02417: Time Series Analysis

Week 6 - ACF and PACF with a focus on model order selection

Peder Bacher DTU Compute

Based on material previous material from the course

March 12, 2025

Week 6: Outline of the lecture

- Estimation of auto-covariance and -correlation, Sec. 6.2.1 (and the intro. to 6.2)
- ▶ Using the SACF and SPACF for model order selection Sec. 6.5
- ▶ Model validation, Sec. 6.6

Autocorrelation and Partial Autocorrelation

Autocorrelation

$$\rho(k) = \operatorname{Cor}[Y_t, Y_{t+k}]$$

- ▶ Sample autocorrelation function (SACF): $\widehat{\rho}(k) = r_k = C(k)/C(0)$
- For white noise and $k \neq 0$ it holds that $E[\widehat{\rho}(k)] \simeq 0$ and $V[\widehat{\rho}(k)] \simeq 1/N$, this gives the bounds $\pm 2/\sqrt{N}$ for deciding when it is not possible to distinguish a value from zero.
- ► R: acf(x)

Partial autocorrelation

$$\phi_{kk} = \text{Cor}[Y_t, Y_{t+k} | Y_{t+1}, \dots, Y_{t+k-1}]$$

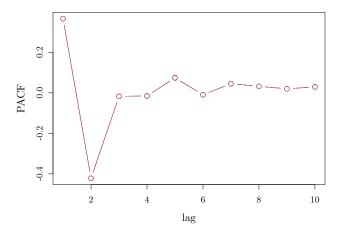
- Sample partial autocorrelation function (SPACF): Use the Yule-Walker equations on $\widehat{\rho}(k)$ (exactly as for the theoretical relations Eq.(5.81)) or as in next slide
- It turns out that $\pm 2/\sqrt{N}$ is also appropriate for deciding when the SPACF is zero
- ► R: acf(x, type="partial") or pacf(x)

Autocorrelation and Partial Autocorrelation

```
# Example to show how the PACF is calculated
set.seed(972)
n < -1000
x \leftarrow arima.sim(list(ar=c(0.5,-0.4)), n=n)
\#acf(x)
#pacf(x)
D \leftarrow lagdf(c(x), 0:50)
# A way to calculate the PACF
lag.max <- 10
pacf1 <- numeric(lag.max)</pre>
# First, calculate it with the function
val <- pacf(x, lag.max, plot=FALSE)</pre>
# Then calc on our own
for(k in 1:lag.max){
  # Fit a regression model with 1 to k lags (and intercept)
  (frml <- pst("k0 ~ 1 + ",pst("k",1:k, collapse=" + ")))
  fit <- lm(frml, D)
  # Take the coefficient for the k lag
  pacf1[k] <- fit$coef[pst("k",k)]</pre>
```

Autocorrelation and Partial Autocorrelation

```
# It's very close!
pacf1 - val$acf
plot(val$acf, type="b", xlab="lag", ylab="PACF")
lines(pacf1, type="b", col=2)
```



ARIMA models

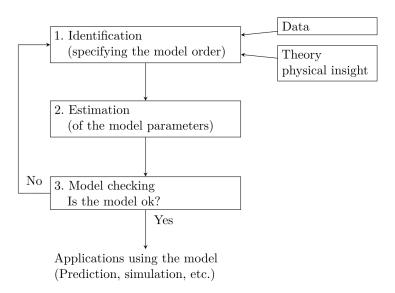
- ► Today we will see how to identify ARIMA model orders
- ▶ Basically ARIMA(p, d, q) has

Auto-**R**egression order p

Moving-Average order q

Integration order d

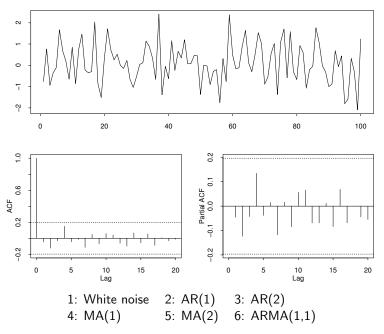
Model building in general

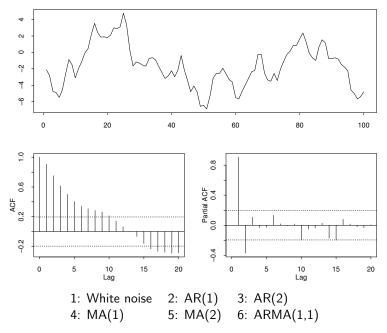


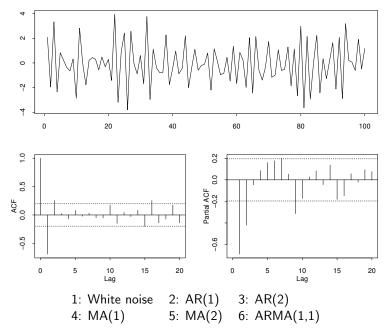
The golden table for ARMA identification

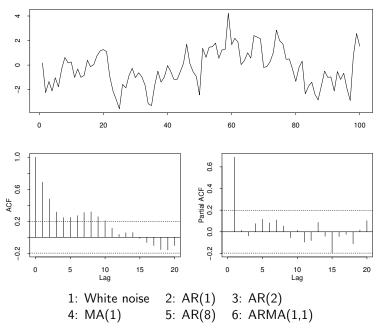
(Table 6.1)

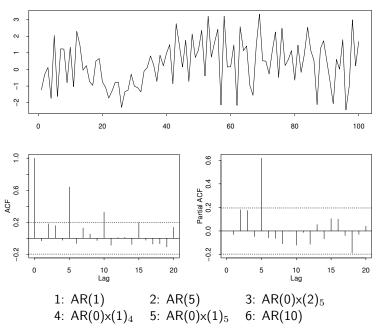
	ACF $\rho(k)$	PACF ϕ_{kk}
AR(p)	Damped exponential and/or sine functions	$\phi_{kk}=0 ext{ for } k>p$
MA(q)	$\rho(k) = 0 \text{ for } k > q$	Dominated by damped exponential and or/sine functions
ARMA(p,q)	Damped exponential and/or sine functions after lag $\max(0, q-p)$	Dominated by damped exponential and/or sine functions after lag $\max(0, p-q)$

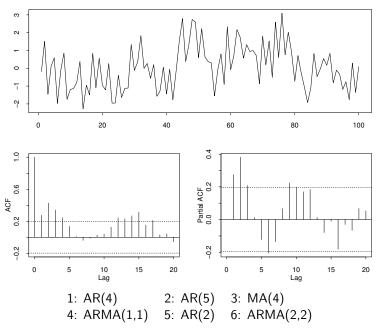


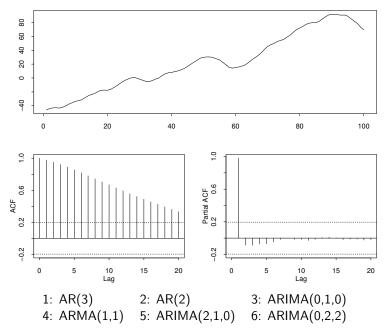




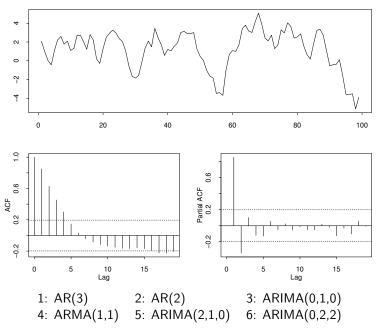






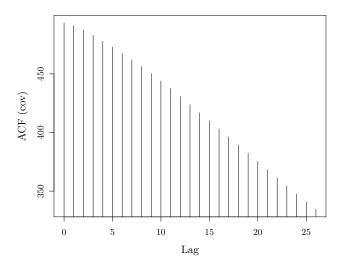


8. Same series; analysing $\nabla Y_t = (1 - B) Y_t = Y_t - Y_{t-1}$



How does C(k) (i.e. auto-covariance) behave for non-stationary series?

$$C(k) = \frac{1}{N} \sum_{t=1}^{N-|k|} (Y_t - \overline{Y})(Y_{t+|k|} - \overline{Y})$$



Identification of the order of differencing

- ightharpoonup Select the order of differencing d as the first order for which the autocorrelation decreases sufficiently fast towards 0
- ▶ In practice d is 0, 1, or maybe 2
- lacktriangle Sometimes a periodic difference is required, e.g. $Y_t Y_{t-12}$
- ▶ Remember to consider the practical application. E.g. it may be that the system is stationary, but you measured over a too short period

Stationarity vs. length of measuring period

Selection of the Model Order

- ► The <u>model order</u> of an ARMA process model: The number of parameters for the AR and MA part; (p, q).
- ▶ The autocorrelation functions can be used as we just did
- ▶ If that method fails to identify (p, q) because the process:

Is not a standard AR-proces.

Is not a standard MA-proces.

Is not a directly identifiable ARMA proces

- then try a small model and analyse the residuals
- and/or Consider transformations Typically sqrt, log, square or inverse.

Iterative model building

▶ (1: Identification step): Construct a model for your data:

$$\phi(B) Y_t = \theta(B) \varepsilon_t$$

- (2: Estimation step): Estimate the coefficients $(\phi_1, \ldots, \phi_p, \theta_1, \ldots, \theta_q)$ and calculate the model residuals $\hat{\varepsilon}_{t|t-1}$
- ► (3: Model checking step):

Are the estimated coefficients significant?

Does $\hat{\varepsilon}_{t|t-1}$ resemble white noise?

If so, the model can be described by the ϕ and θ polynomials.

▶ (4): If the model residuals do not resemble white noise, then what do they look like?

Iterative model building II

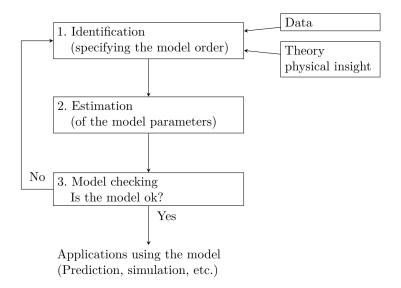
The residuals $(\hat{\varepsilon}_{t|t-1})$ will often have a simpler behavior than Y, if the original model $\phi(B)Y_t=\theta(B)\varepsilon_t$ captures the essential terms of Y's behavior.

- ▶ (1): Construct an ARMA description for $\hat{\varepsilon}_{t|t-1}$: $\phi^*(B)\varepsilon_t = \theta^*(B)\varepsilon_t^*$.
- (2): Insert $\varepsilon_t = \phi^{*-1}(B)\theta^*(B)\varepsilon_t^*$ into the original model to obtain the model

$$\phi^*(B)\phi(B) Y_t = \theta(B)\theta^*(B)\varepsilon_t^*$$

▶ (3): Estimate the parameters in the model above with coefficients in $\phi^* \cdot \phi$, $\theta \cdot \theta^*$ varying freely, and proceed to model check.

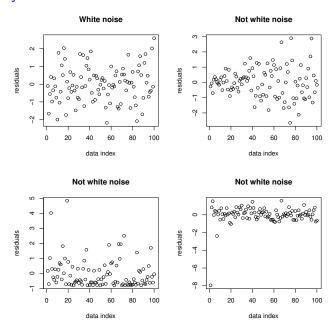
Model building in general



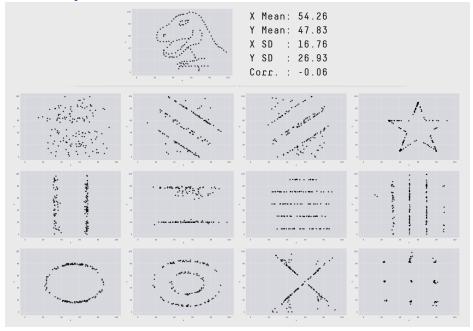
Residual Analysis

- ▶ The order of the model is the minimum order for which the model errors resemble white noise.
- ▶ How can we check that the model errors resemble white noise?
- First and most important plot the data.

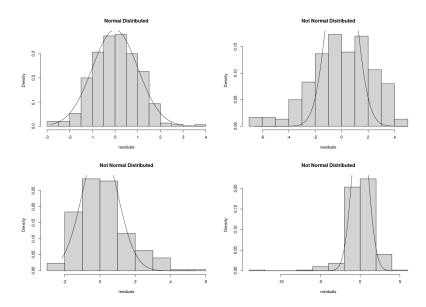
Residual analysis - Plot the data



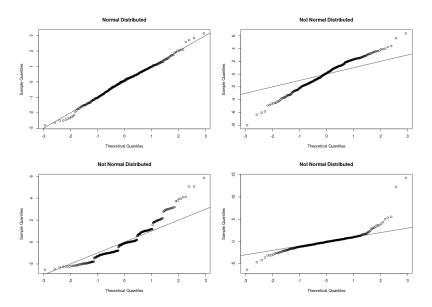
Residual analysis – Plot the data II



Residual analysis - Plot the data III

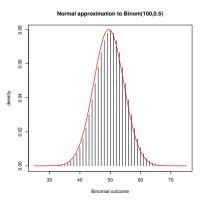


Residual analysis - Plot the data IV

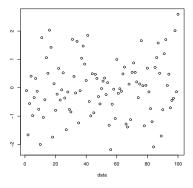


Residual analysis - sign test

- ▶ If (ε_t) is white noise, the probability that a new value has a different sign than the previous is $\frac{1}{2}$.
- Number of sign changes: $Binom(N-1, \frac{1}{2})$.
- ▶ Approx. normal distribution; N((N-1)/2, (N-1)/4):



Residual analysis - sign test II



▶ 95% confidence interval for sign changes within 100 white noise residuals: [40; 59]. Actual sign changes from the 100 data: 47.

Residual analysis - sign test III

Sign tests detects both asymmetry and correlation.

- ► Too few may indicate positive one-step correlation;
- Too many may indicate negative one-step correlation;
- ▶ Too few or too many may indicate that P(being above the mean) $\neq \frac{1}{2}$ with no correlation.

Residual analysis - other tests

- ► There is a bunch of other tests out there, sometimes it's actually not clear which the best in a given case!
- ▶ You can use them in assignments, if not covered by the book, then you must introduce them.

Residual analysis – summary

- ▶ Plot $\hat{\varepsilon}_{t|t-1}$; do the residuals look stationary? Do they need a transformation?
- ▶ Plot estimated ACF and PACF, if there are significant lags, then can we use them to extend the model with an ARMA-structure?
- ▶ Plot histogram and/or qq-plot to see whether residuals are normal distributed, if not, then consider a transformation.
- Perform a couple of statistical tests to get some quantitative measures of whether your residuals are alright.
- Finally, see whether parameters are significant and if not, remove them (you do not need to redo residuals analysis after this).

Information criteria

When considering multiple non-nested candidate models, information criteria can be used:

▶ Select the model which minimizes an information criterion.

Akaike's Information Criterion:

$$AIC = -2\log(L(Y_N; \hat{\theta}, \hat{\sigma}_{\varepsilon}^2)) + 2n_{\text{par}}$$

Bayesian Information Criterion (preferred):

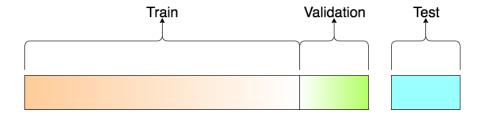
$$BIC = -2\log(L(Y_N; \hat{\theta}, \hat{\sigma}_{\varepsilon}^2)) + \log(N)n_{\mathsf{par}}$$

▶ AIC is most commonly used, but BIC yields a consistent estimate of the model order.

Cross validation

Cross-validation is possible but slightly less efficient and cumbersome for time series analysis than for other kinds of data, see the last slides of Week2.

- If we use future measurements we are cheating!
- Thus, it is only possible to split data by having first part be for training, and last part testing.



- ➤ So we must gradually move the part used for training forward in time, it's called "rolling horizon" cross-validation
- Mainly used for forecasting applications
- Remember a burn-in period and then step forward from there