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▶ NOT BOLD:
▶ Upper-case is random variable: Yt

▶ Lower-case is a value (e.g. observation of a random variable): yt , xt

▶ BOLD:
▶ Upper-case is a matrix: X ,Rt

▶ Lower-case is a vector (column): x ,h t

Hence, in bold there is no destinction of random variables vs. known values (e.g. observations).

Greek letters are usually used for parameters: not bold (single value) vs. bold (usually a vector,
exception ΣΣΣ is a matrix):

▶ NOT BOLD: θ is a random variable and σ is a known value

▶ BOLD: θ is a random vector, but it could be a matrix!
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General linear model (GLM)

On“per time point” form:

Yt = θ1x1,t + θ2x2,t + . . .+ θpxp,t + εt

where t = 1, . . . ,N and εt ∼ N (0, σ2) and i.i.d.

▶ Yt : is a random variable: Model output

▶ xi,t : is a“known”value: Model input

▶ θi : is a fixed value: Parameter (or coefficient)

▶ εt is a random variable: Error

The model has p inputs and p parameters.

Note, the parameters (θi) can be considered random variables e.g. when carying out tests: Take a
new sample then they will vary.
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General linear model (GLM)

On matrix form:

y = XTθ + ε

y =


Y1

Y2

...
YN

 X =


x1,1 x2,1 · · · xp,1
x1,2 x2,2 · · · xp,2
...

...
. . .

...
x1,N x2,N · · · xp,N

 θ =


θ1
θ2
...
θN

 ε =


ε1
ε2
...
εN



X is called the design matrix: One column per input.
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General linear model (GLM)

Ordinary least squares (OLS) parameter estimation:

St(θ) =

N∑
t=1

ε2t

θ̂t = argmin
θ

St(θ) = (X
TX )−1XTY

We simply multiply matrices (and some inversion): The estimates that minimize sum of squares are
always found (X must have full rank).

In addition we have for statistics:
σ̂2 = εTε/(N − p)

V [θ̂] = σ̂2(XTX )−1

For prediction we have the point value and the prediction interval:

Ŷt+l = E(Yt+l |x t+l) = xT
t+l θ̂

Ŷt+l ± tα/2
√
V ε̂t+l = Ŷt+l ± tα/2σ̂

√
1+ xT

t+l(X
TXx t+l)−1

where tα/2 is the α/2 quantile of the t-distribution with (N − p) degrees of freedom. 6 / 12
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LS-estimate at time t

GLM on matrix form at time t :
Y1

Y2

...
Yt

 =


x1,1 x2,1 · · · xp,1
x1,2 x2,2 · · · xp,2
...

...
. . .

...
x1,t x2,t · · · xp,t



θ1
θ2
...
θt

+

ε1
ε2
...
εt


set

xT
t =

[
x1,t x2,t . . . xp,t

]
then: 

Y1

Y2

...
Yt

 =


xT
1

xT
2
...

xT
t



θ1
θ2
...
θt

+

ε1
ε2
...
εt


y t = XT

t θ + εt
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From one to the next time step
LS-estimate based on t observations:

θ̂t = (X
T
t X t)

−1XT
t y t = R−1t h t

The trick is defining a matrix:

Rt = XT
t X t = x 1x

T
1 + x 2x

T
2 + . . .+ x tx

T
t =

t−1∑
s=1

x sx
T
s + x tx

T
t

= Rt−1 + x tx
T
t

and a vector:

h t = XT
t y t = x 1Y1 + x 2Y2 + . . .+ x tYt =

t−1∑
s=1

x sYs + x tYt

= h t−1 + x tYt

So in each time step we can update Rt and h t with the new data
and calculate estimates again.

Eliminating h t we can get the RLS algorithm:

Rt = Rt−1 + x tx
T
t

θ̂t = θ̂t−1 +R−1t x t(Yt − xT
t θ̂t−1)
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Weighted Least Squares (WLS)

We can actually put different weights on data points.

The model change from:

Equal variance:V [εt ] = σ
2 for all t = 1, . . . ,N

into:V [ε] = σ2ΣΣΣ where ΣΣΣ is known.

So, if we know some e.g. that the variance is higher for some parts of the data, we can take that
into account.

▶ The parameter estimates are then

θ̂WLS = (x
TΣΣΣ−1x )−1xTΣΣΣ−1Y

(if xTΣΣΣ−1x is invertible)

▶ An estimate of σ2 is

σ̂2 =
1

N − p
(Y − x θ̂)TΣΣΣ−1(Y − x θ̂)
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Time adaptive estimation

▶ Let’s use weights that decrease back in time:

ΣΣΣ =


λt 0 · · · 0

0 λt−1 · · · 0
...

...
. . .

...
0 0 · · · λ1


▶ λ = 1: What we did with the basic OLS

▶ 0 < λ < 1: We“forget” in an exponential manner
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Time adaptive estimation



The RLS with forgetting

We can achieve the same exponential forgetting with RLS by:

Rt = λ(t)Rt−1 + x tx
T
t

θ̂t = θ̂t−1 +R−1t x t(Yt − xT
t θ̂t−1)

It’s a super computational effective and fast scheme: We get new data Yt and x t , update the
parameters, down-weighting old data...without keeping all data in the computer memory.
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We do need a more techniques

We will need estimation using:

▶ Maximum likelihood estimation

We will ...
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