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Week 5: Outline of the lecture

» Stochastic processes - 2nd part:
MA, AR, and ARMA-processes, Sec. 5.5

Non-stationary models, Sec. 5.6
Seasonal ARIMA models
Optimal Prediction, Sec. 5.7

» Estimation of parameters in linear dynamic models, Sec. 6.4
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Linear process as a statistical model?

Yi=¢€; + Y161 + P& o+ P3g 3+ ...

» Observations: Y7, Y5, Y3, ..., Yy
» Task: Find an infinite number of parameters from N observations!

» Solution: Restrict the sequence 1, 91, ¥, VY3, . ..

5.5 Commonly used linear processes
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5.5 Commonly used linear processes

MA(q), AR(p), and ARMA(p, ¢q) processes

Yi=€r+6161 + 0260+ ...+ 0464
Vit Y1 +¢2Yiot+.. . +¢,Yp =6
Yt + d)l Yt—l + ¢2 Yt—2 + ...+ ¢p Yt—p =& + 918t_1 —+ 925t—2 + ...+ qut—q

{€¢} is white noise

Yt = Q(B)Et
H(B)Y, =&y
¢(B)Y, = 0(B)e,

where

®(B)=(1+¢1B+ ¢p1B*>+ ...+ ¢,BP)
0(B)=(1+6,B+ 0,8+ ...+ ¢,B?)

are polynomials in the backward shift operator B, (BX; = X; 1, B?X; = X;_»)
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5.5 Commonly used linear processes

Invertibility and Stationarity

» A stochastic process is said to be invertible if a finite amount of observations can determine its
state.

» A stochastic process is said to be stationary if?

» A stochastic process is said to be stationary if its distribution does not change over time.
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Invertibility and Stationarity of ARMA models

> MA(q): Yy =€+ 0161+ ...+ 04614
Always stationary

Invertible if the roots in 8(2~!) = 0 with respect to z all are within the unit circle

> AR(p): Yi+$1Yia+. .. + Y p =&
Always invertible

Stationary if the roots of ¢(z1) with respect to z all lie within the unit circle

> ARMA(p, q)
Stationary if the roots of ¢(z~1) with respect to z all lie within the unit circle

Invertible if the roots in 8(z~') with respect to z all are within the unit circle
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Autocorrelations vA@)

ACF(k)
06

MA(2):
Y; = (1+0.9B+0.8B%)¢,
zero after lag 2 ‘

ACF()

AR(1): E
(1-0.8B)Y, =&, ‘
exponential decay (damped sine in case of complex roots)

ARMA(1,2): ARMA(1,2)
(1-0.8B)Y; =(1+0.9B +0.8B%)¢g,; i
exponential decay from lag ¢+ 1—p=2+1—1=2 (damped =

ACF(k)

sine in case of complex roots)
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Partial autocorrelations

MA(2):
Y; = (1+0.9B 4 0.8B2)¢,
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5.6 Non-stationary models

Non-stationary time series
Long term trends

Periodic trends

General time varying behavior
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5.6 Non-stationary models

Differencing
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The ARIMA(p, d, q)-process

> An ARMA(p, q) model for:
W, =vViy, = (1 - B)Y,

where {Y;} is the series

» That is:
¢(B)V?Y, = 6(B)e,

» If we consider stationarity:
¢z -2 =0

i.e. d roots in z =1+ 0%, and the rest inside the unit circle

5.6 Non-stationary models
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5.6 Non-stationary models

Seasonal Models

» In general, would you rather use new or old information in your models, for example would you
prefer Yy =0Y;_ 1+ €, 0r Yy =0Y; o+ €7

» When and why would it make sense to prefer older information over newer information?
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5.6 Non-stationary models

The (p, d, q) x (P, D, Q)¢ seasonal process

» A multiplicative (stationary) ARMA(p, ¢) model for:
W, =vViVvPly, =1 -B)1-B) Y,

where {Y;} is the series

» That is:
O(B)D(B*)VIVYY, = 6(B)O(B*)e;

» If we consider stationarity:
¢z ez ") (1 -2 (1 -2 =0

i.e. d rootsin z =1+ 04, D X s roots on the unit circle, and the rest inside the unit circle
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The case d = D = 0; stationary seasonal process

» General:
¢(B)P(B®)Y; = 0(B)O(B%)e,

» Example:
(1-®B?)Y, =¢,

» Which can also be written:
YVi=®Y, 12 +¢€

i.e. Y; depend on Y;_15, Y;_o4, ... (thereof the name)

5.6 Non-stationary models

[> How would you think that the auto correlation function looks?

21/36



ACF and PACF of seasonal ARMA models

ACF
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5.7 Optimal prediction of stochastic processes

Prediction

» At time t we have observations Y;, Y; 1, Y; 9, Vi 3, ...
» We want a prediction of Y;,y, where k£ > 1

» Thus, we want the conditional expectation:

}A/t+k|t = E[Yt+k| Vi, Vi1, Yy o, ...
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5.7 Optimal prediction of stochastic processes

Example — prediction in the AR(1) model

> We write the model like Y11 = ¢ Y, + €411 (note the sign on ¢)

> 1-step prediction:
Yirip = E[YialVs, Yior,.. ]
= EpYi+e|Ye, Vi, ]
= ¢Yt + 0 == ¢Yt

» 2-step prediction:

/}}t+2|t = E[Yt+2| Yi,Yioq, .. ]
= Bl¢pYi1 +ealVe Vi, ]
= ¢?t+1|t +0
= ¢’2 Yy

> k-step prediction: | Yy x; = ¢* Vs

24/36



5.7 Optimal prediction of stochastic processes

Example — prediction in Y; = 0.8Y; 1 + &
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5.7 Optimal prediction of stochastic processes

Variance of prediction error for the AR(1)-process

Prediction error:
ekt = Ytk — 17t+/c|zt =Y —¢"Y,
Bring it on psi-form (MA-form):
Yiek = ¢Yip—1+ek

= Q(@Yirr—2+Etrk-1) + Ertk

= ¢’ Yigp—2 + O€rrn-1 + E1qk

= ¢*(OYirh—3 + Errh—2) + PErar1 + Evpi

= ¢ Yigrs+drhot i1+ Ek

= "V, + " e + O  Peia o PErh1 + Ertk
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5.7 Optimal prediction of stochastic processes

Variance of prediction error for the AR(1)-process

Variance of prediction error:

Viewr] = V[¢k715t+1 + @ Zerio + o+ PErno + €tk
(¢2(k—1) =+ ¢2(k—2) NI ¢2 =+ 1)0.3

(1 — ) x 100% prediction interval:

Yitrie £ tay2y/ Viesrd

Ug/2 is the a/2-quantile in the standard normal distribution
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6.4 Estimation of parameters in standard models

Estimation

> Assume that we have an appropriate model structure AR(p), MA(q), ARMA(p, q),
ARIMA(p, d, q) with p, d, and ¢ known

» Task: Based on the observations find appropriate values of the parameters

» The book describes many methods:
Moment estimates

LS-estimates

Prediction error estimates
Conditioned

Unconditioned

ML-estimates
Conditioned

Unconditioned (exact)
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6.4 Estimation of parameters in standard models

Estimation in AR(2) model

» Observations: %1, ¥2, ..., YN

> Model: y; + d1yi—1 + P2yt—2 = €

Y3 = Py + Poyr +e3
Ys = Gryz+d2y2 + ey
Ys = $rys+ Payz + e
YN = ¢Pr1yn—1+ d2yn—2 +en

Ys —Y2 ! €32 iust:

. B . b . Or just:

B : ]| Y — X0
YN —YN-1 —YN-2 ENIN—1 — e
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6.4 Estimation of parameters in standard models

Solution

To minimize the sum of the squared 1-step prediction errors €€ we
use the result for the General Linear Model from Chapter 3:

6=(X"X)'x"TY

With —Y2 - Y3
X=1": : and Y =
—YN-1 —YN-2 YN
> Asymptotically: V(6) = o2(XTX)™!

> How does it generalize to AR(p)-models?

» How about ARMA(p,q)-models?
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Least squares for AR

# Test <t by comparing
model <- list(ar=c(0.4))
set.seed(12)

sim(model, 10, nburnin=100)
set.seed(12)

X <- arima.sim(model, 100)

X <- lagdf(x, 0:3)

summary (Im(k0 ~ k1, X))

summary (Im(k0 ~ k1 + k2, X))
summary (Im(kO ~ k1 + k2 + k3, X))
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. i i . 6.4 Estimation of parameters in standard models
Maximum Likelihood estimates
» ARMA(p, q)-process:
Yt +¢1 Yt,1 4+ ... +¢>p thp =&y +91€t71 4+ ... +9q€t7q

» Notation:
07 = (1. Pp.01,....0,)
Y = (Vi, Y, ..., Y1)

» The Likelihood function is the joint probability distribution function for all observations for

given values of 6 and o2:
L(Yn;8.,07) = f(Yn|6,07)

> Given the observations Y we estimate 8 and o2 as the values for which the likelihood is
maximized.
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6.4 Estimation of parameters in standard models

The likelihood function for ARMA(p, q)-models

» The random variable Y |Yy_1 only contains e as a random component
> {e,} is a white noise process and therefore does not depend on anything
» Thus we know that the random variables Yy |Yx_1 and Yy _1 are independent, hence:

f(YN18,02) = f(YN[YN-1.0.02)f(Yn_1]0.07)

» Repeating these arguments:

N

L(Yw:8,07) = ( II f(Yt|Yt—1-9:U§)> F(Y,16.02)

t=p+1
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6.4 Estimation of parameters in standard models

Evaluating the conditional likelihood function

» Task: Find the conditional 1-step densities, f(Y|Y¢_1,80, U?), given specified values of the
parameters 6 and o2

» The mean of the random variable Y;|Y;_ 1 is the the 1-step forecast 37t\t—1

> The prediction error £, = Y; — Y, has variance o2

» We assume that the process is Gaussian:

f(Yi|Yi1,0,02) =

» And therefore:

N
_N—p 1
LYwi6,07) = (oc2m) ¥ e (‘202 ) s%(@)

€ t=p+1
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6.4 Estimation of parameters in standard models

ML-estimates

» The (conditional) ML-estimate fis a prediction error estimate
since it is obtained by minimizing

N

SO)= Y ()

t=p+1

> By differentiating w.r.t. o2 it can be shown that the ML-estimate of o2 is (remember that p is
the order of the AR part): R
Gz =5(6)/(N - p)

» The estimate 6 is asymptotically unbiased and efficient, and the variance-covariance matrix is

approximately
202H!

where H contains the 2nd order partial derivatives of S(6) at the minimum
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6.4 Estimation of parameters in standard models

Finding the ML-estimates using the PE-method

» 1-step predictions:

/Yt+1|t =-01Yi— ... —pVipr1tOiec+ .. 08¢
» If we use (Condition on) €, =€,_1 = ... = €p41_q = 0 we can find:
}A/pﬂ\p =01V, — . =P Y1+ 0ie, +.. .+ 06 gt1

> Which will give us €541 = Yp41 — Yj41), and we can then calculate Y, 19,41 and €42
...and so on until we have all the 1-step prediction errors we need.

» We use numerical optimization to find the parameters which minimize the sum of squared
prediction errors
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