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Multivariate random variables — distribution functions

» Definition (n-dimensional random variable; random vector)
Xi
Xo
X =1
Xn

» Joint distribution function (cumulative disitribution function (cdf)):

» Notation: See the modelling reference slides.

Exception! In this math reference:

» Bold and capital means random vector (matrix in the other parts)

» Bold and small means observation vector (or fixed or “known" value) (vector in the other parts)
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Multivariate random variables - joint densities

> Joint distribution function (repeated from last slide):
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The Multivariate Normal Distribution

v

The joint density (probability density function (pdf))

() = o5 )T (@ - )

1
(2m)"/2VdetE
2 is the covariance matrix, it's symmetric and positive semi-definite
Notation: X ~ N(u, ¥)

Standard multivariate normal: Z ~ N(0, I')
If X =pu+ TZ, where L =TT, then X ~N(u, ¥)
If X ~N(u,X)and Y =a+ BX then Y ~N(a + Bu, BEBT)

More relations between distributions in Sec. 2.7

vVvvyVvVvYyypy
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Why this focus on normal distribution and its first and second moment?

Is any linear transformation of a multivariate-variate normal distribution also normal
distributed?

Yes, any linear transformation of a multivariate normal distribution is also normally distributed.

Specifically, if you have a multivariate normal random vector X with mean vector p and covariance
matrix X, and you apply a linear transformation Y = AX + b, where A is a matrix and b is a
vector, then Y will also follow a multivariate normal distribution.

The new (first moment) mean vector and (second moment) covariance matrix of ¥ will be:
> Mean: Ap+b
» Covariance: A AT

This property is quite useful in various applications, such as in statistics and machine learning.

Do you have a specific context or example in mind where you're applying this?

Yes, we are doing linear times series models, hence all the calculations are linear transformations (adding
and multiplying with matrices): Great, now we know that all keeps being normal! and we keep track of
everything with the mean and covariance :-)
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Stochastic variables and distributions

> If X ~ N(0,1), then —X ~ N(0,1)

Density for X Density for -X
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» X and —X are different variables that have the same distribution
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Marginal density function
» Sub-vector: (Xi, ..., X)) T, (k<n)
» Marginal density function:

Joint density marginal density
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Conditional distributions

» The conditional density of X; given X5 = 2

is defined as (fx, (z1) > 0): (joint density of (X1, X5) divided by the marginal

density of X, evaluated at )

o fX1,X2 (1:1: 152)
Ix1 | Xa=as (21) = T ha(m)
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Independence

> If knowledge of X does not give information about Y, we get that fy|x—,(y) = fy (y)

» This leads to the following definition of independence:

X, Y stochastically independent =i

fxv (@ y) = fx(@)fy(y)
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Expectation

» Let X be a univariate random variable with density fx (x). The expectation of X is then
defined as: -
E[X] = / z fx(z)dz  (continuous case)
E[X] = Z x P(X =1) (discrete case)
all ©

» Expectation is a linear operator

» Calculation rule:
Ela+ bX1 + c¢Xa] = a + b E[X1] + ¢ F[X3]
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Moments and Variance

» n’'th moment: -

E[X"] :/_ 2" fx () dz
» n'th central moment:
BIX - B = [ (o= B (o) o

» The 2'nd central moment is called the variance:
V[X] = E[(X — E[X])’] = E[X?] - (E[X])

A multi-variate normal distribution is fully characterized by the first and second moment.
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Covariance

> Covariance:
Cov[X1, Xo] = E[(X1 — E[Xi])(X2 — E[X2])] = E[X1 X2] — E[X1] E[X5]
» Variance and covariance:
V[X] = Cov[X, X]
> Calculation rules:

Covl[aX; + bXs, cX3 + dX4] =
ac Cov[ X1, X3] + ad Cov[ Xy, X4] + be Cov[ Xz, X3] + bd Cov[ Xz, X4]

» The calculation rule can be used for the variance as well. For instance:

Via+ bXo] = 2 V[Xs]
ViaXi + bXs] = > V[X1] + b2 V[Xa] + 2abCov[ Xy, X5]
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Moment representation

» All moments up to a given order.
» Second order moment representation:

> Mean
» Variance
» Covariance (If relevant)
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Expectation and Variance for Random Vectors

» Expectation: E[X] = [F[X1], E[X2], ..., E[X. )T
» Variance-covariance (matrix): £x = V[X]| = E[(X —p)(X —p)T] =

V[Xl] COV[Xl, Xz] e COV[Xl, Xn]
COV[XQ, Xl] V[Xg] R COV[XQ, Xn]
Cov[Xn Xi] Cov[Xn, Xa] -+ V[Xu]
» Correlation:
_ COV[XZ', XJ] B Uij

o= VIKIVIY] | 0w
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Correlation and Independence

» If X and Y are independent stochastic variables then Cov(X, V) = 0 and thus
Corr(X,Y) =0.
» However, if X € N(0,1), then

Cov(X,X?)=E[X - X?] - E[X] - E[X?] = E[X?]
:/x3fx(:c) dz =0

> Thus X and X2 are uncorrelated, but E[X?|X = z] = z2.

» Independence implies no correlation, not the other way around.
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Expectation and Variance for Random Vectors

P The correlation matrix R = p is an arrangement of p;; in a matrix

» Covariance matrix between X (dim. p) and Y (dim. ¢):

Txy = CIX.Y]=E[(X-p)(Y —v)"]
Cov[Xy, Y1] -+ Cov[Xy, Y]
Cov[Xp, Y] - Cov[Xp, Y,]

» Calculation rules — see the book.
> The special case of the variance C[X, X] = V[X] resultsin | V[AX] = AV[X]AT
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Conditional expectation

BLYIX = ol = [ ufvix—a(u)dy
E[Y|X] = E[Y]if X and Y are independent
E[Y] = E[E[Y|X]]

Elg(X)Y|X] = g(X)E[Y|X]
E[g(X)Y] = E[g(X)E[Y|X]]
Ela|X]=a

Elg(X)|X] = g(X)

E[cX + dZ|Y] = cE[X|Y] + dE[Z| Y]
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Variance separation

» Definition of conditional variance and covariance:
VIY|X] = E [(Y ~ B[Y|X])(Y - E[Y|X])T|X}
Cly. zZ|X] = E [(Y ~ B[Y|X])(Z - E[Z|X])T\X}

» The variance separation theorem:

VY] = E[V[Y|X]]+ VI[E[Y|X]]
ClY.Z] = E[C|Y,Z|X]]+ C[E[Y|X], E[Z|X]]

19/20



Linear transformations and projections

What is the difference between a linear transformation and a linear projection?

Great question! Both linear transformations and linear projections are concepts from linear algebra, but they have
distinct characteristics:

Linear Transformation

A linear transformation is a function between two vector spaces that preserves the operations of vector addition and
scalar multiplication. If T is a linear transformation from vector space V' to vector space W, then for any vectors
u, v € V and any scalar ¢, the following properties hold:

1. Additivity: T(u+v) = T(u) + T(v)
2. Homogeneity: T'(cu) = cT'(u)

Linear Projection

A linear projection is a specific type of linear transformation where the transformation maps a vector space onto a
subspace. If P is a projection, then applying P twice is the same as applying it once, i.e., P2 = P. This means that
once a vector is projected onto the subspace, applying the projection again does not change the vector.

Key Differences

1. General vs. Specific: All linear projections are linear transformations, but not all linear transformations are projections.

2. Idempotence: A linear projection is idempotent (P2 = P), whereas a general linear transformation does not necessarily have
this property.

3. Purpose: Linear transformations can map vectors between different spaces or dimensions, while linear projections specifically
map vectors onto a subspace.
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