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Multivariate random variables – distribution functions

▶ Definition (n-dimensional random variable; random vector)

X =


X1

X2

...
Xn


▶ Joint distribution function (cumulative disitribution function (cdf)):

F (x1, . . . , xn) = P{X1 ≤ x1, . . . ,Xn ≤ xn}

▶ Notation: See the modelling reference slides.

Exception! In this math reference:

▶ Bold and capital means random vector (matrix in the other parts)

▶ Bold and small means observation vector (or fixed or“known”value) (vector in the other parts)
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Multivariate random variables - joint densities

▶ Joint distribution function (repeated from last slide):

F (x1, . . . , xn) = P{X1 ≤ x1, . . . ,Xn ≤ xn}

▶ Joint density function - continuous case:

f (x1, . . . , xn) =
∂nF (x1, . . . , xn)

∂x1 . . . ∂xn

▶ and back to the joint distribution function:

F (x1, . . . , xn) =

∫ x1

−∞
. . .

∫ xn

−∞
f (t1, . . . , tn) dt1 . . . dtn

▶ Joint density function - discrete case:

f (x1, . . . , xn) = P{X1 = x1, . . . ,Xn = xn}
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The Multivariate Normal Distribution

▶ The joint density (probability density function (pdf))

fX (x ) =
1

(2π)n/2
√
detΣΣΣ

exp

[
−
1

2
(x − µ)TΣΣΣ−1(x − µ)

]
▶ ΣΣΣ is the covariance matrix, it’s symmetric and positive semi-definite

▶ Notation: X ∼ N(µ,ΣΣΣ)

▶ Standard multivariate normal: Z ∼ N(0, I )

▶ If X = µ+TZ , where ΣΣΣ = TTT , then X ∼ N(µ,ΣΣΣ)

▶ If X ∼ N(µ,ΣΣΣ) and Y = a +BX then Y ∼ N(a +Bµ,BΣΣΣBT )

▶ More relations between distributions in Sec. 2.7
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Why this focus on normal distribution and its first and second moment?

Is any linear transformation of a multivariate-variate normal distribution also normal
distributed?

Yes, any linear transformation of a multivariate normal distribution is also normally distributed.

Specifically, if you have a multivariate normal random vector X with mean vector µ and covariance
matrix ΣΣΣ, and you apply a linear transformation Y = AX + b, where A is a matrix and b is a
vector, then Y will also follow a multivariate normal distribution.

The new (first moment) mean vector and (second moment) covariance matrix of Y will be:

▶ Mean: Aµ+ b

▶ Covariance: AΣΣΣAT

This property is quite useful in various applications, such as in statistics and machine learning.
Do you have a specific context or example in mind where you’re applying this?

Yes, we are doing linear times series models, hence all the calculations are linear transformations (adding

and multiplying with matrices): Great, now we know that all keeps being normal! and we keep track of

everything with the mean and covariance :-)
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Stochastic variables and distributions

▶ If X ∼ N (0, 1), then −X ∼ N (0, 1)
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▶ X and −X are different variables that have the same distribution
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Marginal density function
▶ Sub-vector: (X1, . . . ,Xk )

T , (k < n)
▶ Marginal density function:

fS (x1, . . . , xk ) =

∫ ∞

−∞
. . .

∫ ∞
−∞

f (x1, . . . , xn) dxk+1 . . . dxn
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Conditional distributions
▶ The conditional density of X1 given X2 = x2

is defined as (fX1(x1) > 0):

fX1|X2=x2(x1) =
fX1,X2(x1, x2)

fX2(x2)

(joint density of (X1,X2) divided by the marginal
density of X2 evaluated at x2)
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Independence

▶ If knowledge of X does not give information about Y , we get that fY |X=x (y) = fY (y)

▶ This leads to the following definition of independence:

X , Y stochastically independent
def⇔

fX ,Y (x , y) = fX (x)fY (y)
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Expectation

▶ Let X be a univariate random variable with density fX (x). The expectation of X is then
defined as:

E [X ] =

∫ ∞

−∞
x fX (x)dx (continuous case)

E [X ] =
∑
all x

x P(X = x) (discrete case)

▶ Expectation is a linear operator

▶ Calculation rule:
E [a + bX1 + cX2] = a + b E [X1] + c E [X2]
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Moments and Variance

▶ n’th moment:

E [X n ] =

∫ ∞

−∞
xn fX (x) dx

▶ n’th central moment:

E [(X − E [X ])n ] =

∫ ∞

−∞
(x − E [X ])n fX (x) dx

▶ The 2’nd central moment is called the variance:

V [X ] = E [(X − E [X ])2] = E [X 2]− (E [X ])2

A multi-variate normal distribution is fully characterized by the first and second moment.
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Covariance

▶ Covariance:

Cov[X1,X2] = E [(X1 − E [X1])(X2 − E [X2])] = E [X1X2]− E [X1]E [X2]

▶ Variance and covariance:

V [X ] = Cov[X ,X ]

▶ Calculation rules:

Cov[aX1 + bX2, cX3 + dX4] =

ac Cov[X1,X3] + ad Cov[X1,X4] + bc Cov[X2,X3] + bd Cov[X2,X4]

▶ The calculation rule can be used for the variance as well. For instance:

V [a + bX2] = b2V [X2]

V [aX1 + bX2] = a2V [X1] + b2V [X2] + 2abCov[X1,X2]
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Moment representation

▶ All moments up to a given order.

▶ Second order moment representation:
▶ Mean
▶ Variance
▶ Covariance (If relevant)
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Expectation and Variance for Random Vectors

▶ Expectation: E [X ] = [E [X1],E [X2], . . . ,E [Xn ]]
T

▶ Variance-covariance (matrix): ΣΣΣX = V [X ] = E [(X − µ)(X − µ)T ] =
V [X1] Cov[X1,X2] · · · Cov[X1,Xn ]

Cov[X2,X1] V [X2] · · · Cov[X2,Xn ]
...

...
Cov[Xn ,X1] Cov[Xn ,X2] · · · V [Xn ]


▶ Correlation:

ρij =
Cov[Xi ,Xj ]√
V [Xi ]V [Xj ]

=
σij
σiσj
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Correlation and Independence

▶ If X and Y are independent stochastic variables then Cov(X ,Y ) = 0 and thus
Corr(X ,Y ) = 0.

▶ However, if X ∈ N (0, 1), then

Cov(X ,X 2) =E [X ·X 2]− E [X ] · E [X 2] = E [X 3]

=

∫
x3fX (x) dx = 0

▶ Thus X and X 2 are uncorrelated, but E [X 2|X = x ] = x2.

▶ Independence implies no correlation, not the other way around.
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Expectation and Variance for Random Vectors

▶ The correlation matrix R = ρ is an arrangement of ρij in a matrix

▶ Covariance matrix between X (dim. p) and Y (dim. q):

ΣΣΣXY = C [X ,Y ] = E
[
(X − µ)(Y − ν)T

]
=

Cov[X1,Y1] · · · Cov[X1,Yq ]
...

...
Cov[Xp ,Y1] · · · Cov[Xp ,Yq ]


▶ Calculation rules – see the book.

▶ The special case of the variance C [X ,X ] = V [X ] results in V [AX ] = AV [X ]AT
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Conditional expectation

E [Y |X = x ] =

∫ ∞
−∞

y fY |X=x (y) dy

E [Y |X ] = E [Y ] if X and Y are independent

E [Y ] = E [E [Y |X ]]
E [g(X )Y |X ] = g(X )E [Y |X ]
E [g(X )Y ] = E [g(X )E [Y |X ]]
E [a|X ] = a

E [g(X )|X ] = g(X )

E [cX + dZ |Y ] = cE [X |Y ] + dE [Z |Y ]
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Variance separation

▶ Definition of conditional variance and covariance:

V [Y |X ] = E
[(
Y − E [Y |X ]

)(
Y − E [Y |X ]

)T |X ]
C [Y ,Z |X ] = E

[(
Y − E [Y |X ]

)(
Z − E [Z |X ]

)T |X ]
▶ The variance separation theorem:

V [Y ] = E [V [Y |X ]] +V [E [Y |X ]]
C [Y ,Z ] = E [C [Y ,Z |X ]] + C [E [Y |X ],E [Z |X ]]
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Linear transformations and projections
What is the difference between a linear transformation and a linear projection?

Great question! Both linear transformations and linear projections are concepts from linear algebra, but they have
distinct characteristics:

Linear Transformation

A linear transformation is a function between two vector spaces that preserves the operations of vector addition and
scalar multiplication. If T is a linear transformation from vector space V to vector space W , then for any vectors
u, v ∈ V and any scalar c, the following properties hold:

1. Additivity: T(u+ v) = T(u) + T(v)

2. Homogeneity: T(cu) = cT(u)

Linear Projection

A linear projection is a specific type of linear transformation where the transformation maps a vector space onto a
subspace. If P is a projection, then applying P twice is the same as applying it once, i.e., P2 = P . This means that
once a vector is projected onto the subspace, applying the projection again does not change the vector.

Key Differences

1. General vs. Specific: All linear projections are linear transformations, but not all linear transformations are projections.

2. Idempotence: A linear projection is idempotent (P2 = P), whereas a general linear transformation does not necessarily have
this property.

3. Purpose: Linear transformations can map vectors between different spaces or dimensions, while linear projections specifically
map vectors onto a subspace.
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