Approximate Near Neighbor Search: Locality Sensitive Hashing

Inge Li Gørtz

Approximate Near Neighbors

. ApproximateNearNeighbor(x): Return a point y such that $d(x, y) \leq c \cdot \min _{z \in P} d(x, z)$

- c-Approximate r -Near Neighbor: Given a point x if there exists a point z in P $d(x, z) \leq r$ then return a point y such that $d(x, y) \leq c \cdot r$. If no such point z exists return Fail.
- Randomised version: Return such an y with probability δ.

Nearest Neighbor

- Nearest Neighbor. Given a set of points P in a metric space, build a data structure which given a query point x returns the point in P closest to x
- Metric. Distance function d is a metric:

1. $d(x, y) \geq 0$
2. $d(x, y)=0$ if and only if $x=y$
3. $d(x, y)=d(y, x)$
4. $d(x, y) \leq d(x, z)+d(z, y)$

- Warmup. 1D: Real line

Query point

Locality Sensitive Hashing

- Locality sensitive hashing. A family of hash functions H is $\left(r, c r, p_{1}, p_{2}\right)$-sensitive with $p_{1}>p_{2}$ and $c>1$ if:

$$
\begin{aligned}
& \cdot d(x, y) \leq r \Rightarrow P[h(x)=h(y)] \geq p_{1} \quad \text { (close points) } \\
& \cdot d(x, y) \geq c r \Rightarrow P[h(x)=h(y)] \leq p_{2} \quad \text { (distant points) }
\end{aligned}
$$

for h chosen randomly from H .

Hamming Distance

- P set of n bit strings each of length d.
- Hamming distance. the number of bits where x and y differ:

$$
d(x, y)=\left|\left\{i: x_{i} \neq y_{i}\right\}\right|
$$

- Example.

$$
\begin{array}{l|l|llll|l|l}
x=\begin{array}{l|llll}
1 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0
\end{array} 1 & 1 & 1 & 0
\end{array} \text { Hamming distance }=3
$$

- Hash function. Chose $i \in\{1, \ldots, d\}$ uniformly at random and set $h(x)=x_{i}$
- What is the probability that $h(x)=h(y)$?
- $d(x, y) \leq r \Rightarrow P[h(x)=h(y)] \geq 1-r / d$
- $d(x, y) \geq c r \Rightarrow P[h(x)=h(y)] \leq 1-c r / d$

LSH with Hamming Distance: Solution 2

- Pick k random indexes uniformly and independently at random with replacement:

$$
\cdot g(x)=x_{i_{1}} x_{i_{2}} \cdots x_{i_{k}}
$$

- Example. $k=3 . g(x)=x_{2} x_{3} x_{6}$

$$
\begin{array}{ll|l|lll|l|lll}
\mathrm{x}= & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & g(x)=011 \\
\mathrm{y}= & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & g(y)=111
\end{array}
$$

- Probability that $\mathrm{g}(\mathrm{x})=\mathrm{g}(\mathrm{y})$?

$$
\cdot d(x, y) \leq r \Rightarrow P[g(x)=g(y)] \geq(1-r / d)^{k}
$$

- $d(x, y) \geq c r \Rightarrow P[g(x)=g(y)] \leq(1-c r / d)^{k}$

LSH with Hamming Distance: Solution 1

- Pick random index i uniformly at random. Let $h(x)=x_{i}$.
- Bucket: Strings with same hash value $h(x)$.
- Insert(x): Insert x in the list $A[h(x)]$
- NearNeighbour (x) : Compute Hamming distance from x to all bitstrings in $A[h(x)]$ until find one that is at most cr away. If no such string found return FAIL

$$
h(x)=x_{3}
$$

$$
a=0011101
$$

$$
h(a)=1 \quad d=011001
$$

$$
h(d)=1
$$

$$
b=0101001
$$

$c=0010010$

$$
\begin{array}{lll}
h(b)=0 & e=1011101 & h(e)=1 \\
h(c)=1 & f=1101101 & h(f)=0
\end{array}
$$

c d

LSH with Hamming Distance: Solution 2

- Pick k random indexes uniformly and independently at random with replacement

$$
\cdot g(x)=x_{i_{1}} x_{i_{2}} \cdots x_{i_{k}}
$$

- Bucket: Strings with same hash value $g(x)$.

$$
\begin{array}{llll}
g(x)=x_{2} x_{4} x_{7} & & \\
a=0011101 & g(a)=011 & d=0110011 & g(d)=101 \\
b=0101001 & g(b)=111 & e=1011101 & g(e)=011 \\
c=0010010 & g(c)=000 & f=1101101 & g(f)=111
\end{array}
$$

LSH with Hamming Distance: Solution 2

- Pick k random indexes uniformly and independently at random with replacement:

$$
\cdot g(x)=x_{i_{1}} x_{i_{2}} \cdots x_{i_{i}}
$$

- Bucket: Strings with same hash value $g(x)$.
- Save buckets in a hash table T with hash function h_{T}

$$
h_{T}\left(011_{2}\right)=1
$$

$$
h_{T}\left(101_{2}\right)=1
$$

$g(x)=x_{2} x_{4} x_{7}$
$a=0011101 \quad g(a)=011 \quad d=0110011 \quad g(d)=101$
$b=0101001 \quad g(b)=111 \quad e=1011101 \quad g(e)=011$
$c=0010010 \quad g(c)=000 \quad f=1101101 \quad g(f)=111$

LSH with Hamming Distance: Solution 2

- Pick k random indexes uniformly and independently at random with replacement:

$$
\cdot g(x)=x_{i_{1}} x_{i_{2}} \cdots x_{i_{k}}
$$

- Bucket: Strings with same hash value $g(x)$.
- Save buckets in a hash table T with hash function h_{T}.

$$
h_{T}\left(011_{2}\right)=1
$$

$$
h_{T}\left(111_{2}\right)=6
$$

- Insert (x) : Insert x in the list of $g(x)$ in T.
,

$$
h_{T}\left(000_{2}\right)=9
$$

- NearNeighbour (x) : Compute Hamming distance from x to all bitstrings in $g(x)$ until find one that is at most $c r$ away. If no such string found return FAIL.

$$
g(x)=x_{2} x_{4} x_{7}
$$

$$
a=0011101 \quad g(a)=011 \quad d=0110011 \quad g(d)=101
$$

$$
b=0101001 \quad g(b)=111 \quad e=1011101 \quad g(e)=011
$$

$$
c=0010010 \quad g(c)=000 \quad f=1101101 \quad g(f)=111
$$

LSH with Hamming Distance: Solution 2

What happens when we increase k

- Far away strings: Probability that a far away string hashes to the same bucket as x decrease.

LSH with Hamming Distance: Solution 2

- What happens when we increase k ?
- Far away strings: Probability that a far away string hashes to the same bucket as x decrease
- Close strings:

LSH with Hamming Distance: Solution 2

What happens when we increase k ?

- Far away strings: Probability that a far away string hashes to the same bucket as x decrease.
- Close strings: Probability that a close string hashes to the same as x decrease.

LSH with Hamming Distance: Solution 2

- Expected number of far away strings that hashes to same bucket as x :
- $F=\{y: d(x, y)>c r\}$.
- For $y \in F$ we want $P[g(y)=g(x)] \leq 1 / n$:
- Set $k=\lg n / \lg \left(1 / p_{2}\right)$
- $X_{y}= \begin{cases}1 & y \text { collides with } x \\ 0 & \text { otherwise }\end{cases}$
- \#far away strings colliding with $\mathrm{x}: X=\sum_{y \in F} X_{y}$
- $E[X]=\sum_{y \in F} E\left[X_{y}\right]=\sum_{y \in F} 1 / n \leq 1$.
- Markov: $P[X>6]<E[X] / 6 \leq 1 / 6$

LSH with Hamming Distance: Solution 2

- What happens when we increase k ?
- Probability that a far away string hashes to the same bucket as x decrease.

$$
\text { - } k=\lg n / \lg \left(1 / p_{2}\right) \quad \Rightarrow \text { with probability } \geq 5 / 6 \text { at most } 6 \text { far away strings hashes to } \times \text { 's bucket. }
$$

LSH with Hamming Distance: Solution 3 (Amplification)

- Construct L hash tables T_{j}. Each table T_{j} has its own independently chosen hash function h_{j} and its own independently chosen locality sensitive hash function g_{j}.
- Insert(x): For all $1 \leq j \leq L$ insert x in the list of $g_{j}(x)$ in T_{j}.
- Query (x) : For all $1 \leq j \leq L$ check each element in bucket $g_{j}(x)$ in T_{j}. Return the one closest to x.

LSH with Hamming Distance

- Expected query time is $\mathrm{O}(\mathrm{L})$: Can show that the expected number of far away strings that collides with x is L.
- Claim. The expected number of far away strings that collides with x is L

LSH with Hamming Distance

Let $k=\frac{\lg n}{\lg \left(1 / p_{2}\right)}, \rho=\frac{\lg \left(1 / p_{1}\right)}{\lg \left(1 / p_{2}\right)}$, and $L=\left\lceil 2 n^{\rho}\right\rceil$, where $p_{1}=1-r / d$ and $p_{2}=1-c r / d$

- Claim 1. If there exists a string z^{*} in P with $d\left(x, z^{*}\right) \leq r$ then with probability at least $5 / 6$ we will return some z in P for which $d(x, z) \leq r$.
- Probability that z^{*} collides with x

$$
\begin{aligned}
& \cdot P {\left[\exists i: g_{i}(x)=g_{i}\left(z^{*}\right)\right]=1-P\left[g_{i}(x) \neq g_{i}\left(z^{*}\right) \text { for all } i\right] } \\
& \quad=1-\prod_{i=1}^{L} P\left[g_{i}(x) \neq g_{i}\left(z^{*}\right)\right] \\
& \quad=1-\prod_{i=1}^{L}\left(1-P\left[g_{i}(x)=g_{i}\left(z^{*}\right)\right]\right) \\
& \quad \geq 1-\prod_{i=1}^{L}\left(1-p_{1}^{k}\right)=1-\left(1-p_{1}^{k}\right)^{L} \geq 1-e^{-L p_{1}^{k}} \\
& \quad \geq 1-\frac{1}{e^{2}} \geq 1-1 / 6=5 / 6
\end{aligned}
$$

Locality Sensitive Hashing

- Locality sensitive hash function. A family of hash functions \mathscr{H} is $\left(r, c r, p_{1}, p_{2}\right)$ -sensitive with $p_{1}>p_{2}$ and $c>1$ if:
$\cdot d(x, y) \leq r \quad \Rightarrow P[h(x)=h(y)] \geq p_{1} \quad$ (close points)
- $d(x, y) \geq c r \Rightarrow P[h(x)=h(y)] \leq p_{2} \quad$ (distant points)
- Amplification.
- Choose L hash functions $g_{j}(x)=h_{1, j}(x) \cdot h_{2, j}(x) \cdots h_{k, j}(x)$, where $h_{i, j}$ is chosen independently and uniformly at random from \mathscr{H}.
- Locality sensitive hashing scheme.
- Construct L hash tables T_{j}
- Insert(x): For all $1 \leq j \leq L$ insert x in the list of $g_{j}(x)$ in T_{j}.
- Query (x) : For all $1 \leq j \leq L$ check each element in bucket $g_{j}(x)$ in T_{j}. Return the one closest to x.

Jaccard distance and Min Hash

. Jaccard distance. Jaccard similarity: $\operatorname{Jsim}(A, B)=\frac{|A \cap B|}{|A \cup B|}$

- Jaccard distance: 1- Jsim(A,B).
- Hash function: Min Hash. (exercise)

Angular Distance and Sim Hash

- Collection of vectors.
- Distance between two vectors is the angular distance between them $\operatorname{dist}(u, v)=\angle(u, v) / \pi$.
- Assume u and v are unit vectors. Then $u \cdot v=\cos (\angle(u, v))$
- Hash function: Sim Hash.
- Random projection: Take a random vector r and set $h_{r}(u)=\operatorname{sign}(r \cdot u)$

Exercises

Angular Distance and Sim Hash

- Collection of vectors.
- Distance between two vectors is the angular distance between them $\operatorname{dist}(u, v)=\angle(u, v) / \pi$.
- Assume u and v are unit vectors. Then $u \cdot v=\cos (\angle(u, v))$
- Hash function: Sim Hash.
- Random projection: Take a random vector r and set $h_{r}(u)=\operatorname{sign}(r \cdot u)$

Angular Distance and Sim Hash

- Collection of vectors
- Distance between two vectors is the angular distance between them $\operatorname{dist}(u, v)=\angle(u, v) / \pi$
- Assume u and v are unit vectors. Then $u \cdot v=\cos (\angle(u, v))$
- Hash function: Sim Hash
- Random projection: Take a random vector r and $\operatorname{set} h_{r}(u)=\operatorname{sign}(r \cdot u)$

Angular Distance and Sim Hash

- Collection of vectors.
- Distance between two vectors is the angular distance between them $\operatorname{dist}(u, v)=\angle(u, v) / \pi$.
- Assume u and v are unit vectors. Then $u \cdot v=\cos (\angle(u, v))$
- Hash function: Sim Hash
- Random projection: Take a random vector r and $\operatorname{set} h_{r}(u)=\operatorname{sign}(r \cdot u)$

Angular Distance and Sim Hash

- Collection of vectors
- Distance between two vectors is the angular distance between them $\operatorname{dist}(u, v)=\angle(u, v) / \pi$.
- Assume u and v are unit vectors. Then $u \cdot v=\cos (\angle(u, v))$
- Hash function: Sim Hash.
- Random projection: Take a random vector r and set $h_{r}(u)=\operatorname{sign}(r \cdot u)$

Angular Distance and Sim Hash

- Collection of vectors.
- Distance between two vectors is the angular distance between them $\operatorname{dist}(u, v)=\angle(u, v) / \pi$.
- Assume u and v are unit vectors. Then $u \cdot v=\cos (\angle(u, v))$
- Hash function: Sim Hash.
- Random projection: Take a random vector r and set $h_{r}(u)=\operatorname{sign}(r \cdot u)$

Angular Distance and Sim Hash

- Collection of vectors.
- Distance between two vectors is the angular distance between them $\operatorname{dist}(u, v)=\angle(u, v) / \pi$
- Assume u and v are unit vectors. Then $u \cdot v=\cos (\angle(u, v))$
- Hash function: Sim Hash
- Random projection: Take a random vector r and $\operatorname{set} h_{r}(u)=\operatorname{sign}(r \cdot u)$

Angular Distance and Sim Hash

- Collection of vectors
- Distance between two vectors is the angular distance between them $\operatorname{dist}(u, v)=\angle(u, v) / \pi$.
- Assume u and v are unit vectors. Then $u \cdot v=\cos (\angle(u, v))$
- Hash function: Sim Hash.
- Random projection: Take a random vector r and set $h_{r}(u)=\operatorname{sign}(r \cdot u)$

- Can show that $P[h(u)=h(v)]=1-\angle(u, v) / \pi$.

