Streaming: Sketching

Inge Li Gortz

Today

+ Sketching
+ CountMin sketch

Sketching

Sketching

» Sketching. create compact sketch/summary of data.

+ Example. Durand and Flajolet 2003.

+ Condensed the whole Shakespeares’ work

ghfffghfghgghggggghghheehfhfhhgghghghhfgffffhhhiigfhhffgfiihfhhh
igigighfgihfffghigihghigfhhgeegeghgghhhgghhfhidiigihighihehhhfgg
hfgighigffghdieghhhggghhfghhfiiheffghghihifgggffihgihfggighgiiif
fjgfgjhhjiifhjgehgghfhhfhjhiggghghihigghhihihgiighgfhlgjfgjjjmfl

+ Estimated number of distinct words: 30897 (correct answer is 28239, ie. relative
error of 9.4%).
« Composable.
- Data streams S| and S, with sketches sk(S;) and sk(S,)
- There exists an efficiently computable function f such that

sk(S, U S,) = f(sk(S,), sk(S,))




Frequency Estimation

« Frequency estimation. Construct a sketch such that can estimate the frequency f; of
any element i € [n].

CountMin Sketch

CountMin Sketch CountMin Sketch

« Fixed array of counters of width w and depth d. Counters all initialized to be zero. + Fixed array of counters of width w and depth d. Counters all initialized to be zero.
- Pariwise independent hash function for each row h; : [n] — [w]. - Pariwise independent hash function for each row ; : [n] = [w].
+ When item x arrives increment counter /,(x) of in all rows. + When item x arrives increment counter /,(x) of in all rows.

h1 (X) hz(X)

h1 h1

ha d h2 d
hs hs

ha ha hs(x)




CountMin Sketch

« Fixed array of counters of width w and depth d. Counters all initialized to be zero.

- Pariwise independent hash function for each row /; : [n] — [w].
+ When item x arrives increment counter /,(x) of in all rows.

« Estimate frequency of y: return minimum of all entries y hash to.

hi(y) ha(y)
hi
h2 d
hs
m% E “hy(y)
ha(y) W

CountMin Sketch

Algorithm 1: CountMin
Initialize d independent hash functions h; : [n] — [w].
Set counter C;(b) = 0 for all j € [d] and b € [w].
while Stream S not empty do
if Insert(z) then
for j=1...ndo
| C5(hi(w)) = +1
end
else if Frequency(i) then
‘ return f; = minjegy C;(h;(3)).

end
end
hi(y) ha(y)
+ The estimator j‘, has the following h
property: h

A 2

. > f d
fizh e

« fi £ f: + 2m/w with probability at ha . * ha(y)
least 1 — (1/2)¢

ha(y) W

CountMin Sketch: Analysis

« Use w=2/¢ and d =1g(1/6).
- The estimatorfi has the following property:
< fizf;

« f: < f; + em with probability at least | — &
« Space. O(dw) = O(21g(1/6)/e) = O(lg(1/6)/¢) words.
+ Query and processing time. O(d) = O(1g(1/6))

hi(y) ha(y)

h1

h2

Svim
ha .

haly) w

*~ha(y)

Applications of CountMin Sketch

» We can use the CountMin Sketch to solve e.g.:
+ Heavy hitters: List all heavy hitters (elements with frequency at least m/k).

* Range(a,b): Return (an estimate of) the number of elements in the stream with
value between a and b.

« Exercise.
* How can we solve heavy hitters with a single CountMin sketch?

+ What is the space and query time?




Dyadic Intervals

+ Dyadic intervals. Set of intervals:

{[J%Jr Loy G+ 1)%] |0<i<lgn0<)<2

Heavy Hitters

» Heavy Hitters. Store a CountMin Sketch for each level in the tree of dyadic intervals
(same d and w for all sketches).

» On alevel: Treat all elements in same bucket/interval as the same element.

Treat
elements
1,2,3,4 as the

same
element.

Heavy Hitters

+ Heavy Hitters. Store a CountMin Sketch for each level in the tree of dyadic intervals
(same d and w for all sketches).

+ On a level: Treat all elements in same bucket/interval as the same element.

Actual #elements
that landed in
bucket 1 at level 2

CountMin sketch with
universe [2]. Gives
estimated values of

. VERTARS

.f 2,1

CountMin sketch with
universe [4]. Gives
estimated values of

fz,l’fZ,Z’ f2,3’f2,4'

CountMin sketch with
universe [8]. Gives
estimated values of

fl,l’ “"fl.S

fO.l’ "*’f0.16

Heavy Hitters

» Heavy Hitters. Store a CountMin Sketch for each level in the tree of dyadic intervals
(same d and w for all sketches).

» On alevel: Treat all elements in same bucket/interval as the same element.




Heavy Hitters

« Heavy Hitters. Store a CountMin Sketch for each level in the tree of dyadic intervals
(same d and w for all sketches).

+ On a level: Treat all elements in same bucket/interval as the same element.

Heavy Hitters

» Heavy Hitters. Store a CountMin Sketch for each level in the tree of dyadic intervals
(same d and w for all sketches).

» On alevel: Treat all elements in same bucket/interval as the same element.

Heavy Hitters

« Heavy Hitters.
« traverse tree from root.
+ only visit children with estimated frequency > m/k

Heavy Hitters

* Heavy Hitters.
+ traverse tree from root.
+ only visit children with estimated frequency > m/k




Heavy Hitters

» Heavy Hitters.

+ traverse tree from root.
+ only visit children with estimated frequency = m/k

Heavy Hitters

» Heavy Hitters.
+ traverse tree from root.
+ only visit children with estimated frequency = m/k

Heavy Hitters

« Heavy Hitters.
« traverse tree from root.
+ only visit children with estimated frequency > m/k

Heavy Hitters

* Heavy Hitters.
+ Store a CountMin sketch for each level in the tree of dyadic intervals (same d and
w for all sketches).

+ On a level: Treat all elements in same bucket/interval as the same element.
+ To find heavy hitters:

« traverse tree from root.

« only visit children with estimated frequency > m/k

* Analysis.
+ Time. Assume CountMin sketch makes no large errors.

+ Number of intervals queried: O(k 1g n).
+ Query time: O(klgn - 1g(1/6))
» Space.

1 1
o <lgn -—lg <—)> words.
€ 1




Heavy Hitters

« Heavy Hitters. Store a CountMin Sketch for each level in the tree of dyadic intervals

(same d and w for all sketches).

* On a level: Treat all elements in same interval as the same element.

« To find heavy hitters:
- traverse tree from root.

« only visit children with frequency = m/k.

« Analysis.

» Time.

« Number of intervals queried: O(k 1g n).

+ Query time: O(klgn - 1g(1/5))

+ Space.

1 1
o <1gn -—lg <—>> words.
€ 0

Count Sketch

Algorithm 2: CountSketch

Initialize d independent hash functions h; :
Initialize d independent hash functions s; :

[2] = [w].
[n] — {£1}.

Set counter C[j,b] = 0 for all j € [d] and b € [w].

while Stream S not empty do
if Insert(z) then

for j=1...ddo

| Clhyi(@)] =+ 5,)

end

else if Frequency(i) then

Jig = C(hy(@) - 5;(1)

return f;; = median;eq) fi;
end

end

Space

Error

€2

1
Count-Min @] <7 logn
€

Count-Sketch | O <i logn

eF) (one-sided)

e/ Fy (two-sided)




