Streaming: Sketching Inge Li Gørtz Sketching

Today

- Sketching
- · CountMin sketch

Sketching

- Sketching. create compact sketch/summary of data.
- Example. Durand and Flajolet 2003.
 - · Condensed the whole Shakespeares' work

- Estimated number of distinct words: 30897 (correct answer is 28239, ie. relative error of 9.4%).
- · Composable.
 - Data streams S_1 and S_2 with sketches $sk(S_1)$ and $sk(S_2)$
 - ullet There exists an efficiently computable function f such that

$$sk(S_1 \cup S_2) = f(sk(S_1), sk(S_2))$$

CountMin Sketch

CountMin Sketch

- Fixed array of counters of width w and depth d. Counters all initialized to be zero.
- Pariwise independent hash function for each row $h_i:[n] \to [w]$.
- When item x arrives increment counter $h_i(x)$ of in all rows.

Frequency Estimation

• Frequency estimation. Construct a sketch such that can estimate the frequency f_i of any element $i \in [n]$.

CountMin Sketch

- Fixed array of counters of width w and depth d. Counters all initialized to be zero.
- Pariwise independent hash function for each row $h_i:[n] \to [w]$.
- When item x arrives increment counter $h_i(x)$ of in all rows.

CountMin Sketch

- Fixed array of counters of width w and depth d. Counters all initialized to be zero.
- Pariwise independent hash function for each row $h_i: [n] \to [w]$.
- When item x arrives increment counter $h_i(x)$ of in all rows.
- Estimate frequency of y: return minimum of all entries y hash to.

CountMin Sketch: Analysis

- Use $w = 2/\varepsilon$ and $d = \lg(1/\delta)$.
- The estimator \hat{f}_i has the following property:
 - $\hat{f}_i \ge f_i$
 - $\hat{f}_i \le f_i + \varepsilon m$ with probability at least 1δ
- Space. $O(dw) = O(2\lg(1/\delta)/\varepsilon) = O(\lg(1/\delta)/\varepsilon)$ words.
- Query and processing time. $O(d) = O(\lg(1/\delta))$

CountMin Sketch

- The estimator \hat{f}_i has the following property:
 - $\hat{f}_i \geq f_i$
 - $\hat{f}_i \le f_i + 2m/w$ with probability at least $1 (1/2)^d$

Applications of CountMin Sketch

- · We can use the CountMin Sketch to solve e.g.:
 - Heavy hitters: List all heavy hitters (elements with frequency at least m/k).
 - Range(a,b): Return (an estimate of) the number of elements in the stream with value between a and b.

- · Exercise.
 - · How can we solve heavy hitters with a single CountMin sketch?
 - · What is the space and query time?

Dyadic Intervals

• Dyadic intervals. Set of intervals:

$$\{[j\frac{n}{2^i}+1,\dots,(j+1)\frac{n}{2^i}]\mid 0\leq i\leq \lg n,\, 0\leq j\leq 2^{i-1}\}$$

Heavy Hitters

 Heavy Hitters. Store a CountMin Sketch for each level in the tree of dyadic intervals (same d and w for all sketches).

Heavy Hitters

- Heavy Hitters. Store a CountMin Sketch for each level in the tree of dyadic intervals (same d and w for all sketches).
 - On a level: Treat all elements in same bucket/interval as the same element.

Heavy Hitters

- Heavy Hitters. Store a CountMin Sketch for each level in the tree of dyadic intervals (same d and w for all sketches).
 - On a level: Treat all elements in same bucket/interval as the same element.

Heavy Hitters. Store a CountMin Sketch for each level in the tree of dyadic intervals (same d and w for all sketches). • On a level: Treat all elements in same bucket/interval as the same element. $f_{3,1}$ $f_{2,2}$ $f_{2,3}$ $f_{2,4}$ $f_{3,2}$ $f_{3,$

Heavy Hitters. • Heavy Hitters. • traverse tree from root. • only visit children with estimated frequency \geq m/k $f_{3,1}$ $f_{2,2}$ $f_{2,3}$ $f_{2,4}$ $f_{3,2}$ g_{-16} $f_{3,2}$ g_{-16} $f_{1,1}$ $f_{1,2}$ g_{-16} $f_{1,2}$ g_{-16} g_{-16}

Heavy Hitters

- · Heavy Hitters.
 - traverse tree from root.
 - only visit children with estimated frequency ≥ m/k

Heavy Hitters

- · Heavy Hitters.
 - Store a CountMin sketch for each level in the tree of dyadic intervals (same d and w for all sketches).
 - On a level: Treat all elements in same bucket/interval as the same element.
 - · To find heavy hitters:
 - · traverse tree from root.
 - only visit children with estimated frequency $\geq m/k$
- · Analysis.
 - Time. Assume CountMin sketch makes no large errors.
 - Number of intervals queried: $O(k \lg n)$.
 - Query time: $O(k \lg n \cdot \lg(1/\delta))$
 - · Space.

$$O\left(\lg n \cdot \frac{1}{\epsilon} \lg \left(\frac{1}{\delta}\right)\right)$$
 words.

Heavy Hitters

- Heavy Hitters. Store a CountMin Sketch for each level in the tree of dyadic intervals (same d and w for all sketches).
 - On a level: Treat all elements in same interval as the same element.
- · To find heavy hitters:
 - · traverse tree from root.
 - only visit children with frequency ≥ m/k.
- · Analysis.
 - · Time.
 - Number of intervals queried: $O(k \lg n)$.
 - Query time: $O(k \lg n \cdot \lg(1/\delta))$
 - Space.

$$O\left(\lg n \cdot \frac{1}{\epsilon} \lg \left(\frac{1}{\delta}\right)\right)$$
 words.

Count Sketch

```
Algorithm 2: CountSketch

Initialize d independent hash functions h_j:[n] \to [w].

Initialize d independent hash functions s_j:[n] \to \{\pm 1\}.

Set counter C[j,b] = 0 for all j \in [d] and b \in [w].

while Stream S not empty do

if Insert(x) then

|for j = 1 \dots d \text{ do}|
|C[j,h_j(x)] = + s_j(i)|
|end|
else if Frequency(i) then
|\hat{f}_{ij} = C(h_j(i)) \cdot s_j(i)|
|end|
|end|
end
end
```

	Space	Error
Count-Min	$O\left(\frac{1}{\epsilon}\log n\right)$	ϵF_1 (one-sided)
Count-Sketch	$O\left(\frac{1}{\epsilon^2}\log n\right)$	$\epsilon\sqrt{F_2}$ (two-sided)