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Week 4: Outline of the lecture

4.5 Frequently used operators

5.2 Stochastic processes and their moments
5.2.1.1 Stationary processes

5.2.2 Covariance and correlation functions
5.3 Linear processes

Relation to the book:

» Operators; the backward shift operator; sec. 4.5.

> Stochastic processes in general: Sec 5.1, 5.2, 5.3 [except 5.3.2].
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4.5 Frequently used operators

Operators: The backwards shift operator B

» An operator A is (here) a function of a time series {x;} (or a stochastic process {X;}).

> Application of an operator on a time series {z;} yields a new time series { Az; }. Likewise of a
stochastic process {AX;}.
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4.5 Frequently used operators

Operators: The backwards shift operator B

» An operator A is (here) a function of a time series {x;} (or a stochastic process {X;}).

> Application of an operator on a time series {z;} yields a new time series { Az; }. Likewise of a
stochastic process {AX;}.

» Most important operator for us: The backwards shift operator B : Bx; = z;_1. Notice
BJ Tt = Tp—yj.

» All other operators we shall consider in this lecture may be expressed in terms of B.

> In Sweden they note it with ¢~7.
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4.5 Frequently used operators

Operators: The backwards shift operator B

Question
t—3|t—2t—1] ¢t | t+1|t+2]|t+3
Tt 0.2 0.1 1.3 0.8 0.4 0.1 0.5
Big, 0.2 0.1 1.3 0.8 0.4

What is the value of j here?
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4.5 Frequently used operators

The forward shift F

The forward shift operator

> Fuy = zp1; Floy = 34y
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4.5 Frequently used operators

The forward shift F

The forward shift operator

> Fuy = zp1; Floy = 34y

[ How can F' be expressed in terms of B? (Bx; = xi—1 =7)

» Combining a forward and backward shift yields the identity operator; BFx; = Bzi4q1 = x4, ie. F
and B are each others inverse: B~! = F and F~! = B.

» In Sweden they note it with ¢7.
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4.5 Frequently used operators

The forward shift F

Question
t—3|t—2|t—1 t t+1 | t+2 | t+3
Ty 0.2 0.1 1.3 0.8 0.4 0.1 0.5
Fig, 0.2 0.1 1.3 0.8 0.4

What is the value of j here?
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4.5 Frequently used operators

The forward shift F

Question
t—3|t—2|t—1 t t+1 | t+2 | t+3
Ty 0.2 0.1 1.3 0.8 0.4 0.1 0.5
Fig, 0.1 1.3 0.8 0.4 0.1 0.5

What is the value of j here?

8/53



4.5 Frequently used operators

The difference operator V

The difference operator

> Vo, = a3 — 341
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The difference operator

> Vo, = a3 — 341
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4.5 Frequently used operators

The difference operator V

The difference operator

> Vo, = a3 — 341

[> How can V be expressed with B? V=1—-B o V=1+B"!

» Thus: V=1- B.
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The summation S

SZEt:CL’t+ZEt,1+CL’t,2+...

= 1, + Bz, + B%xz; . ..
=(1+B+B*+.. )

4.5 Frequently used operators
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4.5 Frequently used operators

The summation S

Sty = a2 + 21 + T+ ...
t; + Bxy + Bz . ..
=(1+B+B*+.. )z

» Summation, then difference (using Sz; = 2 + Sz—1)
VSIt = SZL’t - Sl't,1 =2 + S$t71 — S.’L‘t,1 = Tt
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4.5 Frequently used operators

The summation S

Sty = a2 + 21 + T+ ...
t; + Bxy + Bz . ..
=(1+B+B*+.. )z

» Summation, then difference (using Sz; = 2 + Sz—1)
VSZt = S.I't - Sl't,1 =2 + S$t71 — Sl't,1 = Tt

» Difference, then summation

SVz,=(1+B+B*. )z, —(1+B+B%. )z
:(1+B+BQ)SCt—(B+BQ)$t:Q?t

» So V and S are each others inverse:

1
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In R:

# Make a vector
x <- 1:10
X

## Error: object ’X’ not found

# The difference (Nabla) operator

diff (x)

# Recursive summation

cumsum (x)

# Back and forth: Not so nice in the ends!
cumsum (diff (x))

diff (cumsum(x))

# Put a zero in beginning to fix it
cumsum(diff (c(0,x)))

diff (cumsum(c(0,x)))
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Shift operator is simply the most important:

lagvec <- function(x, lag){
if (lag > 0) {

## Lag =, i.e. del

return(c(rep(NA lag), x[l (length(x) - lag)1))

Yelse if(lag < 0) {

## Lag z, i.e. d

ength(x)], rep(NA, abs(lag))))

return(C(x[(abs(lag) +1):
Yelse{

## lag = 0, return =

return(x)

Lag all columns in a data frame:

lagdf <- function(x, lag) {
# Lag z, i.e. d
if (lag > 0) {
x[(lag+1) :nrow(x), 1 <- x[1:(nrow(x)-lag), ]
x[1:1lag, 1 <- NA
Yelse if(lag < 0) {
# Lag = "ahead in time"
x[1: (nrow(x)-abs(lag)), 1 <- x[(abs(lag)+1):nrow(x), ]
x[(nrow(x)-abs(lag)+1) :nrow(x), ] <- NA
}

return(x)

y © lag steps
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4.5 Frequently used operators

Properties of B, F', V and §

P> The operators are all linear, ie.

Hlaz; + by = aH[x] + bH [y¢]
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4.5 Frequently used operators

Properties of B, F', V and §

P> The operators are all linear, ie.

Hlaz; + by = aH[x] + bH [y¢]

» The operators may be combined into new operators:

The power series
o0
a(z) = E a; 2"
i=0

defines a new operator from an operator H by linear combinations:

a(H) = i (L/L'Hi
=0
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Examples of combined operators

> v
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Examples of combined operators

> v

1 1
_ Z i -1 _ _ Z i _
1— 2 = : z so V = ? = : B'=S
1=0 1=0
» Operator polynomial of order g:

q
0(z) = Z@izi
i=0
ie. 8; =0 fori > gq.

6(B) = (1+6,B +---+6,B%)

where 6 is chosen to be 1
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Stochastic Processes — in general

» Function: X (¢, w)

The time is ¢ € T and the realization is w € .

Index set: T'
Sample Space: 2
and
> X(-,-) is a stochastic process

> X (t,-)is a random variable

5.2 Stochastic processes and their moments
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5.2 Stochastic processes and their moments

Stochastic Processes — in general

v

Function: X (¢, w)

The time is ¢ € T and the realization is w € 2.
Index set: T
Sample Space: 2

and

X (-, ) is a stochastic process

X (t,-) is a random variable

X (-, w) is a time series (i.e. one realization). This is what we often denote {z;}.

vV v vy

X (t,w) is an observation. This is what we often denote ;.
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5.2 Stochastic processes and their moments

Stochastic Processes — in general

v

Function: X (¢, w)

The time is ¢ € T and the realization is w € 2.
Index set: T
Sample Space: 2

and

X (-, ) is a stochastic process

X (t,-) is a random variable

X (-, w) is a time series (i.e. one realization). This is what we often denote {z;}.

vV v vy

X (t,w) is an observation. This is what we often denote ;.

In this course we restrict ourselves to the case where time is discrete and equidistant, and the
realizations take values on the real numbers (continuous range).
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5.2 Stochastic processes and their moments

Stochastic Processes — illustration

X(t, w)

20

-10

x(., 1)

-20
|

0 20 40 60 80 100
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5.2 Stochastic processes and their moments

Stochastic Processes — illustration

X(t, w)

20

o 4 X(30, 1)
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5.2 Stochastic processes and their moments

Stochastic Processes — illustration

X(t, w)

20

-10

-20
|

18/53
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Stochastic Processes — illustration

X(t, w)
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Demo i R: 5.2 Stochastic processes and their moments

par (mfrow=c(1,2))

# Generate realizations

n <- 100

x1 <- filter(rnorm(n), 0.9, "recursive")
plot(x1l, type="b", ylim=c(-6,6))

x2 <- filter(rnorm(n), 0.9, "recursive"
lines(x2, type="b", col=2)

x3 <- filter(rnorm(n), 0.9, "recursive")
lines(x3, type="b", col=3)

# Generate 1000 realizations

X <- matrix(filter (rnorm(1000*n), 0.9, "recursive"), nrow=n)
# One realization (i.e. a time series)

X[ ,1]

# Realization of the stochastic variable at one time point
hist(X[50, 1)

Histogram of X[50, ]

150

100

x1
0
.
Frequency

20/53



5.2 Stochastic processes and their moments

Complete Characterization

In the end a stochastic process is just a multivariate variable.

From Lecture 1: it is characterised by its n-dimensional probability density:

fxet),xy (@, .. Tp)
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5.2 Stochastic processes and their moments

2nd order moment representation

We can characterize the process using moments. 2nd order:

» Mean function: -

xfx(t)(m) dz,

u(t) = BLX(1)] = /

» Autocovariance function:

Yxx(ti, t2) = (t t2) = Cov[X(t), X(t2)]
= E[(X(t) = pu(t))(X(t2) — u(t2))]

» The variance function is obtained from y(#;, t2) when &, = t5 = ¢:
o?(t) = VIX()] = E [(X(t) — u(t))?]
If it is a Gaussian process it is fully characterized by the 2nd order moment.
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5.2.1.1 Stationary processes

Stationarity

> A process {X(t)} is said to be strongly stationary if all finite-dimensional distributions are
invariant for changes in time, i.e. for every n, and for any set (¢, to, ..., t,) and for any h it
holds

Fx (i) x () (@ Tn) = fxtth) X (tarh) (T Tn)
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5.2.1.1 Stationary processes

Stationarity

> A process {X(t)} is said to be strongly stationary if all finite-dimensional distributions are
invariant for changes in time, i.e. for every n, and for any set (¢, to, ..., t,) and for any h it
holds

Fx (i) x () (@ Tn) = fxtth) X (tarh) (T Tn)

> A process { X (%)} is said to be weakly stationary of order k if all the first k¥ moments are
invariant to changes in time

> A weakly stationary process of order 2 is simply called weakly stationary (or even just
stationary):
pt)y=p o*(t)=0> At t) =v(t — t2)
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5.2.1.1 Stationary processes

Ergodicity

» In time series analysis we normally assume that we have access to one realization only

» We therefore need to be able to determine characteristics of the process X; from one
realization z;
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http://news.softpedia.com/news/What-is-ergodicity-15686.shtml

5.2.1.1 Stationary processes

Ergodicity

» In time series analysis we normally assume that we have access to one realization only

» We therefore need to be able to determine characteristics of the process X; from one
realization x;

> |t is often enough to require the process to be mean-ergodic:

1 T
E[X(t)] = / z(t,w)f(w) dw = lim —/ z(t, w) dt
Q T—oc0 2T —-T
i.e. if the mean of the ensemble equals the mean over time

Some intuitive examples, not directly related to time series:
http://news.softpedia.com/news/What-is-ergodicity-15686.shtml
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5.2.1.1 Stationary processes

Classes of processes

» Normal processes (also called Gaussian processes): All finite-dimensional distribution functions
are (multivariate) normal distributions
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P{X(tn) < 2| X (tn1), -+ X (1)} = P{X(tn) < 2[X (1)}
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5.2.1.1 Stationary processes

Classes of processes

» Normal processes (also called Gaussian processes): All finite-dimensional distribution functions
are (multivariate) normal distributions

» Markov processes: The conditional distribution depends only on the latest state of the process:

P{X(tn) < 2| X (tn1), -+ X (1)} = P{X(tn) < 2[X (1)}

» Deterministic processes. Can be predicted without uncertainty from past observations

» Pure stochastic processes: Can be written as a linear combination of uncorrelated random
variables

» Decomposition: X; = S; + Dy, where S; is a pure stochastic process and D; is a deterministic
process.
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Correlation

Let’s remember what correlation is.
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Correlation
Correlation 0.0923
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Correlation

i
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Correlation
Correlation 0.881

i
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Correlation
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Correlation

Correlation -0.88
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Correlation

Correlation -0.88
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Summed Squared Residuals

n
SSaverage = Z Residual?
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Correlation
Correlation -0.88

o . .
™ —— Linear regression
a
Summed Squared Residuals

o n

SSin = Z Residualf

i

(_\I] -
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How to calculate correlation?

Two vectors with corresponding elements x; and y;.

SSaverage - SSIin

R? =
SSaverage
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Correlation

Correlation -0.88

——  Average

— Lin. reg.

SSaverage - SSIin
SSaverage
_249.1819 — 56.43223

R? =

249.1819
= 0.77353

and

Cor = sign(slope) - R
= —0.8795055
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Correlation
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Correlation
Correlation 0.845

38/53



Correlation
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Correlation

Correlation 0.876
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Correlation
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Correlation
Correlation 0.892
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Correlation

1.0

i)

0.0

-1.0
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Correlation

Correlation -0.0247

1.0

i)

0.0

-1.0
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5.2.2 Covariance and correlation functions

Autocovariance and autocorrelation

45 /53



5.2.2 Covariance and correlation functions

Autocovariance and autocorrelation

» Autocovariance:

Y(7) = ¥xx (1) = Cov[X (), X(¢ + 7)] = E[X(£) X (¢ + 7)]
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5.2.2 Covariance and correlation functions

Autocovariance and autocorrelation

» Autocovariance:

(1) = vxx(7) = Cov[X(t), X(t +7)] = E[X(£)X (¢ + 7)]

» Autocorrelation:

p(1) = pxx (1) = vxx (1) /7xx(0) = yxx () /0%
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5.2.2 Covariance and correlation functions

Autocovariance and autocorrelation

» Autocovariance:

Y(T) = vxx(7) = Cov[X (1), X (¢t + 7)] = E[X ()X (¢ + 7)]
» Autocorrelation:
p(T) = pxx (T) = Yxx (T) /¥xx(0) = yxx (1) /0%

» Some properties of the autocovariance function:
(1) =(=7)

ly(T) < ~(0)

> For stationary processes: Only dependent on the time difference 7 =1, — 4
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ACF

# Simulate a process

n <- 100
x <- filter(rnorm(n), 0.9, "recursive")
plot(x)

# The acf and "height" of "lag 1 bar"”
val <- acf(x)

val[1]

# The correlation with lag 1

cor(x, lagvec(x,1), use="complete.obs")
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White noise

» Def. 5.9: {€;} is a sequence of mutually uncorrelated identically distributed random variables,
where:

pe = E[es] =0
oy = Var[g;] = 02

’}’g(k) = COV[gt,€t+k] =0, for k # 0

How many of 20 ACF bars stick of the 95%
CI if white noise?




5.3 Linear processes

White noise

» Def. 5.9: {€;} is a sequence of mutually uncorrelated identically distributed random variables,
where:

pe = E[es] =0
oy = Var[g;] = 02

’}’g(k) = COV[gt,€t+k] =0, for k # 0

1.0

0.8

ACF

0.4

How many of 20 ACF bars stick of the 95%
CI if white noise?

0.2

0.0
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A small game! Go try it now:

x <- readline("Write a sequence of numbers from O to 9\n")
x <- as.numeric(strsplit(x,"")[[1]1])
acf (x)

» Can you make white noise?
» Can you make an alternating pattern?
» Can you make an alternating pattern with "longer period™?

» Can you make a slow decay to zero?
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More ACF...

W <= 10
x <= sin((1:1000)*2pi*(w/1000))
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More ACF...

«
x <= sin((1

W

1000) #2%pi* (w/1000))

1,2))

par (mfx

plot(x)
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5.3 Linear processes

Linear processes

> A linear process {Y;} is a process that can be written on the form

Yi—p=> e
=0

where 1 is the mean value of the process and
> {e,} is white noise, i.e. a sequence of uncorrelated, identically distributed random variables.
» {e:} can be scaled so that ¥y =1

» Without loss of generality we assume . =0
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5.3 Linear processes

- and mw-weights

» Transfer function and linear process:

Y(B)=1+> ¥;B" Y, =9(B)e,
i=1
> Inverse operator (if it exists) and the linear process:
m(B) = 1+Z7riBi w(B)Y; = €4,
i=1

» Autocovariance using 1J-weights:

Y(k) = Cov [Vy, Yipi] = Cov | > thigri, Y Yibrphi| =02 Y Yithitx
=0 =0 i=0
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5.3 Linear processes

Stationarity and invertibility

» The linear process Y; = ¢(B)e, is stationary if
> .
P(2) =Y piz
i=0

converges for |z| > 1 (i.e. old values of €, are down-weighted)

» The linear process m(B)Y; = ¢, is said to be invertible if

[e)
m(z) = Z w2 "
i=0

converges for |z| > 1 (i.e. €; can be calculated from recent values of Y3)
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5.3 Linear processes

Linear process as a statistical model?

Can we make this one a GLM?

Yi=-—mY, 1 —mY;o—. .. +&+Y16 1 +Pogy 2+ ...

» Observations: Y7, Y5, Y3, ..., YN

» Task: Find an infinite number of parameters from N observations! or what can we do?
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5.3 Linear processes

Linear process as a statistical model?

Can we make this one a GLM?

Yi=-—mY, 1 —mY;o—. .. +&+Y16 1 +Pogy 2+ ...

» Observations: Y7, Y5, Y3, ..., YN
» Task: Find an infinite number of parameters from N observations! or what can we do?

» Solution: Restrict the sequences 1, Ty, o, T3, ... and 1,9, Po, Y3, . ..
which gives us the famous ARMA(p, q) model:

Yi==01Yi 1 =Y o— ... =Yyt e+ 01601 + 026 2+ ...+0,60 4

which we will dig into next week!
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