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• Recap: Ordinary Least Squares (OLS) and its assumptions

• Weighted Least Squares (WLS)

• Weighted Least Squares for “Local Trend Models”

• Recursive Least Squares with forgetting

• Exponential smoothing in general
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Ordinary Least Squares
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Ex: Simple linear regression:

”Design 

  Matrix”
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OLS example 
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(see code in R script)

Data is split into ”train” and ”test” data

We set up a linear model:

Fit with OLS:

Intercept:    -373 (s.e. 13)

Slope:    0.19 (s.e. 0.006)

We calculate predictions and 

predictions intervals

We compare predictions to test data
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OLS parameter estimates and predictions
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Parameters: Point estimates and standard errors:

Predictions: Point estimates and standard errors:
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OLS - model assumptions
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Errors must be assumed to all have the same variance and be mutually uncorrelated

Errors are ”i.i.d.” (independent and identically distributed)

      independent:    identically distributed:

  Residuals should look like ”white noise” (see plot in R script)
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• Recap: Ordinary Least Squares (OLS) and its assumptions

• Weighted Least Squares (WLS)

• Weighted Least Squares for “Local Trend Models”

• Recursive Least Squares with forgetting

• Exponential smoothing in general
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Weighted Least Squares (WLS)
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In WLS we assume the residuals can have different variances and 

be mutually correlated:
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In WLS we assume the residuals can have different variances and 

be mutually correlated:

Remember that the diagonal elements have to do with 

the variances of the individual observations

And the off-diagonal elements have to do with 

covariance between two observations
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Weighted Least Squares (WLS)
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In WLS we assume the residuals can have different variances and 

be mutually correlated:

We minimize the weighted sum of squared residuals: 

Remember that the diagonal elements have to do with 

the variances of the individual observations

And the off-diagonal elements have to do with 

covariance between two observations
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Weighted Least Squares (WLS)
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In WLS we assume the residuals can have different variances and 

be mutually correlated:

We minimize the weighted sum of squared residuals: 

Solution:

(Equations on blackboard)

(Example in R – next slide)

Remember that the diagonal elements have to do with 

the variances of the individual observations

And the off-diagonal elements have to do with 

covariance between two observations
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WLS example 
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(see code in R script)

Include correlation-structure:

(rho < 1)

Fit with WLS:

Intercept:    -361 (s.e. 20)

Slope:    0.18 (s.e. 0.010)

Parameters and predictions a slightly 

different to the OLS fit. 
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WLS with diagonal matrix
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In the example above we changed the off-diagonal 

elements

Now we consider a case were only the diagonal 

elements are changed.

What does this mean / what situation would this 

reflect?
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WLS with diagonal matrix
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Off-diagonal elements are zero = no covariance/no correlation

How would Σ look like for this type of data?
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• Recap: Ordinary Least Squares (OLS) and its assumptions

• Weighted Least Squares (WLS)

• Weighted Least Squares for “Local Trend Models”

• Recursive Least Squares with forgetting

• Exponential smoothing in general
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From Global to Local models
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Considering our model where x-

values are time (”trend models”) 

We want to make predictions for 

future time (”forecast”)

How could we improve 

the model to make a 

better forecast?
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From Global to Local models
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What if the model had only been 

based on the 10 most recent 

observations?
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From Global to Local models
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What if the model had only been 

based on the 10 most recent 

observations?

- Parameters (intercept and slope) are 

different and hence predicted values 

are different

- Prediction intervals are wider

(s.e. on parameter estimates are also 

larger). 

This is because n (number of 

observations) is smaller. 

Recall:
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From Global to Local models
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What if the model had only been 

based on the 5 most recent 

observations?
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From Global to Local models
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What if the model had only been 

based on the 5 most recent 

observations?

 

- How many observations do we need?

- What is optimal?
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From Global to Local models
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What if the model had only been 

based on the 2 most recent 

observations?

He we use only two oberservations 

to estimate two parameters

The variance estimate ”explodes”

N = number of observations in data

p = number of parameters estimated
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From Global to Local models
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Questions:

Any good ideas?

How do we choose the best model? 

Is there a way to make a ”soft” cut-off of the number of 

observations included in the training data?
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From Global to Local models
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We could also use weights and make most recent 

obs. have highest weight!

W
e
ig

h
t
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Weights in WLS
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Observations with large variance will have low weight

Weighted sum of squares, uses          
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WLS “hack” for down-weighting old observations
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We will assign low weight (large 

variance) to the old observations

and higher weight (small variance) to 

the more recent observations

This is a “hack”: The old observations 

were not actually measured with 

larger uncertainty (larger variance).

However, in the model we want, the 

old observations should have less 

weight. 
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Choice of weights for a “local model”
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Exponential weights: Corresponding WLS Σ-matrix:
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Example in R
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Plot of weights with lambda = 0.6:
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Blue is WLS

(Red is OLS)

The blue line fits the late observations 

better than the early observations – 

just as we wanted
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Example in R
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Blue is WLS

(Red is OLS)

The blue line fits the late observations 

better than the early observations – 

just as we wanted

What about predictions and 

prediction intervals?!
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Prediction intervals using the 

equations from WLS

The intervals seem over optimistic (too 

narrow)

Recal:

Values in            are small – leading to 

underestimation of uncertainties?
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Predictions with Local model
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What should we assume about the variance of 

future observations?
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Predictions with Local model
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What should we assume about the variance of 

future observations?

We have seen earlier today that using less data points leads 

to larger uncertainties 

Is it fair to use n = N ? 

(when some weights are very close to zero)
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Estimating uncertainty in Local model
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Define the total memory as the sum of all the weights:

T is a meassure of the weighted number of 

observations

(In OLS the sum of weights = N)
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Estimating uncertainty in Local model
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Replace N with T, when estimating the variance: 

Notice we need T > p

(p = number of parameters)

The sum of weights must be larger than the number of 

parameters estimated. 

Define the total memory as the sum of all the weights:

T is a meassure of the weighted number of 

observations

(In OLS the sum of weights = N)
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Estimating uncertainty in Local model
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Replace N with T, when estimating the variance: 

Notice we need T > p

(p = number of parameters)

The sum of weights must be larger than the number of 

parameters estimated. 

This requirement is a restriction on lambda

(lambda cannot be too small)

Define the total memory as the sum of all the weights:

T is a meassure of the weighted number of 

observations

(In OLS the sum of weights = N)
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Estimating uncertainty in Local model
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Replace N with T, when estimating the variance: 

Notice we need T > p

(p = number of parameters)

The sum of weights must be larger than the number of 

parameters estimated. 

This requirement is a restriction on lambda

(lambda cannot be too small)

(note: the estimator is not in the book, but this is a 

”sneak peak” into chapter 11)

Define the total memory as the sum of all the weights:

T is a meassure of the weighted number of 

observations

(In OLS the sum of weights = N)
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Prediction intervals using:

Here T = 2.5
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Choice of λ
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Small λ: short ”memory”  

(fast ”forgetting”)

λ = 1: OLS (full ”memory”)
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Choice of λ
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Optimal choice of λ may depend on the 

”prediction horizon”

(e.g., one day ahead, one weak ahead, 

one year ahead…)

We can use historical data to find 

optimal λ for a specific prediction 

horizon:

- Iteratively run through data 

- Make prediction for each itteration

- Evaluate prediction accuracies 

(given specific λ value) 
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• Recap: Ordinary Least Squares (OLS) and its assumptions

• Weighted Least Squares (WLS)

• Weighted Least Squares for “Local Trend Models”

• Recursive Least Squares with forgetting

• Exponential smoothing in general



DTUDate Title

Recursive Least Squares (recap) 
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Re-writing OLS in an iterative way:

notation: t = n , ie. the ”latest” observation (t) is also the total number of observations (n) 

Making it easy to update the parameter estimates, when new data is available
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Recursive Least Squares with “forgetting” 
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Re-writing WLS where            is a diagonal matrix with elements  β(t,s) = λ(t-s) , (s = 1, 2, 3, …, t):
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Local Trend Models in chapter 3.4
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The Trend Model as described in chapter 3.4 is 

almost the same as RLS, but with the extra detail 

that the x-axis is updated in every timepoint, such 

that the current time is equal to time zero. 
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R example – RLS with forgetting
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Blue line is local 

model based on only 

two observations

Red line is the original 

OLS based on all 26 

observations
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R example – RLS with forgetting
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R example – RLS with forgetting
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Remember that the 

blue line is WLS, such 

that latest timepoints 

have higher weight. 

Here we used 

lambda = 0.6
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L-step predictions
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At each iteration we can make a 

prediction L steps into the future

Here we visualise a one-step 

prediction
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R example – onestep prediction 
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R example – onestep prediction 
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R example – onestep prediction 
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R example – onestep prediction 
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R example – onestep prediction 
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R example – onestep prediction 
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R example – onestep prediction 
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Each onestep 

prediction is predicted 

using a new (updated) 

set of parameters
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R example – onestep prediction 
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Plot of all the onestep 

predictions
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R example – onestep prediction 
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Plot of all the onestep 

predictions

We can try with 

different values of 

lambda

(code in R script)
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R example – onestep prediction 
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Blue: lambda = 0.6

Green: lambda = 0.9
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R example – onestep prediction 
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Blue: lambda = 0.6

Green: lambda = 0.9

Pink: lambda = 0.3
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R example – onestep prediction 
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Blue: lambda = 0.6

Green: lambda = 0.9

Pink: lambda = 0.3

What do you think is 

the general effect of 

increasing/decreasing 

lambda?
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Choice of
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Larger     - longer ”memory”

    = 1 equals OLS
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For each step:

- Update model

- Calculate prediction

- Calculate prediction 

error (when next data 

is available)

Then calculate the SSE 

(sum of squared 

prediction errors)

Repeat for different 

lambda

Choose optimal lambda 

(smallest SSE)

Choice of
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For each step:

- Update model

- Calculate prediction

- Calculate prediction 

error (when next data 

is available)

Then calculate the SSE 

(sum of squared 

prediction errors)

Repeat for different 

lambda

Choose optimal lambda 

(smallest SSE)

Choice of

But what if we wanted 

to predict further than 

one step?

Could we expect the 

same lambda to be 

optimal?
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For each step:

- Update model

- Calculate prediction

- Calculate prediction 

error (when next data 

is available)

Then calculate the SSE 

(sum of squared 

prediction errors)

Repeat for different 

lambda

Choose optimal lambda 

(smallest SSE)

Choice of

But what if we wanted 

to predict further than 

one step?

Could we expect the 

same lambda to be 

optimal?

Generally larger 

lambda is better for 

longer prediction 

horizons.
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• Recap: Ordinary Least Squares (OLS) and its assumptions

• Weighted Least Squares (WLS)

• Weighted Least Squares for “Local Trend Models”

• Recursive Least Squares with forgetting

• Exponential smoothing in general
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Smoothing
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Let us consider a time series with 

large fluctuations
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Smoothing
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Here is an example of ”smoothing” 

the data
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Exponential Smoothing
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We calculate a weighted 

average

The weigths decay 

exponentially

Corresponding to 

estimating only 

intercept (no slope) 

with WLS and

”memory”
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Exponential Smoothing
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”memory”
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Exponential Smoothing
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Recursive formulation

”memory”
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Exponential Smoothing
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Recursive formulation

”memory”
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Simple Exponential Smoothing (SES)
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Almost as we did earlier 

today, but here we only have 

one parameter – 

the ”level” (intercept)
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Simple Exponential Smoothing (SES)
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Sum of squared 
l-step prediction errors

Almost as we did earlier 

today, but here we only have 

one parameter – 

the ”level” (intercept)
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Simple Exponential Smoothing (SES)
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Sum of squared 
l-step prediction errors

is used to find optimal lambda 

(or optimal alpha)

Almost as we did earlier 

today, but here we only have 

one parameter – 

the ”level” (intercept)
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Example – wind speed 76m a.g.l. at Risø
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Example – wind speed 76m a.g.l. at Risø
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Example – wind speed 76m a.g.l. at Risø
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Simple, double and triple exponential smoothing

• Simple Exponential smoothing

• The model includes a level / constant mean (intercept)

• All future predictions have the same value (constant)

• The predicted level is an exponentially weighted sum of past observations

• Holt’s Linear Trend model (= ”double exponential smoothing”)

• Includes both level (intercept at time = N) and trend (slope) 

• Both the level and trend have individual smoothing parameters (individual lambda’s) (this is different 

from the local model we have made – here we used same lambda for both parameters)

• In damped trend models a damping is included to the 

• Holt-Winters’ model (= ”triple exponential smoothing”)

• Includes level and trend and seasonal component 

• 3 individual smoothing parameters

• ”ETS models” in general = Error-Trend-Season

• Both additive and multiplicative forms
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Simple, double and triple exponential smoothing

• Simple Exponential smoothing

• The model includes a level / constant mean (intercept)

• All future predictions have the same value (constant)

• The predicted level is an exponentially weighted sum of past observations

• Holt’s Linear Trend model (= ”double exponential smoothing”)

• Includes both level (intercept at time = N) and trend (slope) 

• Both the level and trend have individual smoothing parameters (individual lambda’s) (this is different 

from the local model we have made – here we used same lambda for both parameters)

• In damped trend models a damping is included to the 

• Holt-Winters’ model (= ”triple exponential smoothing”)

• Includes level and trend and seasonal component 

• 3 individual smoothing parameters

• ”ETS models” in general = Error-Trend-Season

• Both additive and multiplicative forms
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Simple, double and triple exponential smoothing

• Simple Exponential smoothing

• The model includes a level / constant mean (intercept)

• All future predictions have the same value (constant)

• The predicted level is an exponentially weighted sum of past observations

• Holt’s Linear Trend model (= ”double exponential smoothing”)

• Includes both level (intercept at time = N) and trend (slope) 

• Both the level and trend have individual smoothing parameters (individual lambda’s) (this is different 

from the local model we have made – here we used same lambda for both parameters)

• In damped trend models a damping is included to the 

• Holt-Winters’ model (= ”triple exponential smoothing”)

• Includes level and trend and seasonal component 

• 3 individual smoothing parameters

• ”ETS models” in general = Error-Trend-Season

• Both additive and multiplicative forms
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Simple, double and triple exponential smoothing

• Simple Exponential smoothing

• The model includes a level / constant mean (intercept)

• All future predictions have the same value (constant)

• The predicted level is an exponentially weighted sum of past observations

• Holt’s Linear Trend model (= ”double exponential smoothing”)

• Includes both level (intercept at time = N) and trend (slope) 

• Both the level and trend have individual smoothing parameters (individual lambda’s) (this is different 

from the local model we have made – here we used same lambda for both parameters)

• In damped trend models a damping is included to the 

• Holt-Winters’ model (= ”triple exponential smoothing”)

• Includes level and trend and seasonal component 

• 3 individual smoothing parameters

• ”ETS models” in general = Error-Trend-Season

• Both additive and multiplicative forms
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Questions ?

86

Next time:

- Stochastic Processes w. Peder ☺
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