External Memory ||

+ Searching with Fast Updates
+ Searching Strings

External Memory ||

« Searching with Fast Updates

Philip Bille

Searching
- Searching. Maintain aset S ¢ U = {0, ..., u-1} supporting

» member(x): determine if x € S

» predecessor(x): return largest element in S < x.

+ successor(x): return smallest element in S > x.

- insert(x): set S =S u {x}

+ delete(x): set S =S - {x}

H— | H |
! u-1

predecessor(x) X sSuccessor(x)

Searching

+ Applications.
+ Relational data bases.
* File systems.

B-tree

+ B-tree of order § = ©(B) with N keys.
» Keys in leaves. Routing elements in internal nodes.
+ Degree between 6/2 and 6.
» Root degree between 2 and 6.
+ Leaves store between &/2 and & keys.
+ All leaves have the same depth.
+ Height. ©(logs (N/B)) = ©(logs N)
+ Search and update. O(logs N) I/Os.

Bf-tree

* Idea.
- Speed up updates by buffering them at each node along the path to a leaf.
+ Move many updates together in each 1/0.
+ Search (almost) as before.
« €€(0, 1] is a parameter.
+ Solution in 2 steps.
» Focus on \/E-tree (e=1/2).
+ Searching in O(logs N) I/Os.
- Updates in O((logs N)/\/B) amortized.

+ Generalize to any &.

\/B-tree

- \/B-tree with N keys.
- B-tree of degree ©(/B) with buffers of size ©(,/B) at each edge.
+ Buffer stores delayed updates in subtree.
» Nodes and child buffers stored together in O(1) blocks.

- Height. ©(log, 3 N) = ©(loge N)

+ Searching.

+ Find leaf using routing elements. Check buffers along path.
+ 1/0s. O(loge N).

» Updates.

+ Insert update message into buffer at child.
« If buffer full, flush and recurse at child.
« If we fill leaf, rebalance tree as B-tree.
« /0 intuition. A flush moves /B messages together = O((logs N)/y/B) amortized I/Os.

* 1/Os.
- Assign (ch)/\/E credits to each update, where h = O(logs N) is height and ¢ > 1 is
appropiate constant.

- Put c/v/B credits each node on path.

» = We can pay for buffer overflows and rebalancing.

Bf-tree

Bl—e

+ B*-tree with N keys.
- B-tree of degree ©(B®) with buffers of size ©(B'~) at each edge.

loggy N
. Searching. O (g5 > I/Os.
£

logg N
+ Updates. 0< ;’f > I/Os.

€ —&

Bé-tree
Search Update
B-tree O(logg N) O(logg N)
log, N
B-tree O(logy N) o 2=
VB
logy N loggy N
Bé-tree 0 <—B> 0 <%>
e eBl-¢

External Memory ||

+ Searching Strings

String Searching

+ String searching. Maintain a set S = {S4, Sy, ..., Sk} of K strings of total length N

supporting the following operations:
+ search(P): return string in S with longest common prefix with P.
- insert(P): set S=S u {P}
+ delete(P): set S =S - {P}

String Searching

+ Goal.
- Searching in O(|P|/B + loge K) I/Os.
+ Ignore insert and delete.
+ Solution in 3 steps.
+ Blind tries.
+ String B-trees.
+ String B-trees with fast searches.

Blind Trie

* Data structure.

+ Sorted set of strings.

+ Compact trie for S. Edges store first char + string length.
+ Space. Strings + trie: O(N + K) = O(N).

ONOOTA N~

ace

aid

atlas
atom
attenuate
bid

bird

car

Blind Trie

+ Search. Traverse and verify candidate.
« Time. O(|P|)

ONOO AN~

. ace

aid
atlas
atom

. attenuate

bid
bird
car

String B-tree

1. ace
2. aid

3. atlas

4. atom

5. attenuate
6. bid

7. bird

8. car

9. cod

10. dog

11. fit

12. lid

13. patent

1234 5678 1S

15. zoo

- Data structure. Combination of B-tree and blind tries.

+ Sorted set of strings.

* Nodes store blind trie over B strings.

+ Leftmost and rightmost string in subtree stored for each child.
» Space. Strings + O(B) per node: O(N + N) = O(N)

String B-tree

ace
aid

. atlas
. atom
attenuate
by
bye
car
cod
10. dog
11. fit

12. lid

13. patent

1234 5678 bl

15. zoo

©CONDO AN

+ Searching.

+ Traverse and verify at each node.
* 1/Os.

+ O(P|/B + 1) I/Os at each node.

+ = O((|P|/B)logs K) I/Os total.

String B-tree

ace
aid
atlas
atom
attenuate
by
bye
car
cod
10. dog
11. fit

12. lid

13. patent

1234 5678 1a 5

15. zoo

OCONDO RN

+ Fast searching.
» Traverse and verify at each node.

+ But: remember longest prefix matched at each node.
+ 1/Os.

+ O(|P|/B) I/Os in total for string verification. O(1) I/Os at each node.
* = O((PI/B) + logs K) I/Os.

External Memory ||

+ Searching with Fast Updates
+ Searching Strings

