
Time Series Analysis 02417

Spring 2025

Assignment 1

Thursday 13th February, 2025 22:46

Instructions:
The assignment is to be handed in via DTU Learn ”FeedbackFruits” latest at Monday 3rd at 23:59.
You are allowed to hand in in groups of up to max 4 persons. You must hand in a single pdf file
presenting the results using text, math, tables and plots (do not include code in the main report -
your code must be uploaded as a separate file, it’s not being evaluated directly). Arrange the report
in sections and subsections according to the questions in this document. Please indicate your student
numbers on the report.

1 Plot data

In this assignment we will be working with data from Statistics Denmark, describing the number of
motor driven vehicles in Denmark. The data is provided to you, but if you are interested you can find
it via www.statistikbanken.dk (search for the table: ”BIL54”). Together with this document is a
file with data DST BIL54.csv, it holds timeseries of monthly data starting from 2018-Jan.

You can decide how to read the data – a script is available in the file read data.R, where the data is
read and divided into a training and a test set: The training set is from the beginning to 2023-Dec,
the test set is the last 12 months (2024-Jan to 2024-Dec). To begin with we will ONLY work
with the training set.

The variable of interest is total, which is the number vehicles in registrered in Denmark at a given
time (in Danish ”Drivmidler i alt”). We will ignore the other variables in the dataset.

Do the following:

1.1. Make a time variable, x, such that 2018-Jan has x0 = 2018, 2018-Feb has x1 = 2018 + 1/12,
2018-Mar has x2 = 2018 + 2/12 etc. and plot the training data versus x.

1.2. Describe the time series in your own words.

2 Linear trend model

We will now make a linear trend model, which is a general linear model (GLM) of the form:

Yt = θ1 + θ2 · xt + ϵt (1)

where ϵt ∼ N(0, σ2) is assumed i.i.d. The time is t = 1, . . . , N .

2.1. Write up the model on matrix form for the first 3 time points: First on matrix form (as vectors
and matrices), then insert the elements in the matrices and vectors and finally, insert the actual
values of the output vector y and the design matrixX (keep max 3 digits). All group participants
do it – include picture for each in the report.
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2.2. Present the values of the parameter estimates θ̂1 and θ̂2 and their estimated standard errors σ̂θ̂1
and σ̂θ̂2

. Plot the estimated mean as a line with the observations as points.

2.3. Make a forecast for the next 12 months - i.e., compute predicted values with corresponding
prediction intervals. Present these values in a table.

2.4. Plot the fitted model together with the training data and the forecasted values (also plot the
prediction intervals of the forecasted values).

2.5. Comment on your forecast – is it good?

2.6. Investigate the residuals of the model. Are the model assumptions fulfilled?

3 WLS - local linear trend model

We will now use WLS to fit the linear trend model in Eq. (1) as a local trend model, i.e., the obser-
vation at the latest timepoint (N) has weight λ0 = 1, the observation at the second latest timepoint
(N − 1) has weight λ1, the third latest observation (N − 2) has weight λ2 etc.

We start by setting λ = 0.9.

3.1. Describe the variance-covariance matrix (the N × N matrix Σ (i.e. 72 × 72 matrix, so present
only relevant parts of it)) for the local model and compare it to the variance-covariance matrix
of the corresponding global model.

3.2. Plot the ”λ-weights” vs. time in order to visualise how the training data is weighted. Which
time-point has the highest weight?

3.3. Also calculate the sum of all the λ-weights. What would be the corresponding sum of weights in
an OLS model?

3.4. Estimate and present θ̂1 and θ̂2 corresponding to the WLS model with λ = 0.9.

3.5. Make a forecast for the next 12 months - i.e., compute predicted values corresponding to the
WLS model with λ = 0.9.

Plot the observations for the training set and the OLS and WLS the predictions for the test set
(you are welcome to calculate the std. error also for the WLSand add prediction intervals to the
plots).

Comment on the plot, which predictions would you choose?

3.6. Optional: Repeat (estimate parameters and make forecast for the next 12 months) for λ =
0.99, λ = 0.8, λ = 0.7 and λ = 0.6. How does the λ affect the predictions?
Comment on the forecasts - do the slopes of each model correspond to what you would (roughly)
expect for the different λ’s?

4 Recursive estimation and optimization of λ

Now we will fit the local trend model using Recursive Least Squares (RLS). The smart thing about
recusive estimation is that we can update the parameter estimates with a minimum of calculations,
hence it’s very fast and we don’t have to have keep the old data.

4.1. Write on paper the update equations of Rt and θ̂t.

For Rt insert values and calculate the first 2 iterations, i.e. until you have the value of R2.
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Initialize with

R0 =

[
0.1 0
0 0.1

]
and

θ0 =

[
0
0

]
Everyone in the group must do this on paper and put a picture with the result for each in the
report.

4.2. Implement the update equations in a for-loop in a computer. Calculate the θ̂t up to time t = 3.
Present the values and comment: Do you think it is intuitive to understand the details in the
matrix calculations? If yes, give a short explanaition.

4.3. Calculate the estimates of θ̂N and compare them to the OLS estimates of θ, are they close? Can
you find a way to decrease the difference by modifying some initial values and explain why initial
values are important to get right?

4.4. Now implement RLS with forgetting (you just have to multiply with λ at one position in the Rt

update).

Calculate the parameter estimates: θ̂1,t and θ̂2,t, for t = 1, . . . , N first with λ = 0.7 and then
with λ = 0.99. Provide a plot for each parameter. In each plot include the estimates with both
λ values (a line for each). Comment on the plots.

You might want to remove the first few time points, they are what is called a “burn-in” period
for a recursive estimation).

Tip: It can be advantageous to put the loop in a function, such that you don’t repeat the code
too much! (it’s generally always a good idea to use functions, as soon as you need to run the
same code more than once).

You might want to compare the estimates for t = N with the WLS estimates for the same λ
values. Are they equal?

4.5. Make one-step predictions

ŷt+1|t = xt+1|tθ̂t

The notation t + 1|t means the variable one-step ahead, i.e. at time t + 1, given information
available at time t. So this notation is used to denote predictions. For xt+1|t we do have the
values ahead in time for a trend model – in most other situations we must use forecasts of the
model inputs.

Now calculate the one-step ahead residuals

ε̂t|t−1 = ŷt|t−1 − yt−1

note the shift “t+ 1|t” to “t|t− 1”: both means one-step ahead.

Plot them for t = 5, . . . , N first with λ = 0.7 and then λ = 0.99 (note, we remove a burn-in period
(t = 1, . . . , 4), might not be necessary, but usually a good idea when doing recursive estimation
– depends on the initialization values).

Comment on the residuals, e.g. how do they vary over time?
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4.6. Optimize the forgetting for the horizons k = 1, . . . , 12. First calculate the k-step residuals

ε̂t+k|t = ŷt+k|t − yt+k

then calculate the k-step Root Mean Square Error (RMSEk)

RMSEk =

√√√√ 1

N − k

N∑
t=k

ε̂2t|t−k

Do this for a sequence of λ values (e.g. 0.5,0.51,. . . ,0.99) and make a plot.

Comment on: Is there a pattern and how would you choose an optimal value of λ? Would you
let λ depend on the horizon?

4.7. Make predictions of the test set using RLS. You can use a single λ value for all horizons, or
choose some way to have different values, and run the RLS, for each horizon.

Make a plot and compare to the predictions from the other models (OLS and WLS).

You can play around a bit, for example make a plot of the 1 to 12 steps forecasts at each time
step to see how they behave.

4.8. Reflexions on time adaptive models - are there pitfalls!?

• Consider overfitting vs. underfitting.

• Are there challenges in creating test sets when data depends on time (in contrast to data
not dependend on time)?

• Can recursive estimation and prediction aliviate challenges with test sets for time dependent
data?

• Can you come up with other techniques for time adaptive estimation?

• Additional thoughts and comments?
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