherwise

(A.8)

This new policy simply follows the old optimal policy unless it reaches a state in R in
which the new optimal tail policy is defined in which case it follows πk,opt. We derive a
contradiction by showing this policy is in fact better than the optimal policy π∗.

The Contradiction: Recall the optimal cost can be written as

Jπ∗(x0) =
∑

τ∈Tπ∗ (x0)

P (τ)

[
gN(xN) +

N−1∑
k=0

g(xk, µk(xk), wk)

]
︸ ︷︷ ︸

=C(τ)

(A.9)

The set of paths τ ∈ Tπ∗(x0) can be divided into a partitioning according to when they
first intersect R: A set of T0 will never intersect R, and otherwise for each xr ∈ R we
define

Txr =

{
τ ∈ Tπ∗(x0) |

xr is on the path τ and there is no preceeding
state x0, . . . , xr−1 on τ which is also in R

}
(A.10)

Obviously, Tπ∗(x0) = T0 ∪
(⋃

xr∈R\{xk} Txr

)
∪ Txk . We can use this set to decompose

the cost function eq. (A.9) as follows:

Jπ∗(x0) =
∑

τ∈Tπ̂(x0)

P (τ)

[
gN(xN) +

N−1∑
k=0

g(xk, µk(xk), wk)

]
(A.11)

=
∑
τ∈T0

P (τ)C(τ) +
∑
τ∈Txk

P (τ)C(τ) +
∑

xr∈R\{xk}

 ∑
τ∈Txr

P (τ)C(τ)

 (A.12)

The first term will be the same for both policies. Consider the average∑
τ∈Txr

P (τ)C(τ)

We can divide the path τ into the part before xr and the part after. In other words:

=
∑
τ∈Txr

P (τ)

[
r−1∑
k=0

gk(xk, µk(uk), wk) +
N−1∑
k=r

gk(xk, µk(uk), wk) + gN(xN)

]

=
∑
τ∈Txr

P (τ)

[
r−1∑
k=0

gk(xk, µk(uk), wk)

]
+

∑
τ∈Txr

P (xr)P (τ |xr)

[
N−1∑
k=r

gk(xk, µk(uk), wk) + gN(xN)

]

= Cxr + P (xr)E

[
N−1∑
k=r

gk(xk, µk(uk), wk) + gN(xN)

]
= Cxr + P (xr)Jπ∗,k(xr) (A.13)

This expression is computed for π∗, however note that the terms Cxr will be the same
for policy π∗ and the stitched policy π̂ as they only differ on the set R, and we will
absorb them into a constant K. Using this in eq. (A.12) we obtain

Jπ∗(x0) = K + P (xk)Jk,π∗,k(xk)︸ ︷︷ ︸
> P (xk)Jk,πk,opt(xk) by eq. (A.5)

+
∑

xr∈R\{xk}

[P (xr)Jr,π∗,r(xr)] (A.14)

For the terms Jr,π∗,r(xr) we have to use our induction hypothesis in the following man-
ner: By definition of R in eq. (A.7), we know xr was a state obtained by following πk,opt

from xk, and therefore r > k. We can therefore consider Jr,π∗,r(xr) as a tail cost of the
N − k-long DP problem obtained from eq. (A.4) and apply the induction hypothesis:
We know any tail policy is optimal, and therefore the tail policy of πk,opt, starting in
xr, must be optimal for the trail-subproblem. Since it is optimal it must have lower (or
equal) cost than any policy started in xr, specifically Jr,π∗,r(xr). Hence,

Jr,π∗,r(xr) ≥ Jr,πk,opt(xr)

Inserting this eq. (A.14) becomes

Jπ∗(x0) > K + P (xk)Jk,πk,opt(xk) +
∑

xr∈R\{xk}

[
P (xr)Jr,πk,opt(xr)

]
(A.15)

= Jπ̂(x0) (A.16)

The last equality sign follows by applying the exact same argument as in eq. (A.12)
and eq. (A.13) to π̂, noting we obtain the same constant, and the remaining terms
involving states in R are all computed as averages ovver πk,opt by the definition of the
stitched policy eq. (A.8). Finally, simply note that the last equation is in contradiction
to π∗ being an optimal policy, and therefore by contradiction the induction hypothesis
is true.

Bibliography

[AM07] Brian DO Anderson and John B Moore. Optimal control: linear quadratic
methods. Courier Corporation, 2007.

[BBBB95] Dimitri P Bertsekas, Dimitri P Bertsekas, Dimitri P Bertsekas, and Dim-
itri P Bertsekas. Dynamic programming and optimal control, volume 1.
Athena scientific Belmont, MA, 1995.

[Ber05] D.P. Bertsekas. Dynamic Programming and Optimal Control. Number v. 1
in Athena Scientific optimization and computation series. Athena Scientific,
2005.

[Bet10] John T Betts. Practical methods for optimal control and estimation using
nonlinear programming, volume 19. Siam, 2010.

[BGJM11] Steve Brooks, Andrew Gelman, Galin L. Jones, and Xiao-Li Meng. Hand-
book of Markov Chain Monte Carlo. Chapman & Hall, 2011.

[GB17] Markus Giftthaler and Jonas Buchli. A projection approach to equality
constrained iterative linear quadratic optimal control. In IEEE-RAS Inter-
national Conference on Humanoid Robotics (Humanoids), 2017.

[JM70] David Jacobson and David Mayne. Differential Dynamic Programming.
Elsevier, 1970.

[Kel17a] Matthew Kelly. An introduction to trajectory optimization: how to do your
own direct collocation. SIAM Review, 2017.

[Kel17b] Matthew Kelly. An introduction to trajectory optimization: How to do
your own direct collocation. SIAM Review, 59(4):849–904, 2017. (See
kelly2017.pdf).

[Kel17c] Matthew Kelly. Transcription methods for trajectory optimization: a be-
ginners tutorial. arXiv:1707.00284, 2017.

[LK14] Sergey Levine and Vladlen Koltun. Learning complex neural network poli-
cies with trajectory optimization. In International Conference on Machine
Learning (ICML), 2014.

242

[LT04] Weiwei Li and Emanuel Todorov. Iterative linear quadratic regulator design
for nonlinear biological movement systems. In International Conference on
Informatics in Control, Automation, and Robotics, 2004.

[MRR+53] A. W. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and
E. Teller. Equations of state calculations by fast computing machines. Jour-
nal of Chemical Physics, 21:1087–1092, 1953.

[MU49] N. Metropolis and S. Ulam. The monte carlo method. J. Am. Stat. Assoc.,
44:335, 1949.

[RB17a] Ugo Rosolia and Francesco Borrelli. Learning model predictive control for it-
erative tasks: A computationally efficient approach for linear system. IFAC-
PapersOnLine, 50(1):3142–3147, 2017.

[RB17b] Ugo Rosolia and Francesco Borrelli. Learning model predictive control for
iterative tasks. a data-driven control framework. IEEE Transactions on
Automatic Control, 63(7):1883–1896, 2017.

[RN09] Stuart J. Russell and Peter Norvig. Artificial Intelligence: a modern ap-
proach. Pearson, 3 edition, 2009.

[Ros05] Jeffrey S. Rosenthal. A first look at rigorous probability theory. World
Scientific, Singapore [u.a.], reprinted edition, 2005.

[RZB18] Ugo Rosolia, Xiaojing Zhang, and Francesco Borrelli. Data-driven predictive
control for autonomous systems. Annual Review of Control, Robotics, and
Autonomous Systems, 1:259–286, 2018.

[SB18] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An
Introduction. The MIT Press, second edition, 2018. (Freely available online).

[TET12] Yuval Tassa, Tom Erez, and Emanuel Todorov. Synthesis and stabiliza-
tion of complex behaviors through online trajectory optimization. In IEEE
International Conference on Intelligent Robots and Systems (IROS), 2012.

[TL05] Emanuel Todorov and Weiwei Li. A generalized iterative LQG method for
locally-optimal feedback control of constrained nonlinear stochastic systems.
In American Control Conference (ACC), 2005.

[TMT14] Yuval Tassa, Nicolas Mansard, and Emo Todorov. Control-limited differen-
tial dynamic programming. In IEEE International Conference on Robotics
and Automation (ICRA), 2014.

[XLH17] Zhaoming Xie, C Karen Liu, and Kris Hauser. Differential dynamic pro-
gramming with nonlinear constraints. In IEEE International Conference on
Robotics and Automation (ICRA), 2017.

	Preliminaries
	Preliminaries
	Monte-Carlo sampling
	The Monte Carlo principle

	Analysis
	Vector-valued functions
	Derivatives
	Jacobian
	Approximations
	Dot-notation
	Differential equations
	Linear algebra
	I Programming
	Python basics
	Why this course emphasize python
	Scope
	Starting python
	Python version
	What is a program?

	The primitive data types
	Integers (int)
	Decimal (floating point) numbers (float)
	Booleans (bool)
	Strings (str)
	The None-type (None)

	If/else, functions and exceptions
	Functions (def)
	Inlined functions (lambda)
	What is a good function?

	Compound data types and iteration
	Lists (list)
	Intermezzo: The for-loop and lists
	The range-function
	The break and continue-statements, and else in a loop

	Tuples (tuple)
	Sequence unpacking and functions

	Sets (set)
	Dictionaries (dict)
	Example: A probability assignment
	Example: A tiny grid-world
	Example: The fruit-store
	Example: A small database '057
	The collections-module (defaultdict) '057

	Looping techniques
	Looping over a dictionary (items)

	List and dictionary comprehension
	Dictionary comprehension

	More on functions
	Named arguments and default values
	Variable input arguments (* and **)

	Example: Conways game of life '057'057

	Classes and packages
	Modules and packages (import)
	packages
	Classes and objects
	Defining a class (class)
	Class inheritance
	Calling super-class constructors (super)
	Why inheritance is so awesome '057'057
	Wrappers '057
	Type annotation '057'057

	II Optimal decision making
	Introduction
	Introduction
	Scope and organization
	Reward, cost, and other annoyances

	The decision problem
	Example: The pendulum
	Example: Graph traversal
	Example: The inventory control problem
	Example: Gridworlds
	Example: Pacman

	Detailing the decision problem
	The environment
	The agent
	The interpreter
	The control loop
	How to build an agent

	Implementing environments and agents
	Building a robot
	The environment
	The agent
	The training loop
	Advanced features, plotting
	Visualizing the environment

	The basic problem
	The discrete, finite-horizon decision problem
	Small graph traversal
	Inventory control example
	Example: The chessmatch
	Open and closed loop

	State augmentation
	Absorbing states
	An observation about time
	Time lags '057
	Partially observed environments '057

	Implementation details

	Dynamical Programming
	The principle of optimality
	The DP algorithm
	Example: The small graph problem
	Example: The chess match
	Example: Inventory control
	Example: Optimal pacman
	Multi-ghost pacman
	One-ghost Pacman
	Shortcomings of DP

	Reformulations
	Evaluation
	Adversarial setting
	Finite-horizon formulation

	Shortest path formulation
	Deterministic decision problem
	Traveling Salesman
	An issue with the DP algorithm

	The deterministic decision problem and graphs
	The forward view of DP
	Search problems and forward-DP
	Example: Shortest-path graph traversal with no restrictions
	Example: Pacman food pellet search
	Where to go from here?

	Search
	Search methods
	Frontier queues
	Search nodes
	Breadth-First search
	Search performance

	Uniform cost search
	Depth-first search
	Structured search and A* '057
	Heuristic functions
	Heuristic functions

	Multi-agent systems
	Multi-agent games
	Expectimax
	Formulating the opponents choice as a DP update

	Minimax search
	An issue with expectimax and minimax

	Alpha-Beta search '057'057
	Alpha-beta pruning
	Comments on efficiency
	Tricks and chess

	III Control
	The control problem
	The continuous-time control problem
	Constraints
	Non-linear constraints
	Policy and cost
	Cost function

	The continuous-time control problem
	Example 1: The pendulum
	Example 2: The harmonic osscilator
	Example 3: The racecar

	Implementation details
	Simulation
	Exactly solving the dynamics
	Example A: 1-d problem with no control
	Example B: The harmonic oscillator

	Euler integration
	Example A continued: Euler integration of a simple 1d system
	Example B continued: Euler integration of the harmonic oscillator

	Runge-Kutta
	Evaluating the cost
	Comments on simulation

	Linear-quadratic problems
	An exact solution to linear problems
	Example 2: Level flight for a 747

	Discretization of a control problem
	Building models by discretization
	Example: The discrete linear-quadratic model
	Discretization using Euler integration
	The special case of linear dynamics
	Coordinate transformations
	Discretization the cost
	Discretization of an environment

	Notes on implementation
	Discretized model
	Models to environments
	Training control methods

	PID Control
	The P in PID ensures we reach our goal
	The D in PID control oscillations
	The I in PID fix droop
	Tuning PID controllers

	Example: The car-model

	Direct methods
	Optimization
	Non-linear optimization
	Linear-quadratic optimization

	Optimizing the discrete problem
	Transcription Methods
	Comments about optimizing the discrete problem

	Direct collocation
	Problem formulation
	Collocation
	Constructing the solution
	Guesses and the iterative method
	Example: Pendulum swingup
	Example: Cartpole swingup
	Example: Brachistochrone '057

	Additional issues '057'057
	Bibliographic Notes

	Linear-quadratic regulator
	The Linear Quadratic Regulator in Discrete Time
	Example: Double integrator
	Example: Double integrator revisited
	Example: Boing 747 flight
	LQR with Additive Noise
	LQR with (Bi)linear Cost and Affine Dynamics
	Regularization

	Bibliographic Notes

	Iterative LQR
	Linearization
	LQR Tracking around a Nonlinear Trajectory
	Example: Pendulum and basic ILQR

	Iterative LQR
	Example: Cartpole

	Bibliographic Notes

	System estimation
	Introduction
	Solving the problem
	Using the linear dynamical model

	Non-linear problems
	Example: Pendulum swingup
	MPC and optimization
	Example: Pendulum swingup and optimization

	Learning-MPC and the racecar '057
	Problem formulation
	Linearization
	The terminal cost approximation

	Preparing for RL
	Markov Decision Process
	The terminal time
	Implementation of an MDP

	Proof of principle of optimality
	Principle of optimality

