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Week 8: Outline of the lecture

▶ Introduction to MARIMA

▶ How the MARIMA method works (how it includes an MA part)

▶ Chapter 9 – Multivariate time series
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The MARIMA package and the Spliid method

Run examples to find out how the marima and the Spliid method works!

▶ marima is an R package implementing the Spliid method, see: Article

▶ Let’s run some examples together, download“Week8_example_marima.zip”and unzip
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https://findit.dtu.dk/en/catalog/537f0e4674bed2fd21000bef


The MARIMA package and the Spliid method
▶ Remember ARMA is noise through a transfer function:

h(B)
εt

Input

Yt

Output

▶ e.g. ARMA(1,1)

Yt = −φ1Yt−1 + θ1εt−1 + εt

Yt =
1+ θ1B

1+ φ1B
εt

▶ How the Spliid method includes the MA part:

Step 1: Make AR and estimate with LS

Step 2: Take the residuals and lag as MA part;
Put in model with the AR part, and estimate again with LS

Step 3: Iterate until the residuals don’t change

▶ Start with“marima_from_scratch_arma.R”: Simulate ARMA and estimate
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The MARIMA package and the Spliid method

Run examples to find out how the marima and the Spliid method works!

▶ Can we use the Spliid method with an external regressor!?

▶ Yes, just include it in the LS model (with lags)

▶ We can fit an ARMAX model with a transfer function!

▶ E.g. ARMAX(1,1):

Yt = −φ1Yt−1 + ω1xt−1 + θ1εt−1 + εt

Yt =
ω1B

1+ φ1B
xt +

1+ θ1B

1+ φ1B
εt

▶ Look into“marima_from_scratch_armax.R”
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Multivariate models

Re-consider the univariate transfer function model:

System Σ

Nt

Xt

Input

Yt

Output

Yt = h(B)Xt +Nt

▶ What if there is a feedback from Y to X ?
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Closed Loop Models

Yt = h1(B)Xt +N1,t

Xt = h2(B)Yt +N2,t
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Closed Loop Models

Yt = h1(B)Xt +N1,t

Xt = h2(B)Yt +N2,t

Or: (
1 −h1(B)

−h2(B) 1

)(
Yt

Xt

)
=

(
N1,t

N2,t

)
▶ Two inputs (N1, N2);

▶ Two outputs (Y , X );

▶ Four transfer functions from input to output.
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Predetor-pray: Mink-Muskrat example
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Transfer from N1, N2 to Y :

Yt = h1(B)Xt +N1,t

Xt = h2(B)Yt +N2,t

Yt = h1(B)(h2(B)Yt +N2.t) +N1,t

Z-domain:

Y (z) = H1(z)(N2(z) +H2(z)Y (z)) +N1(z)

Y (z)−H1(z)H2(z)Y (z) = H1(z)N2(z) +N1(z)

Y (z) =
1

1−H1(z)H2(z)
N1(z) +

H1(z)

1−H1(z)H2(z)
N2(z)

Transfer functions from N1,N2 to Y :

N1 :
1

1−H1(z)H2(z)
and N2 :

H1(z)

1−H1(z)H2(z)
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Multivariate transfer function

Model equation: (
1 −h1(B)

−h2(B) 1

)(
Yt

Xt

)
=

(
N1,t

N2,t

)
Model equation in Z-domain:(

1 −H1(z)

−H2(z) 1

)(
Y (z)

X (z)

)
=

(
N1(z)

N2(z)

)
Thus, from the result on the previous slide:(

Y (z)

X (z)

)
=

1

1−H1(z)H2(z)

(
1 H1(z)

H2(z) 1

)(
N1(z)

N2(z)

)
Multivariate transfer function: (

1
1−H1(z)H2(z)

H1(z)
1−H1(z)H2(z)

H2(z)
1−H1(z)H2(z)

1
1−H1(z)H2(z)

)
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Multivariate ARMA models

▶ The multivariate ARMA process

Y t + φ1Y t−1 + . . .+ φpY t−p = ϵt + θ1ϵt−1 + . . .+ θqϵt−q

where {ϵt} is white noise, is called a Vector ARMA (VARMA) process.

▶ The model can be written
φ(B)(Y t − c) = θ(B)ϵt

▶ The individual time series may have been transformed and differenced

▶ The variance-covariance matrix of the multivariate white noise process {ϵt} is denoted ΣΣΣ.

▶ The matrices φ(B) and θ(B) have elements which are polynomials in the backshift operator

▶ The diagonal elements have leading terms of unity

▶ The off-diagonal elements have leading terms of zero (i.e. they normally start in B)
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Air pollution in cities NO and NO2

[
X1,t

X2,t

]
=

[
0.9 −0.1
0.4 0.8

] [
X1,t−1
X2,t−1

]
+

[
ξ1,t
ξ2,t

]
, ΣΣΣ =

[
30 21

21 23

]
Matrix formulation using the backshift operator:[

1− 0.9B 0.1B

−0.4B 1− 0.8B

]
X t = ξt or φ(B)X t = ξt
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Stationarity and Invertability

The multivariate ARMA process
φ(B)(Y t − c) = θ(B)ϵt

is stationary if
det(φ(z−1)) = 0 ⇒ |z | < 1

is invertible if
det(θ(z−1)) = 0 ⇒ |z | < 1
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Auto Covariance Matrix Functions

ΓΓΓk = E [(Y t−k − µY )(Y t − µY )T ] = ΓΓΓT−k
Example for bivariate case Y t = (Y1,t Y2,t)

T :

ΓΓΓk =

[
γ11(k) γ12(k)

γ21(k) γ22(k)

]
=

[
γ11(k) γ12(k)

γ12(−k) γ22(k)

]
We can describe these by plotting

▶ each autocovariance or autocorrelation function for k = 0, 1, 2, . . . and

▶ each cross-covariance or cross-correlation function for k = 0,±1,±2, . . .
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Identification using Autocovariance Matrix Functions

Sample Correlation Matrix Function; Rk near zero for pure moving average processes of order q
when k > q

Sample Partial Correlation Matrix Function; Sk near zero for pure autoregressive processes of
order p when k > p
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Identification using (multivariate) prewhitening
▶ Fit univariate models to each individual series

▶ Investigate the residuals as a multivariate time series

▶ Model selection procedure!

▶ The cross correlations can then be compared with ±2/
√
N

This is not the same form of prewhitening as in Chapter 8
Remember the result in two dimensions:

Yt = h1(B)Xt +N1,t (1)

Xt = h2(B)Yt +N2,t (2)

Yt = h1(B)(h2(B)Yt +N2.t) +N1,t (3)

in general the multivariate model φ(B)Yt = θ(B)ϵt is equivalent to

diag(det(φ(B)))Yt = adj(φ(B))θ(B)ϵt

Therefore the corresponding univariate models will have much higher order, so although this is often
done in the literature: Don’t take this approach!
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Multivariate ARMA(p,q) processes (centered data)

▶ Matrices with polynomials in B as elements:

φ(B)Y t = θ(B)ϵt

So the coefficients are now matrices:

Y t + φ1Y t−1 + . . .+ φpY t−p = ϵt + θ1ϵt−1 + . . .+ θqϵt−q

▶ In general, no analytic solution exits.

▶ Therefore, estimation algorithms ( or numerical optimization) is necessary.
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Estimation procedures

For multivariate ARX(p):

▶ Least squares estimation is possible

For multivariate ARMAX(p,q):

▶ The Spliid method (Henrik Spliid, 1983)

▶ Maximum likelihood

Go and have a look into marima_from_scratch_armax_bivariate.R, it’s a very short example
on how to simulate and fit a bivariate ARMAX(1,1) with MARIMA.
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Highlights

▶ Closed loop model as multivariate transfer function(
1 −h1(B)

−h2(B) 1

)(
Yt

Xt

)
=

(
N1,t

N2,t

)
▶ Multivariate ARMA models

φ(B)(Y t − c) = θ(B)ϵt

is stationary if
det(φ(z−1)) = 0 ⇒ |z | < 1

is invertible if
det(θ(z−1)) = 0 ⇒ |z | < 1

▶ Auto covariance matrix functions

ΓΓΓk = E [(Y t−k − µY )(Y t − µY )T ] = ΓΓΓT−k

▶ All VARMA models can be written as VAR(1)
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Exercises and Assignment 3

▶ A new exercise was uploaded, gives you“hands-on”of fitting ARX and ARMAX to data from
an experimental set up

▶ Upload Assignment 3 in the afternoon, take a look at it
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