Weekplan: Streaming II.

Philip Bille Inge Li Gørtz Eva Rotenberg

References and Reading

[1] Amit Chakrabarti: Data Stream Algorithms 2011 (revised 2015) chapter 2.
[2] Kurt Mehlhorn and He Sun: Streaming Algorithms 2014.
[3] Jelani Nelson: Algorithms for Big Data, lecture 32015 section 2.1.
[4] Chakraborty, Vinodchandran, and Meel: Distinct Elements in Streams: An Algorithm for the (Text) Book 2022.
[5] P. Flajolet: Approximate Counting: A Detailed Analysis.
[6] J. S. Vitter: Random Sampling with a Reservoir.
We recommend reading the specified chapters and sections of [1] and [3] in detail. The notes in [2] cover the same material as [1] but in other words.

Exercises

The following exercises relate to chapter 2 in [1].

1 Sanity check Hash functions sometimes have collisions. Here, we choose our family of hash functions carefully to avoid collisions. Would collisions lead to overestimating or underestimating the number of distinct elements?

2 If h is a 2-independent hash function from [n] to [n^{3}. Show that h is injective with probability at least $1-\frac{1}{n}$.
3 Solve exercises 2-1 and 2-2 from the book.

4 We have seen an algorithm to estimate the number of distinct elements in a stream. Equivalently it estimates the number of non-zero frequencies. Adapt the idea to estimate the number of frequencies that are odd

5 Analyse performance of the algorithm. The purpose of this exercise is to walk you through the proof in Section 2.3 of [1].
5.1 Describe the indicator variables $X_{r, j}$ and Y_{r} in your own words.
5.2 Calculate the expected value of $X_{r, j}$ and of Y_{r}. (How) Does the expected value of $X_{r, j}$ depend on j ? (You can assume $h\left(j_{1}\right)$ and $h\left(j_{2}\right)$ are independent for any j_{1}, j_{2}.)
5.3 Bound the variance of Y_{r}.
5.4 Bound the probability of Y_{r} being >0.
5.5 Bound the probability of Y_{r} being $=0$.
5.6 Now, if $\hat{d} \geq 3 d$, then our variable z must equal some value a with $2^{a+1 / 2} \geq 3 d$. Thus, we can rewrite $P[\hat{d} \geq 3 d]$ to the form $P\left[Y_{a}>0\right]$ for such an a. Use this to bound $P[\hat{d} \geq 3 d]$.

6 Similarly, \ldots In the exercise above we went through the proof of $P[\hat{d} \geq 3 d] \leq \frac{\sqrt{2}}{3}$. Prove $P[\hat{d} \leq d / 3] \leq \frac{\sqrt{2}}{3}$.

