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Overview

1. Estimation in the General Linear Model (GLM):

▶ Ordinary Least Squares (OLS)

▶ Maximum Likelihood (ML) estimation

2. Recursive Least Squares (RLS)

3. Global trend models

4. Essential principles needed to find a good model:

▶ Residual analysis and model validation

▶ Model selection

3 / 16

Overview



Population and sample

Randomly
selected

(Infinite) Statistical population

Sample mean
ȳ
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Ordinary least squares example

The General Linear Model (GLM), see the ModellingReference.pdf

# see the script example_OLS_RLS.R
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Parameter estimation with OLS

https://www2.compute.dtu.dk/courses/02417/2025/ModellingReference.pdf


Parameter estimation with example

Simplest example: a constant model for the mean

▶ Model

Yi = θ1 + εi , where εi ∼ N (0, σ2) and i.i.d.

▶ i.i.d.: identically and independent distributed

▶ The parameters are: the mean µ and the standard deviation σ

▶ We take a sample of n = 100 observations

(y1, y2, . . . , y100)
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Likelihood

The likelihood is defined by the joint probability function of the data

L(µ, σ) ≡ p(y1, y2, . . . , y100|µ, σ)

Hence, it’s a function of the two parameters (the sample is observed, so it is not varying).

Due to independence

=

100∏
i=1

p(yi |µ, σ)

In our model the error εi = Yi − µ is normal distributed (Gaussian), so

p(yi |µ, σ) =
1

σ
√
2π
exp

(
−
(yi − µ)2

2σ2

)
(1)
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Maximum likelihood estimation

Parameter estimation

θ̂ = argmin
θ∈Θ

(
− ln

(
L(θ)

))
where θ = (µ, σ)

# see the example_likelihood.R script
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Likelihood for time correlated data

Given a sequence of measurements YN

L(θ) = p(YN |θ) = p(yN , yN−1, . . . , y0|θ)

=

(
N∏

k=1

p(yk |Yk−1, θ)

)
p(y0|θ)

Parameter estimation

θ̂ = argmin
θ∈Θ
(−ln(L(θ)))
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Likelihood for time correlated data

If Gaussian

ŷk |k−1 = E [yk |Yk−1, θ]
Rk |k−1 = V [yk |Yk−1, θ]
εk = yk − ŷk |k−1

then the likelihood is

L(θ) =

(
N∏

k=1

exp(− 1
2ε

T
k R−1k |k−1εk )√

|Rk |k−1|
√
2π

l

)

Maximised using quasi Newton (in practise always minimize the negative log-likelihood)
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The global trend model, see the ModelExamples.pdf
https://gml.noaa.gov/ccgg/trends/data.html
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Trend models

https://www2.compute.dtu.dk/courses/02417/2025/ModelExamples.pdf


Model selection and the bias-variance tradeoff
We want to find a suitable model – the model which is neither too simple (under-fitted) nor too
complex (over-fitted):

▶ Divide the data into a training set and a test set

▶ Define a fit score (smaller is better e.g. summed squared error)

How do we find the balance?
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Model selection

How do we find the balance?

▶ Information criteria (AIC, BIC)

▶ Goodness of fit test (likelihood-ratio test, F -test)

▶ Cross-validation technique (n-fold CV)

Model selection procedure

▶ Forward selection (start with a small model and extend)

▶ Backward selection (start with a large model and remove)
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Model validation (use also while finding a model)

After fitting the model then analyse the residuals
If no patterns are left, hence we have white noise residual, then we are done!

Residuals analysis
Plot, plot, plot!

▶ Time series plots of residuals aligned with input series

▶ Scatter plots of residuals vs. inputs

▶ ACF and CCF (We will get back to them!)

Forward selection
Fit a simple model, analyse the residuals: Can you see some patterns left related to some inputs?
Improve the model and repeat...

▶ Good approach for modelling with new data

▶ Good approach for articles (you get a story)
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Training and Test Set Techniques for Time Series

▶ When data is time dependent, we can’t just select some random points as test set and for
cross-validation

▶ We have to take time into account

▶ Holdout Method:
▶ Split data into training and test sets
▶ Illustration:

Training Set Test Set

▶ Problems often occur: if the underlying process changed from training to test set

▶ Cross-Validation:
▶ K-fold, Leave-One-Out
▶ Illustration:

▶ This is often a good compromise (a burn-in period can be needed).
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Training and test set with times series data



Rolling Horizon Test Sets

▶ Concept: Use a moving window to create multiple training and test sets

▶ Illustration:

▶ Steps:

1. Start with an initial training set
2. Train the model
3. Test on the next time point
4. Expand the training set to include the test point
5. Repeat the process

▶ A burn-in period is needed

▶ Recursive estimation is really nice, it always does this!
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