Streaming 2: Distinct element count

Philip Bille Inge Li Gørtz Eva Rotenberg

Distinct element count

$$
\begin{aligned}
& z \leftarrow 0, \\
& \text { for } \frac{a_{i} \text { in stream do }}{z=} \\
& \quad \max \left\{z, 0 s\left(h\left(a_{i}\right)\right)\right\} \\
& \text { end } \\
& \text { return } \underline{2^{z+0.5}}
\end{aligned}
$$

Imagine you want to count element types (e.g. colours, see figure).
Challenge: A random dice roll that depends on the input.
Solution: Hashing.
Take a strongly universal (2-independent) hash function h.
Use $z=$ the number of trailing 0 s in the hash values $h(x)$ seen so far.
Estimate: count $\simeq 2^{z+\frac{1}{2}}$. (we denote this \hat{d}, estimator of d)

A Lower Bound

Assume we have an algorithm taking up s bits space and deterministically, exactly able to report the number of distinct elements.
Then, given any binary sequence x of length n, we can do the following:
Let the algorithm stream through a sequence consisting of $i: x_{i}=1$.
Example: $x=1001101$ Stream: 1,4,5,7.
Then, the state of the algorithm must be some configuration reflecting this information.
Now, regardless of what x was, we can recover x by streaming the following sequence: $1,2,3,4, \ldots$, each time noticing whether the number of distinct elements goes up.
Thus, the state of the algorithm must have been able to distinguish between all different strings of length $n . \Rightarrow s=n$.
Exercise: convince yourself or your neighbour about this. (2mins)

The Median Trick

Lemma: \hat{d} deviates from d by a factor 3 with prob. $\leq 2 \frac{\sqrt{2}}{3}$.
Not very impressive. Still interesting!
What if we run k independent copies of the algorithm and return the median, m ?
$m>3 d$ means $k / 2$ of the copies exceed $3 d$.
Expected: only $k \frac{\sqrt{2}}{3}$ exceed $3 d$.
Since they are independent, we can use Chernoff. \Rightarrow prob. $2^{-\Omega(k)}$.

Distinct element count: Analysis.

How well does $\hat{d}=2^{z+\frac{1}{2}}$ estimate d ?
$X_{r, j}$: indicator variable for $\geq r$ zeros in the hash value $h(j)$.
$\mathbb{E}\left[X_{r, j}\right]=P[r$ coinflips turn head $]=\left(\frac{1}{2}\right)^{r}$.
$Y_{r}=\sum_{j \in \text { stream }} X_{r, j}$: number of seen elements with $\geq r 0$ s.
$\mathbb{E}\left[Y_{r}\right]=d \cdot \mathbb{E}\left[X_{r, *}\right]=\frac{d}{2^{r}}$
$\operatorname{Var}\left[Y_{r}\right]=\sum_{j} \operatorname{Var}\left[X_{r, j}\right] \leq \sum_{j} \mathbb{E}\left[X_{r, j}^{2}\right]=\sum_{j} \mathbb{E}\left[X_{r, j}\right]=\frac{d}{2^{r}}$ ($j \in$ stream $)$
$P\left[Y_{r}>0\right]=P\left[Y_{r} \geq 1\right] \stackrel{\text { Marko }}{\leq} \frac{\mathbb{E}\left[Y_{r}\right]}{1}=\frac{d}{2^{r}}$
$P\left[Y_{r}=0\right] \leq P\left[\left|Y_{r}-\mathbb{E}\left[Y_{r}\right]\right| \geq \frac{d}{2^{r}}\right] \stackrel{\text { Cheivsh. }}{\leq} \frac{\mathbb{E}\left[Y_{r}\right]}{\left(d / 2^{r}\right)^{2}} \leq \frac{1}{\left(d / 2^{r}\right)}$
Now, the probability of \hat{d} being within a factor 3 of d.
$P[\hat{d} \geq 3 d]=P[z \geq a]$ for some a with $2^{a+1 / 2} \geq 3 d$.
$=P\left[Y_{a}>0\right] \leq \frac{d}{2^{a}}=\frac{3 \cdot d \cdot \sqrt{2}}{3 \cdot 2^{a} \cdot \sqrt{2}}=\frac{\sqrt{2}}{3} \cdot \frac{3 d}{2^{a+\frac{1}{2}}} \leq \frac{\sqrt{2}}{3}$.
Similarly, $P[\hat{d} \leq d / 3] \leq \frac{\sqrt{2}}{3}$.

