# Script with example of impulse response and step response estimation # First time install package for reading audio files #install.packages("tuneR") # Load the package library(tuneR) # Two plots par(mfrow=c(2,1)) iplot <- 1:300 pst <- paste0 # ---------------------------------------------------------------- # Plot'em # Impulse reponse x <- readWave("wavfiles/input_impulse.wav")@left[iplot] plot(x, type="h", xlab="", main="Impulse input") for(i in 1:4){ y <- readWave(pst("wavfiles/impulseresponse",i,".wav"))@left[iplot] if(i == 1){ plot(y, type="n", xlab="", main="Impulse Response") } lines(y, col=i) } # Step response x <- readWave("wavfiles/input_step.wav")@left[iplot] plot(x, type="h", xlab="", main="Step input", ylim=c(0,max(x))) for(i in 1:4){ y <- readWave(pst("wavfiles/stepresponse",i,".wav"))@left[iplot] if(i == 1){ plot(y, type="n", xlab="", main="Step response") } lines(y, col=i) } # Noise response x <- readWave("wavfiles/input_noise.wav")@left[iplot] plot(x, type="h", xlab="", main="Noise input") for(i in 1:4){ y <- readWave(pst("wavfiles/noiseresponse",i,".wav"))@left[iplot] if(i == 1){ plot(y, type="n", xlab="", main="Noise response") } lines(y, col=i) } # ---------------------------------------------------------------- # ---------------------------------------------------------------- yir <- readWave("wavfiles/impulseresponse1.wav")@left[iplot] ystep <- readWave("wavfiles/stepresponse1.wav")@left[iplot] # Can we get the step response from the impulse response? plot(ystep, type="n") lines(cumsum(yir), col="blue") lines(ystep, col="red") # Back to slides, return for estimation # ---------------------------------------------------------------- # ---------------------------------------------------------------- # Can we estimate the impulse response from the noise!? i <- 1000:2000 ynoise <- readWave("wavfiles/noiseresponse1.wav")@left y <- ynoise[i] plot(y) # Load the WAV file wav <- readWave("wavfiles/input_noise.wav") # Access the audio data x <- wav@left[i] # For mono or left channel # Use LS library(onlineforecast) p <- 100 D <- as.data.frame(y=y, lagdf(x, 0:p)) (frml <- paste0("y ~ 0+",paste0("k",0:p,collapse="+"))) fit <- lm(frml, D) summary(fit) # See the result for the LS par(mfrow=c(2,1)) plot(0:p, fit$coef, type="h", ylim=c(-1,1), xlab="lag", ylab="Impulse response Te to Ph", col="red", main="LS method") lines(yir*0.00005) # See the result and for the CCF ccf(y,x, xlim=c(0,p), lag.max=p, col="red", ylim=c(-0.5,0.5), main="CCF method (works because of white noise input, i.e. pre-whitening not needed)") lines(1:length(yir), yir*0.00002) # ----------------------------------------------------------------