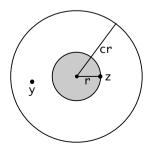
Approximate Near Neighbor Search: Locality Sensitive Hashing

Inge Li Gørtz

Approximate Near Neighbors

- . ApproximateNearNeighbor(x): Return a point y such that $d(x,y) \le c \cdot \min_{z \in P} d(x,z)$
- c-Approximate r-Near Neighbor: Given a point x if there exists a point z in P $d(x,z) \leq r$ then return a point y such that $d(x,y) \leq c \cdot r$. If no such point z exists return Fail.
- Randomised version: Return such an y with probability δ .



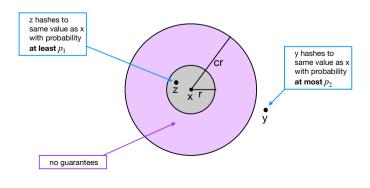
Nearest Neighbor

- Nearest Neighbor. Given a set of points P in a metric space, build a data structure which given a query point x returns the point in P closest to x.
- · Metric. Distance function d is a metric:
 - 1. $d(x,y) \ge 0$
 - 2. d(x,y) = 0 if and only if x = y
 - 3. d(x,y) = d(y,x)
 - 4. $d(x,y) \le d(x,z) + d(z,y)$
- · Warmup. 1D: Real line

Locality Sensitive Hashing

- Locality sensitive hashing. A family of hash functions H is (r,cr,p_1,p_2) -sensitive with $p_1>p_2$ and c>1 if:
 - $d(x, y) \le r \implies P[h(x) = h(y)] \ge p_1$ (close points)
 - $d(x, y) \ge cr \implies P[h(x) = h(y)] \le p_2$ (distant points)

for h chosen randomly from H.



Hamming Distance

- · P set of n bit strings each of length d.
- Hamming distance, the number of bits where x and y differ:

$$d(x, y) = |\{i : x_i \neq y_i\}|$$

· Example.

$$x = \begin{bmatrix} 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\ y = & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 \end{bmatrix}$$
 Hamming distance = 3

- Hash function. Chose $i \in \{1, ..., d\}$ uniformly at random and set $h(x) = x_i$.
- What is the probability that h(x) = h(y)?
 - $d(x, y) \le r \Rightarrow P[h(x) = h(y)] \ge 1 r/d$
 - $d(x, y) \ge cr \Rightarrow P[h(x) = h(y)] \le 1 cr/d$

LSH with Hamming Distance: Solution 2

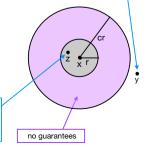
- Pick k random indexes uniformly and independently at random with replacement:
 - $g(x) = x_{i_1} x_{i_2} \cdots x_{i_k}$
- Example. k = 3. $g(x) = x_2x_3x_6$

g(x) = 011g(y) = 111

y hashes to same value as x with probability at most p_2^k

- Probability that g(x) = g(y)?
 - $d(x, y) \le r \Rightarrow P[g(x) = g(y)] \ge (1 r/d)^k$
 - $d(x, y) \ge cr \Rightarrow P[g(x) = g(y)] \le (1 cr/d)^k$

z hashes to same value as x with probability at least p_1^k



LSH with Hamming Distance: Solution 1

- Pick random index *i* uniformly at random. Let $h(x) = x_i$.
- Bucket: Strings with same hash value h(x).
- Insert(x): Insert x in the list A[h(x)]
- NearNeighbour(x): Compute Hamming distance from x to all bitstrings in A[h(x)] until find one that is at most cr away. If no such string found return FAIL.

```
a = 0011101 h(a) = 1 d = 0110011 h(d) = 1

b = 0101001 h(b) = 0 e = 1011101 h(e) = 1

c = 0010010 h(c) = 1 f = 1101101 h(f) = 0
```

Query time: O(nd).

 $h(x) = x_3$

LSH with Hamming Distance: Solution 2

- Pick k random indexes uniformly and independently at random with replacement:
 - $g(x) = x_{i_1} x_{i_2} \cdots x_{i_k}$
- Bucket: Strings with same hash value g(x).

$g(x) = x_2 x_4 x_7$

```
a = 0011101 g(a) = 011 d = 0110011 g(d) = 101

b = 0101001 g(b) = 111 e = 1011101 g(e) = 011

c = 0010010 g(c) = 000 f = 1101101 g(f) = 111
```

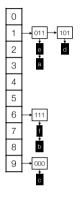

LSH with Hamming Distance: Solution 2

- Pick k random indexes uniformly and independently at random with replacement:
 - $g(x) = x_{i_1} x_{i_2} \cdots x_{i_k}$
- Bucket: Strings with same hash value g(x).
- Save buckets in a hash table T with hash function h_T .

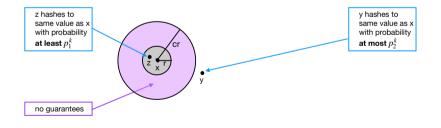
$h_T(011_2) = 1$ $h_T(111_2) = 6$

- $h_T(000_2) = 9$
- $h_T(101_2) = 1$

$g(x) = x_2 x_4 x_7$ a = 0011101 g(a) = 011 d = 0110011 g(d) = 101 b = 0101001 g(b) = 111 e = 1011101 g(e) = 011c = 0010010 g(c) = 000 f = 1101101 g(f) = 111



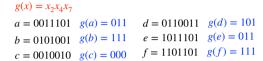
LSH with Hamming Distance: Solution 2

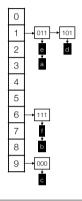


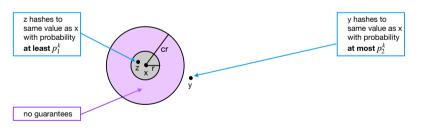
- · What happens when we increase k?
 - · Far away strings:

LSH with Hamming Distance: Solution 2

- Pick *k* random indexes uniformly and independently at random with replacement:
 - $g(x) = x_{i_1} x_{i_2} \cdots x_{i_k}$
- Bucket: Strings with same hash value g(x).
- Save buckets in a hash table T with hash function h_T .
- Insert(x): Insert x in the list of g(x) in T.
- NearNeighbour(x): Compute Hamming distance from x to all bitstrings in g(x) until find one that is at most cr away. If no such string found return FAIL.

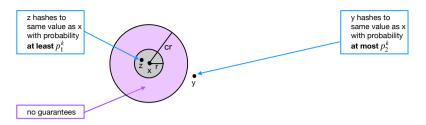






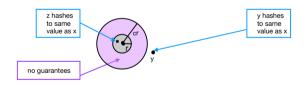
- · What happens when we increase k?
 - Far away strings: Probability that a far away string hashes to the same bucket as x decrease.

LSH with Hamming Distance: Solution 2



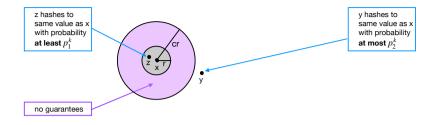
- · What happens when we increase k?
 - · Far away strings: Probability that a far away string hashes to the same bucket as x decrease.
 - · Close strings:

LSH with Hamming Distance: Solution 2



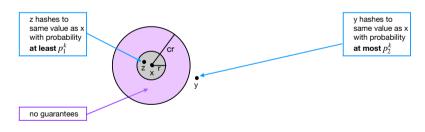
- Expected number of far away strings that hashes to same bucket as x:
 - $F = \{y : d(x, y) > cr\}.$
- For $y \in F$ we want $P[g(y) = g(x)] \le 1/n$:
 - Set $k = \lg n / \lg(1/p_2)$
- $X_y = \begin{cases} 1 & y \text{ collides with } x \\ 0 & \text{otherwise} \end{cases}$
- #far away strings colliding with x: $X = \sum_{y \in F} X_y$
- $E[X] = \sum_{y \in F} E[X_y] = \sum_{y \in F} 1/n \le 1.$
- Markov: $P[X > 6] < E[X]/6 \le 1/6$.

LSH with Hamming Distance: Solution 2



- · What happens when we increase k?
 - Far away strings: Probability that a far away string hashes to the same bucket as x decrease.
 - Close strings: Probability that a close string hashes to the same as x decrease.

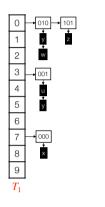
LSH with Hamming Distance: Solution 2

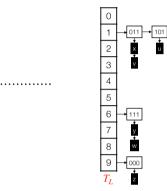


- · What happens when we increase k?
 - Probability that a far away string hashes to the same bucket as x decrease.
 - $k = \lg n/\lg(1/p_2)$ \Rightarrow with probability $\ge 5/6$ at most 6 far away strings hashes to x's bucket.
 - Probability that a close string hashes to the same as x decrease.

LSH with Hamming Distance: Solution 3 (Amplification)

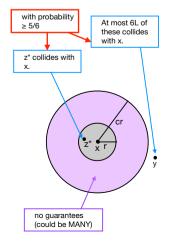
- Construct L hash tables T_j . Each table T_j has its own independently chosen hash function h_i and its own independently chosen locality sensitive hash function g_i .
- Insert(x): For all $1 \le j \le L$ insert x in the list of $g_i(x)$ in T_i .
- Query(x): For all $1 \le j \le L$ check each element in bucket $g_j(x)$ in T_j . Return the one closest to x.





LSH with Hamming Distance

- Expected query time is O(L): Can show that the expected number of far away strings that collides with x is L.
- Claim. The expected number of far away strings that collides with x is L.

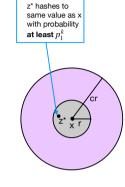


LSH with Hamming Distance

Let
$$k = \frac{\lg n}{\lg(1/p_1)}$$
, $\rho = \frac{\lg(1/p_1)}{\lg(1/p_2)}$, and $L = \lceil 2n^\rho \rceil$, where $p_1 = 1 - r/d$ and $p_2 = 1 - cr/d$.

- Claim 1. If there exists a string z* in P with d(x,z*) ≤ r then with probability at least 5/6
 we will return some z in P for which d(x,z) ≤ r.
- Probability that z* collides with x:

$$\begin{split} \bullet \ P[\exists i: g_i(x) = g_i(z^*)] &= 1 - P[g_i(x) \neq g_i(z^*) \text{ for all } i] \\ &= 1 - \prod_{i=1}^L P[g_i(x) \neq g_i(z^*)] \\ &= 1 - \prod_{i=1}^L \left(1 - P[g_i(x) = g_i(z^*)]\right) \\ &\geq 1 - \prod_{i=1}^L \left(1 - p_1^k\right) = 1 - (1 - p_1^k)^L \geq 1 - e^{-Lp_1^k} \\ &\geq 1 - \frac{1}{e^2} \geq 1 - 1/6 = 5/6 \end{split}$$



Locality Sensitive Hashing

- Locality sensitive hash function. A family of hash functions $\mathscr H$ is (r,cr,p_1,p_2) -sensitive with $p_1>p_2$ and c>1 if:
 - $d(x, y) \le r \implies P[h(x) = h(y)] \ge p_1$ (close points)
 - $d(x, y) \ge cr \implies P[h(x) = h(y)] \le p_2$ (distant points)
- · Amplification.
 - Choose L hash functions $g_j(x) = h_{1,j}(x) \cdot h_{2,j}(x) \cdots h_{k,j}(x)$, where $h_{i,j}$ is chosen independently and uniformly at random from \mathcal{H} .
- · Locality sensitive hashing scheme.
 - Construct L hash tables T_i .
 - Insert(x): For all $1 \le j \le L$ insert x in the list of $g_j(x)$ in T_j .
 - Query(x): For all $1 \le j \le L$ check each element in bucket $g_j(x)$ in T_j . Return the one closest to x.

Jaccard distance and Min Hash

. Jaccard distance. Jaccard similarity: $\mathrm{Jsim}(A,B) = \frac{|A \cap B|}{|A \cup B|}$

· Jaccard distance: 1- Jsim(A,B).

· Hash function: Min Hash. (exercise)

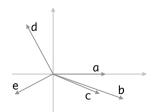
Angular Distance and Sim Hash

- · Collection of vectors.
- Distance between two vectors is the angular distance between them dist(u, v) = ∠(u, v)/π.
 - Assume u and v are unit vectors. Then $u \cdot v = \cos(\angle(u, v))$
- · Hash function: Sim Hash.
 - Random projection: Take a random vector r and set $h_r(u) = \operatorname{sign}(r \cdot u)$

Exercises

Angular Distance and Sim Hash

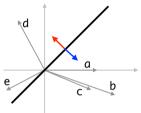
- · Collection of vectors.
- Distance between two vectors is the angular distance between them dist(u, v) = ∠(u, v)/π.
 - Assume u and v are unit vectors. Then $u \cdot v = \cos(\angle(u, v))$
- · Hash function: Sim Hash.
 - Random projection: Take a random vector r and set $h_r(u) = \operatorname{sign}(r \cdot u)$



а			
b			
С			
d			
е			

Angular Distance and Sim Hash

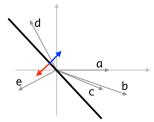
- · Collection of vectors.
- Distance between two vectors is the angular distance between them $\operatorname{dist}(u,v)=\angle(u,v)/\pi$.
 - Assume u and v are unit vectors. Then $u \cdot v = \cos(\angle(u, v))$
- · Hash function: Sim Hash.
 - Random projection: Take a random vector r and set $h_r(u) = \text{sign}(r \cdot u)$





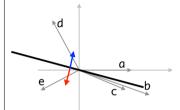
Angular Distance and Sim Hash

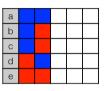
- · Collection of vectors.
- Distance between two vectors is the angular distance between them dist(u, v) = ∠(u, v)/π.
 - Assume u and v are unit vectors. Then $u \cdot v = \cos(\angle(u, v))$
- · Hash function: Sim Hash.
 - Random projection: Take a random vector r and set $h_r(u) = \text{sign}(r \cdot u)$



Angular Distance and Sim Hash

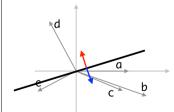
- · Collection of vectors.
- Distance between two vectors is the angular distance between them ${\rm dist}(u,v)=\angle(u,v)/\pi.$
 - Assume u and v are unit vectors. Then $u \cdot v = \cos(\angle(u, v))$
- · Hash function: Sim Hash.
 - Random projection: Take a random vector r and set $h_r(u) = \text{sign}(r \cdot u)$

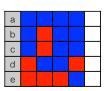




Angular Distance and Sim Hash

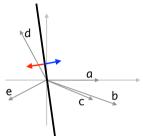
- · Collection of vectors.
- Distance between two vectors is the angular distance between them dist(u, v) = ∠(u, v)/π.
 - Assume u and v are unit vectors. Then $u \cdot v = \cos(\angle(u, v))$
- · Hash function: Sim Hash.
 - Random projection: Take a random vector r and set $h_r(u) = \text{sign}(r \cdot u)$

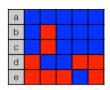




Angular Distance and Sim Hash

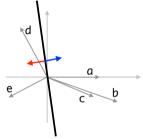
- · Collection of vectors.
- Distance between two vectors is the angular distance between them $\operatorname{dist}(u,v) = \angle(u,v)/\pi$.
 - Assume u and v are unit vectors. Then $u \cdot v = \cos(\angle(u, v))$
- · Hash function: Sim Hash.
 - Random projection: Take a random vector r and set $h_r(u) = \operatorname{sign}(r \cdot u)$

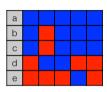




Angular Distance and Sim Hash

- Collection of vectors.
- Distance between two vectors is the angular distance between them $\operatorname{dist}(u,v)=\angle(u,v)/\pi.$
 - Assume u and v are unit vectors. Then $u \cdot v = \cos(\angle(u, v))$
- · Hash function: Sim Hash.
 - Random projection: Take a random vector r and set $h_r(u) = \text{sign}(r \cdot u)$





• Can show that $P[h(u) = h(v)] = 1 - \angle(u, v)/\pi$.