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Week 7: Outline of the lecture

▶ Input-Output systems, Sec. 4 introduction and 4.1

▶ Linear system notation

▶ The z -transform, Sec. 4.4

▶ Cross Correlation Functions – from Sec. 6.2.2

▶ Transfer function models; identification, estimation, validation, prediction, Chap. 8
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Simplest first order RC-system

Single state model of the temperature in a box:
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Simplest RC-system
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RC-example

▶ T e
t external and T i

t internal temperature at time t = [1, 2, . . . ,n]

▶ ODE model dTi

dt
=

1

RC
(Te − Ti)
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Try a static model
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▶ A simple linear regression model (εt is the error)

T i
t = ωeT

e
t + εt

▶ Are the dynamics well described by the model?
No, the predicted temperature is just proportional to the input (T i

t )
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Model validation: check i.i.d. of residuals
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Are residuals like white noise?
▶ Check if they are independent and identically distributed

▶ Is ε̂t independent of ε̂t−k for all t and k?

Nope! There is a pattern left...
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Model validation: Test for i.i.d. with ACF

TEST if residuals are white noise?
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It’s not white nose!

How do we find a better model? The exponential decay in ACF points to an AR part!
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Discretize the ODE

dTi

dt
=

1

RC
(Te − Ti)

It has the solution

Ti(t + ∆t) = Te(t) + e−
∆t
RC

(
Ti(t)− Te(t)

)
if ∆t = 1 and Te is constant between the sample points then

T i
t+1 = e−

1
RC T i

t + (1− e−
1

RC )T e
t

since e−
1

RC is between 0 and 1, then write it as

T i
t+1 = φ1T

i
t + ω1T

e
t

where φ1 and ω1 are between 0 and 1.

Add a noise term and we have the Auto-Regressive with eXogeneous input (ARX) model

T i
t+1 = φ1T

i
t

−1

+ ω1T
e
t

−1

+ εt+1T
i
t

+1

= φ1T
i
t−1 + ω1T

e
t−1 + εt

+1
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An ARX model

T i
t = φ1T

i
t−1 + ω1T

e
t−1 + εt
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ARX model

10 / 44

RC-example

▶ The residuals

ε̂t = obs.− pred. = T i
t − T̂ i

t = T i
t −

ω̂1B

1− φ̂1B
T e

t

▶ Are the residuals now white noise?
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Check for i.i.d. of residuals

Is it likely that this is white noise? Almost!
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Actually we miss an MA part!
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An ARMAX model

T i
t = φ1T

i
t−1 + ω1T

e
t + εt + θ1εt−1

An ARMAX model

Yt = φ1Yt−1 + ω1xt + εt + θ1εt−1
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Validate the model with the residuals ACF
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Now we have white noise residuals :-)

Remember, we are validating the one-step prediction residuals: ε̂t+1 = yt+1 − ŷt+1|t
ε̂t = yt − ŷt |t−1
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Dependence between variables: Cross-correlation function

Calculate the Cross-Correlation Function (CCF) by simply shifting the index and lag another series:

t Yt Xt Xt−1
1 4 2

2 5 3 2

3 2 8 3

4 3 3 8

5 4 1 3

6 5 7 1

7 5 8 7

8 8

Cross-Correlation Function (CCF) between input and output
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So we can use the CCF in model validation: If no correlation between input(s) and residuals, points
to the model is good!
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Dependence between variables: Cross-correlation function

Calculate the Cross-Correlation Function (CCF) by simply shifting the index and lag another series:

t Yt Xt Xt−1
1 4 2

2 5 3 2

3 2 8 3

4 3 3 8

5 4 1 3

6 5 7 1

7 5 8 7

8 8

Cross-Correlation Function (CCF) between input and residuals.
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So we can use the CCF in model validation: If no correlation between input(s) and residuals, then
the model is good!
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Linear Dynamic Systems – notation

x F [·] y

Linear 

System

Input Output

x(t) Differential eq., h(u) y(t)

xt Difference eq., hk , h(B) yt
X (ω) H(ω) Y (ω)

X (z) H (z) Y (z)
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Dynamic Systems – Some characteristics

Def. Linear system:

F [λ1x1(t) + λ2x2(t)] = λ1F [x1(t)] + λ2F [x2(t)]

Def. Time invariant system:

y(t) = F [x(t)]⇒ y(t − τ) = F [x(t − τ)]

Def. Stable system: A system is said to be stable if any constrained input implies a constrained
output.

Def. Causal system: A system is said to be physically feasible or causal, if the output at time t

does not depend on future values of the input.

17 / 44

Input-Output systems, Sec. 4.0-4.1



Example: ”ARX(1)”system

▶ System: yt − ayt−1 = bxt

▶ Can be written: yt = bxt + ayt−1 = bxt + a(bxt−1 + ayt−2) or

yt = b(xt + axt−1 + a2xt−2 + a3xt−3 + . . .) = b

∞∑
k=0

akxt−k

▶ Is the system linear and time invariant?

Yes: yt is a linear function of the input values xt , xt−1, . . .

Yes: Time invariant since the coefficients don’t change in time

▶ Is the system causal?

Yes: yt depend only on past input values xt , xt−1, . . .

▶ Is the system stable?

Yes, for |a| < 1 the coefficients sum is bounded
∞∑
k=0

|a|k =
{ 1/(1− |a|) ; |a| < 1

∞ ; |a| ≥ 1

(stability does not depend on b) 18 / 44
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Def. discrete impulse and step reponse

For linear time invariant systems the input can be convoluted to get the output:

▶ Discrete time:
yt =

∞∑
k=−∞

h(k)xt−k (1)

Causal, then:

yt =

t∑
k=0

h(k)xt−k (2)

▶ h(k) is called the impulse response, why? What happens if x0 = 1 and xk = 0 for k ̸= 0?

▶ Sk =
∑k

j=−∞ hj is called the step response, why? What happens if xk = 1 for all k?
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Example: Calculating the impulse response function
The impulse response can be determined by ’sending a 1 through the system’. Take the ”ARX(1)”,
time-invariant system

yt = 0.8yt−1 + 2xt

We want to rewrite this model as

yt =

t∑
k=0

hkxt−k

An impulse: Put x0 = 1 and xk = 0 for k ̸= 0, send it through the system, and observe the
response:
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We see that hk = yk = 0 for k < 0. What about y0? and y1?

h0 = y0 = 0.8y−1 + 2x0 = 0.8 · 0+ 2 · 1 = 2

h1 = y1 = 0.8y0 + 2x1 = 0.8 · 2+ 2 · 0 = 1.6

Hence, the impulse response function is hk = 0.8k · 2 for k > 0 which represents a causal system.
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Example: Calculating the impulse response function

”ARX(1)”: yt = 0.8yt−1 + 2xt

Impulse response: Send an impulse through the system:

-5 0 5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

k

Im
p
u
ls
e
in
p
u
t

-5 0 5 10 15 20

0.
0

0.
5

1
.0

1.
5

2
.0

k

Im
p
u
ls
e
re
sp
on

se

Step response: Send a step through the system!
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Is the system stable? YES, since
∑∞

0 |hk | = 10 <∞
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Example: Calculating the impulse response function

”ARX(2)”: yt = 0yt−1 + 0.6yt−2 + xt

Impulse response: Send an impulse through the system:
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Step response: Send a step through the system!
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The system is stable since
∑∞

0 |hk | =
10
6 <∞
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Example: Calculating the impulse response function

”ARX(2)”: yt = 0.1yt−1 + 0.6yt−2 + xt + xt−1

Impulse response: Send an impulse through the system:
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Step response: Send a step through the system!
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The system is stable since
∑∞

0 |hk | =
20
6 <∞
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Example: Calculating the impulse response function

”ARX(2)”: yt = 0.1yt−1 − 0.6yt−2 + xt + xt−1

Impulse response: Send an impulse through the system:
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Step response: Send a step through the system!
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The system is stable since
∑∞

0 |hk | =
4
3 <∞
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Example: Calculating the impulse response function

”ARX(2)”: yt = 0.1yt−1 + 1.1yt−2 + xt + xt−1

Impulse response: Send an impulse through the system:
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Step response: Send a step through the system!
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The system is NOT stable since
∑∞

0 |hk | =∞
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Where do we try to observe the impulse or step response directly. Can you name some examples
where it can be possible and useful to do so?

▶ Sound: Clap or gun shot or blow-up balloon

▶ Exercise: From some day start doing regular exercise

▶ Experiment: Make a step increase in a set-point

▶ Biking: Letting go you hands from the bar, observe how you instinctive make a sort of impulse
with your but to learn the response!

▶ Almost any activity where the system has some dynamics
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Dynamic response characteristics from data

▶ While easy, direct observations of the impulse or step responses is not always possible at all –
and do not yield a lot of statistical information.

▶ Instead, we use parameter estimation from data with varying inputs.
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Stability based on the impulse response function

If the impulse response function is absolutely convergent, the system is stable (Theorem 4.3).

▶ Continuous time: ∫ ∞

−∞
|h(u)|du <∞

▶ Discrete time:

∞∑
k=−∞

|hk | <∞
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The z -transform
▶ A way to describe dynamical systems in discrete time in the frequency domain:

Z ({xt}) =
∞∑

t=−∞
xtz
−t = X (z) (z ∈ C)

▶ z = Aei(ωt+φ): A is the amplitude, ω is the angular frequency, t is time, and φ is the phase.
The frequency f can be derived from the angular frequency ω using the relationship:

f =
ω

2π

▶ The z -transform of a time delay: Z ({xt−τ}) = z−τX (z)

▶ The transfer function of the system is called H (z) =

∞∑
t=−∞

htz
−t

yt =

∞∑
k=−∞

hkxt−k ⇔ Y (z) = H (z)X (z)

Time domain ⇔ Frequency domain
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Linear Difference Equation

yt + a1yt−1 + · · ·+ apyt−p = b0xt−τ + b1xt−τ−1 + · · ·+ bqxt−τ−q

(1+ a1z
−1 + · · ·+ apz

−p)Y (z) = z−τ (b0 + b1z
−1 + · · ·+ bqz

−q)X (z)

Transfer function:

H (z) =
z−τ (b0 + b1z

−1 + · · ·+ bqz
−q)

(1+ a1z−1 + · · ·+ apz−p)

=
z−τ (1− n1z

−1)(1− n2z
−1) · · · (1− nqz

−1)b0
(1− λ1z−1)(1− λ2z−1) · · · (1− λpz−1)

Where the roots n1,n2, . . . ,nq are called the zeros of the system and λ1, λ2, . . . , λp are called the
poles of the system. What does these roots say about stability and invertibility of the system?

The system is stable if all poles lie within the unit circle
The system is invertible if all zeroes lie within the unit circle

In the course, we don’t move longer into the frequency domain!
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Estimating the impulse response

▶ The shape of the impulse response function is dictated by what kind of relationship there is
between the input, X and the output, Y .

▶ The CCF (cross-correlation function) can be used to reveal this relationship, but requires
pre-whitening
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▶ Alternative is to simply make an LS with multiple inputs and all lags (up to some max lag)!
Works for FIR and ARX models.
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Estimating the impulse response

▶ Pre-whitening:

Identify a suitable ARMA to the input: Filter both input and output with the ARMA, and
on residuals CCF is impulse response estimate.

Pros: Identify structure of ARMA, i.e. also MA part

Cons: Only works on single input and requires some (manual) modelling decision while
doing it

▶ LS-estimates:

Y = X θ + ε, where columns of X are the lagged inputs (Equation (8.49) in the Book).

Pros: No (manual) modelling decisions and works for multiple input models

Cons: Can not alone be used for identifying an MA part.
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Example: CCF vs. LS estimate of the impulse response

# Generate an AR(1) process as input
n <- 500
x <- c(arima.sim(list(ar=c(0.7,0,0)), n))
plot(x)

# Make an output vector "filtered" by the system: y_t = 0.8 * y_{t-1} + x_t
y <- filter(x,0.8,"recursive") + rnorm(n)

# Calculate the true impulse response and plot with CCF
k <- 0:20
par(mfrow=c(2,1))
plot(k, 0.8^k, type="h", main="TRUE IR")
ccf(y,x, xlim=c(0,max(k)))

# Make lags for LS estimation
library(onlineforecast)
D <- as.data.frame(y=y, lagdf(x, k))
# See the model and the estimated result
(frml <- paste0("y ~ 0+",paste0("k",k,collapse="+")))
fit <- lm(frml, D)
summary(fit)

# Finally, Plot the true and the LS estimated IR
plot(k, 0.8^k, type="h", main="TRUE IR")
plot(0:20, fit$coef, type="h", xlab="lag", ylab="Impulse response")
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Example: Loadspeaker and microphone system

Sound through loudspeaker and into mic example:

Open impulse_reponse_record/Record.aup3

and then the analysis example_IR_sound.R.
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“Complete”Transfer function models

θ(B)
φ(B)

ω(B)Bb

δ(B) Σ

ϵt

White noise

Nt

Xt

Input

Yt

Output

Yt =
ω(B)

δ(B)
BbXt +

θ(B)

ϕ(B)
εt

▶ Also called Box-Jenkins models
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Some names

The following are all sub-models of transfer function models:

▶ FIR: Finite Impulse Response (impulse response function(s) of finite length):
yt =

∑∞
k=−∞ h(k)xt−k .

▶ ARX: Auto Regressive with eXogenous input: ϕ(B)Yt = ω(B)ut + ϵt .

▶ ARMAX: Auto Regressive Moving Average, eXogenous input: ϕ(B)Yt = ω(B)Xt + θ(B)εt .

▶ OE: Output Error model: Yt =
ω(B)
δ(B)B

bXt + εt .

▶ Regression models with ARMA noise (the xreg option to arima in R). Parameters are
estimated in the same optimization:

(Yt − β0 + β1Xt) = (Yt − β0 + β1Xt) +
θ(B)

ϕ(B)
εt
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Identification of transfer function models

h(B) =
ω(B)Bb

δ(B)
= h0 + h1B + h2B

2 + h3B
3 + h4B

4 + . . .

▶ Estimate the impulse response (pre-whitening or LS-estimate) and“guess”an appropriate
structure of h(B) based on this.
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2 real poles h(B) =
1

1− 1.7B + 0.72B2
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2 complex h(B) =
1

1− 1.5B + 0.81B2
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1 real, 2 comp h(B) =
2− 2.35B + 0.69B2

1− 2.35B + 2.02B2 − 0.66B3
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Identification of the transfer function for the noise

EITHER:

▶ After selection of the structure of the transfer function of the input we estimate the parameters
of the model (assuming Nt to be white)

Yt =
ω(B)

δ(B)
BbXt +Nt

▶ Then, we extract the residuals {Nt} and identify a structure for an ARMA model of this series

Nt =
θ(B)

ϕ(B)
εt ⇔ ϕ(B)Nt = θ(B)εt

▶ Finally, we have the full structure of the model and we estimate all parameters simultaneously

OR

▶ Simply use a forward or backward selection procedure! It’s often easier!
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Estimation

▶ Form 1-step predictions, treating the input {Xt} as known (corresponds to conditioning on
observed {Xt} if it is actually stochastic)

▶ Select the parameters so that the sum of squares of these errors is as small as possible (implicit
assumption of {ϵt} being gaussian – that’s very close to maximum likelihood)

▶ If model has MA-part (i.e. lagged residuals) some recursive method is needed (Kalman filter or
Spliid method)

▶ For FIR and ARX models we can write the model as Y t = XT
t θ + εt and use LS-estimates
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Model validation

As for ARMA models with some additions:

▶ Usual ACF of residuals and plots!

▶ Test for cross correlation between the residuals and the input. If {εt} is white noise and when
there is no correlation between the input and the residuals then (approximately)

ρ̂εX (k) ∼ N (0, 1/N )

▶ A Portmanteau test (Ljung-Box) can also be performed to test for significent ccf’s.
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Cross covariance and cross correlation functions

Estimate of the cross covariance function:

CXY (k) =
1

N

N−k∑
t=1

(Xt −X )(Yt+k −Y )

CXY (−k) =
1

N

N−k∑
t=1

(Xt+k −X )(Yt −Y )

Estimate of the cross correlation function:

ρ̂XY (k) = CXY (k)/
√

CXX (0)CYY (0)

What is a defining property of the CCF for causal systems with no feedback? If at least one of the
processes is white noise and if the processes are uncorrelated then ρ̂XY (k) is approximately
normally distributed with mean 0 and variance 1/N
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