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• Labeling scheme. 


• Input. Graph G and query q(.,.) on pairs of nodes.


• Preprocess. Assign a  label to each node v. 


• Query. Given only label(v) and label(w) compute q(v,w). 


• Goals. 


• Minimize maximum length of labels. 


• Fast queries. 
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• Parent labeling scheme. 

• Rooted tree with n nodes. 

• Parent queries. Is v a parent of w?


• How can we solve this?  
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• Parent labeling scheme. 

• Assign unique ID to each node. 

• label(v) = ID(v) · ID(parent(v))

• v is parent w iff ID(v) = ID(parent(w)).


• Analysis.

• 2⌈log n⌉ bit labels. 
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• Applications. 


• Compact distributed data structures.


• Network routing, graph representation, search engines, etc.


• Graph theory. 


• Universal graphs, compression. 


• I/O complexity. 


• Minimal memory access. 
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• Nearest common ancestors. 

• The ancestors of v is the set of nodes from v to the root. 

• The common ancestors of v and w are the ancestor of both v and w.

• The nearest common ancestor of v and w, nca(v, w), is the common ancestor of 

greatest depth.

• Nearest common ancestor problem. Preprocess a rooted tree T to support 


• nca(v,w): return the nearest common ancestor of v and w. 
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• Applications. 

• Weighted matching 

• Minimum spanning trees

• Dominator trees 

• Approximate string matching 

• Dynamic planarity testing

• Network routing

• ....
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• Goal. 

• Labeling scheme for nearest common ancestor queries with O(log n) bits labels. 

• Query must output label(nca(v,w)). 


• Solution in 3 steps.

• ID encoding.

• Heavy path decomposition.

• Alphabetic codes.
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• ID encoding.

• Assign unique ID to each node. 


• How can we use these for an nca labeling scheme? 

Nearest Common Ancestors
1

2

3

4

5 6

7

8

9

10

11

12
13

14

15 16

17
18

1920

21
22

23



• ID encoding.

• Assign unique ID to each node. 

• label(v) = ID(v1) ⋅ ID(v2)⋅⋅⋅ID(vk), where  v1, ..., vk is the path from the root to v = vk.


• Queries. 

• Compute the longest prefix of IDs. 


• Analysis. 

• h⌈log n⌉ = O(n log n) bit labels. 
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Labeling scheme label length query time

ID encoding O(n log n)



• Size. The size of a node v is number of descendants of v. 

• Heavy and light nodes.


• Root is light.

• For each internal node v, pick child w of maximum size and classify it as heavy. 

The other children are light.

• Heavy and light edges. Edge to a heavy child is heavy and edge to a light child is 

light. 

• Heavy path decomposition. Removing light edges partitions tree into heavy paths.
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• Light depth. 

• depth(v) =  #edges on the path from v to the root. 

• lightdepth(v) = #light edges on the path from v to the root.


• What bounds can we get for depth and lightdepth? 

• Lemma. For any node v, lightdepth(v) = O(log n).
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• Idea. 

• Find a good nca labeling scheme on a path. 

• Apply on each heavy path. 
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• Nearest common ancestors on a path. 

• How can we make an nca labeling scheme for a path? 
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• Nearest common ancestors on a path. 

• Assign increasing IDs from root to leaf. 

• label(nca(v,w)) = min(ID(v), ID(w)). 


• Analysis.

• ⌈log n⌉ bit labels.
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• Label construction. 

• For each heavy path h1 ⋅⋅⋅ hk from root to v store


• HeavyID = deepest node on HP. 

• lightID = light child exit node in left-to-right order.


• label(v) = heavyID(h1) ⋅ lightID(h1) ⋅ heavyID(h2) ⋅ ⋅ ⋅ lightID(hk-1) ⋅ heavyID(hk) 

• Analysis.


• 2⌈log n⌉ bits per heavy path ⇒ O(log2 n) bit label.
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• Queries.

• Compute longest common prefix L of IDs.

• L contains either an even or odd number of IDs. 
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• Case 1. L contains odd number of IDs.

• ⇒ last ID in L is heavyID 

• ⇒ v and w exit from same heavy path 

• ⇒ label(nca(v,w)) = L


• Case 2. L contains even number of IDs.

• ⇒ last ID in L is lightID 

• ⇒ v and w enter same heavy path but leave at different exit points. 

• ⇒ label(nca(v,w)) = L ⋅ min(next ID in label(v), next ID in label(w))

Nearest Common Ancestors

v

w

v

w



Nearest Common Ancestors

Labeling scheme label length query time

ID encoding O(n log n)

heavy path decomposition O(log2n)



• Idea. Use variable length codes for IDs.  

• Small subtree ⇒ long IDs, large subtree ⇒ short IDs

• LightID: need scheme to assign unique codes to distinct light children. 

• HeavyID: need scheme to assign unique codes to distinct nodes on heavy path 

that preserve order. 
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• Alphabetic codes. Variable length code that preserves order. 

• Let Y = y1, y2, ..., yk be sequence of positive integers with s = y1 + y2 + ⋅⋅⋅ + yk.

• Consider binary representation of {0, ..., s-1}. 

• Partition into intervals of sizes y1, y2, ..., yk.

• In interval i pick number zi with ⌊log yi⌋ least significant bits all 0. 

• Code for yi is zi with ⌊log yi⌋ removed. 


• Small yi ⇒ long code, large yi ⇒ short code.

• Preserves order by lexicographic order.  
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• Alphabetic codes and IDs.

• Encode lightIDs and heavyIDs with alphabetic codes. 

• ⇒ O(log n) bits labels and O(1) query time. 
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Labeling scheme label length query time

ID encoding O(n log n)

heavy path decomposition O(log2n)

alphabetic coding O(log n) O(1)


