# 02417: Time Series Analysis Week 1 - Introduction and overview

Peder Bacher DTU Compute

Based on material previous material from the course

February 24, 2025

#### Material in the course

- The course webpage 02417.compute.dtu.dk
- Learn for messages and projects
- Book
- Slides
- Exercises
- Assignments

## What to use Time Series Models for

#### Applications:

- Prediction
- Estimation and hypothesis testing
- Control and decision making

#### We want a good model!

- Use data to fit a model
- Basically, any modelling technique can be used, there are no rules!
- Pros and cons: robustness, complexity, computation time, man hours to set up, ...
- WE ONLY DO LINEAR MODELS in this course (multiply and add using matrices)! Very fast and reliable, always a good starting points when developing models, can be tweaked later to include non-linear effects...

#### What you should be able to do



Mink and Muskrat skins traded in Canada 1850–1911

Years

#### What you should be able to do



Mink and Muskrat skins traded in Canada 1850–1911

Years

#### What you should be able to do



Mink and Muskrat skins traded in Canada 1850–1911

Years

## Introductory example – shares (COLO B 1 month)



What do think about the trend here? what would you buy or sell?

## Introductory example – shares (COLO B 1 year)



Would you do the same?

## Introductory example – shares (COLO B all)



Can we use a linear trend model here?

# Introductory example – shares (COLO B log(all))



Take log(y): Often we can do non-linear transformations, resolve in cos and sine or splines,...

#### Number of Monthly Airline Passengers in the US



Is this a good prediction?

#### Number of Monthly Airline Passengers in the US



## Consumption of District Heating (VEKS) - data



#### Consumption of DH – simple model



Discussion: What is a dynamical system?

# Last year!



#### Simplest first order RC-system

Single state model of the temperature in a box:





$$\frac{dT_{\rm i}}{dt} = \frac{1}{RC} (T_{\rm e} - T_{\rm i})$$

It has the solution

$$T_{\mathrm{i}}(t + \Delta t) = T_{\mathrm{e}}(t) + e^{-rac{\Delta t}{RC}} \left(T_{\mathrm{i}}(t) - T_{\mathrm{e}}(t)\right)$$

$$\frac{dT_{\rm i}}{dt} = \frac{1}{RC} (T_{\rm e} - T_{\rm i})$$

It has the solution

$$T_{\mathrm{i}}(t + \Delta t) = T_{\mathrm{e}}(t) + e^{-rac{\Delta t}{RC}} \left(T_{\mathrm{i}}(t) - T_{\mathrm{e}}(t)\right)$$

if  $\Delta t = 1$  and  $T_{\mathrm{e}}$  is constant between the sample points then

$$T_{t+1}^{i} = e^{-\frac{1}{RC}} T_{t}^{i} + (1 - e^{-\frac{1}{RC}}) T_{t}^{e}$$

$$\frac{dT_{\rm i}}{dt} = \frac{1}{RC} (T_{\rm e} - T_{\rm i})$$

It has the solution

$$T_{\mathrm{i}}(t + \Delta t) = T_{\mathrm{e}}(t) + e^{-rac{\Delta t}{RC}} \left(T_{\mathrm{i}}(t) - T_{\mathrm{e}}(t)\right)$$

if  $\Delta t = 1$  and  $T_{\mathrm{e}}$  is constant between the sample points then

$$T_{t+1}^{i} = e^{-\frac{1}{RC}} T_{t}^{i} + (1 - e^{-\frac{1}{RC}}) T_{t}^{e}$$

since  $e^{-\frac{1}{RC}}$  is between 0 and 1, then write it as

$$T_{t+1}^{\mathbf{i}} = \phi_1 T_t^{\mathbf{i}} + \omega_1 T_t^{\mathbf{e}}$$

where  $\phi_1$  and  $\omega_1$  are between 0 and 1.

$$\frac{dT_{\rm i}}{dt} = \frac{1}{RC} (T_{\rm e} - T_{\rm i})$$

It has the solution

$$T_{\mathrm{i}}(t + \Delta t) = T_{\mathrm{e}}(t) + e^{-rac{\Delta t}{RC}} \left(T_{\mathrm{i}}(t) - T_{\mathrm{e}}(t)\right)$$

if  $\Delta t = 1$  and  $T_{\rm e}$  is constant between the sample points then

$$T_{t+1}^{i} = e^{-\frac{1}{RC}} T_{t}^{i} + (1 - e^{-\frac{1}{RC}}) T_{t}^{e}$$

since  $e^{-\frac{1}{RC}}$  is between 0 and 1, then write it as

$$T_{t+1}^{\mathbf{i}} = \phi_1 T_t^{\mathbf{i}} + \omega_1 T_t^{\mathbf{e}}$$

where  $\phi_1$  and  $\omega_1$  are between 0 and 1.

Add a noise term and we have the ARX model

$$T_{t+1}^{i} = \phi_1 T_t^{i} + \omega_1 T_t^{e} + \varepsilon_{t+1}$$

$$\frac{dT_{\rm i}}{dt} = \frac{1}{RC} (T_{\rm e} - T_{\rm i})$$

It has the solution

$$T_{\mathrm{i}}(t + \Delta t) = T_{\mathrm{e}}(t) + e^{-rac{\Delta t}{RC}} \left(T_{\mathrm{i}}(t) - T_{\mathrm{e}}(t)\right)$$

if  $\Delta t = 1$  and  $T_{\rm e}$  is constant between the sample points then

$$T_{t+1}^{i} = e^{-\frac{1}{RC}} T_{t}^{i} + (1 - e^{-\frac{1}{RC}}) T_{t}^{e}$$

since  $e^{-\frac{1}{RC}}$  is between 0 and 1, then write it as

$$T_{t+1}^{\mathbf{i}} = \phi_1 T_t^{\mathbf{i}} + \omega_1 T_t^{\mathbf{e}}$$

where  $\phi_1$  and  $\omega_1$  are between 0 and 1.

Add a noise term and we have the ARX model

$$T_t^{i} = \phi_1 T_{t-1}^{i} + \omega_1 T_{t-1}^{e} + \varepsilon_t$$

#### An ARMAX model

$$T_t^{i} = \phi_1 T_{t-1}^{i} + \omega_1 T_t^{e} + \varepsilon_t + \theta_1 \varepsilon_{t-1}$$





#### Linear Dynamic Systems – notation



### Consumption of DH – We use the model error to validate the model



## A brief outline of the course

- General aspects of multivariate random variables
- Prediction using the general linear model
- Time series models
- Some theory on linear systems
- Time series models with external input

Some goals:

- Characterization of time series / signals; correlation functions, covariance functions, stationarity, linearity, ...
- Signal processing; filtering and smoothing
- Modelling; with or without external input
- Prediction with uncertainty