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Material in the course

▶ The course webpage 02417.compute.dtu.dk

▶ Learn for messages and projects

▶ Book

▶ Slides

▶ Exercises

▶ Assignments
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Overview

02417.compute.dtu.dk


What to use Time Series Models for

Applications:

▶ Prediction

▶ Estimation and hypothesis testing

▶ Control and decision making

We want a good model!

▶ Use data to fit a model

▶ Basically, any modelling technique can be used, there are no rules!

▶ Pros and cons: robustness, complexity, computation time, man hours to set up, ...

▶ WE ONLY DO LINEAR MODELS in this course (multiply and add using matrices)! Very fast
and reliable, always a good starting points when developing models, can be tweaked later to
include non-linear effects...
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Motivation



What you should be able to do
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Introductory example – shares (COLO B 1 month)

What do think about the trend here? what would you buy or sell?
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Introductory example – shares (COLO B 1 year)

Would you do the same?
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Introductory example – shares (COLO B all)

Can we use a linear trend model here?
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Introductory example – shares (COLO B log(all) )

Take log(y): Often we can do non-linear transformations, resolve in cos and sine or splines,...
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Number of Monthly Airline Passengers in the US

Is this a good prediction?
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Number of Monthly Airline Passengers in the US
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Consumption of District Heating (VEKS) – data
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Consumption of DH – simple model

Air Temperature (°C)
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Discussion: What is a dynamical system?
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Last year!
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Simplest first order RC-system

Single state model of the temperature in a box:
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Discretize the ODE

dTi

dt
=

1

RC
(Te − Ti)

It has the solution

Ti(t + ∆t) = Te(t) + e−
∆t
RC

(
Ti(t)− Te(t)

)

if ∆t = 1 and Te is constant between the sample points then

T i
t+1 = e−

1
RC T i

t + (1− e−
1

RC )T e
t

since e−
1

RC is between 0 and 1, then write it as

T i
t+1 = φ1T

i
t + ω1T

e
t

where φ1 and ω1 are between 0 and 1.

Add a noise term and we have the ARX model
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An ARMAX model
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Linear Dynamic Systems – notation

x F [·] y

Linear 

System

Input Output

x(t) Differential eq., h(u) y(t)

xt Difference eq., hk , h(B) yt
X (ω) H(ω) Y (ω)

X (z) H (z) Y (z)
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Consumption of DH – We use the model error to validate the model

Model Error
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A brief outline of the course

▶ General aspects of multivariate random variables

▶ Prediction using the general linear model

▶ Time series models

▶ Some theory on linear systems

▶ Time series models with external input

Some goals:

▶ Characterization of time series / signals; correlation functions, covariance functions,
stationarity, linearity, . . .

▶ Signal processing; filtering and smoothing

▶ Modelling; with or without external input

▶ Prediction with uncertainty
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