Massively Parallel 2

Eva Rotenberg

Borůvka's algorithm.

- Let T be a minimum spanning tree in some graph G.
- A T-fragment is a connected subgraph of T.
- Idea: build T by iteratively concatenating fragments.
- Beginning: Each point is a fragment.
- Step: For each fragment X, let $e=(x, y)$ be the cheapest edge between X and $G \backslash X$. Use e, combine X with $Y(y \in Y)$.
- Analysis:
- Correct? The cheapest edge of a cut belongs to an MST.
- How many steps? After i iterations, each fragment $\geq 2^{i}$ vertices.

Question: Can we use this idea to compute spanning trees in Congest? Can we use this idea to compute spanning trees in parallel?

Massively parallel minimum spanning tree computation

- Graph G has N vertices and M edges,
- $S=\sqrt{N}$ (small), $P=\tilde{O}(M / S)$ (many).

Challenges with implementing Borůvka?

- Representing the state
- Implement one "step" in constant many rounds

Representing the state: Represent each fragment by, say, lowest ID node in fragment.
Machine storing edge $u v$ should be able to find fragment of u and of v. Note: many machines.

Two hints for parallel Borůvka

- Challenge: In one step, newly joining edges and their components may form a long chain.
$X \rightarrow Y \rightarrow Z \rightarrow \ldots$
To avoid this, use randomisation:
- Every fragment chooses a random colour (yellow, green)
- A smallest edge is only 'valid' if it goes from yellow to green.
- In each round, add only 'valid' edges.
- Probability $1 / 4$ an edge is valid; slows down by a constant factor.
- Now, the green fragment coordinates the merge with (possibly many) yellow fragments.
- Challenge: A fragment does not fit into one machine, and the number of edges it receives even less so.
- Build aggregation trees: $\sqrt[4]{N}$-ary rooted trees;
- Edges arrive at the leaves and are filtered towards the root.
- Filtering: Only the smallest edge is relevant.

Graph sketching (sketching cuts, connectivity)

- $S=\tilde{O}(N), P_{0}$ coordinates.
- Warm-up: an edge from a cut.
- Assume you have a graph G and a subset A of the vertices of G.
- Every vertex knows whether it itself is in A, and knows the names of its edges $v u$.
- Find an edge crossing the cut from A to not- A ?
- What if the cut is one edge? Every vertex of A sends xor of their edges to P_{0}. Then P_{0} xors those and gets name of edge.
- What if there are between $k / 2$ and k edges crossing the cut?Use predefined hashing function to sample with probability $1 / k$.
- Note: should be coordinated! Vertices u and v either both sample or not-sample $u v$
- Expect $1 / 2$ to 1 edge across the cut to be sampled. With constant probability, we have sampled exactly one edge across the cut.
Challenge: Did we succeed?

Graph sketching

Idea: if we know how many edges cross a cut, we can use coordinated sampling to find such an edge with constant probability.
Challenge: did we succeed?
Idea: Name of edge $u v$ is $u, v, R_{u v}$,
where $R_{u v}$ is a random string of $\Theta(\log n)$ bits (say, $\left.80 \log n\right)$, each bit is 1 with probability $1 / 8$.
Then the number of 1-bits is highly concentrated around its expected value, (less than $14 \ln n$ w.h.p)
and because the 1 s are so sparse, it is very likely that if we xor two $R_{e} \neq R_{e^{\prime}}$ the result has many more 1s. (more than $14 \ln n$ w.h.p) if we xor even more we get even closer to half of the bits being 1 . Details: exercise.

Sketching Connectivity

Setup: $S=\tilde{O}(N)$ and P_{0} coordinates. Wish to find spanning tree. We can detect cut of size ca. k (e.g. $k / 2$ to k) with constant probability. Repeat $\log n$ times to get high probability.
Repeat for $\log n$ guesses for $k: 1,2,4,8,16,32$, etc.

- Borůvka? ($\log n$ rounds.)

Use cut-sketching to find an edge crossing from fragment to rest-of-graph.
Every vertex samples $\log n \cdot \log n \cdot \log n$ edges. (That is, $\log ^{4} n$ bits) Send those to P_{0}, then P_{0} can simulate entire Borůvka and get a spannning tree.

