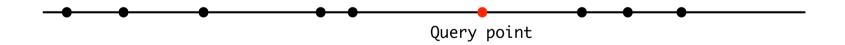
Approximate Near Neighbor Search: Locality Sensitive Hashing

Inge Li Gørtz

Nearest Neighbor

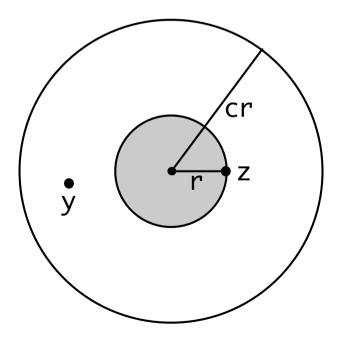
- Nearest Neighbor. Given a set of points P in a metric space, build a data structure which given a query point x returns the point in P closest to x.
- Metric. Distance function d is a metric:
 - 1. $d(x,y) \ge 0$
 - 2. d(x,y) = 0 if and only if x = y
 - 3. d(x,y) = d(y,x)
 - 4. $d(x,y) \le d(x,z) + d(z,y)$
- Warmup. 1D: Real line



Approximate Near Neighbors

• ApproximateNearNeighbor(x): Return a point y such that $d(x, y) \le c \cdot \min_{z \in P} d(x, z)$

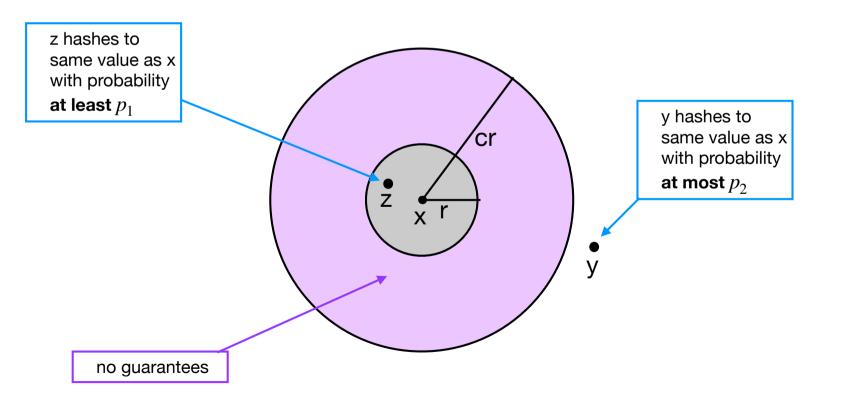
- c-Approximate r-Near Neighbor: Given a point x if there exists a point z in P $d(x, z) \le r$ then return a point y such that $d(x, y) \le c \cdot r$. If no such point z exists return Fail.
- Randomised version: Return such an y with probability δ .



Locality Sensitive Hashing

- Locality sensitive hashing. A family of hash functions H is (r, cr, p_1, p_2) -sensitive with $p_1 > p_2$ and c > 1 if:
 - $d(x, y) \le r \implies P[h(x) = h(y)] \ge p_1$ (close points)
 - $d(x, y) \ge cr \implies P[h(x) = h(y)] \le p_2$ (distant points)

for h chosen randomly from H.



Hamming Distance

- P set of n bit strings each of length d.
- Hamming distance. the number of bits where x and y differ:

 $d(x, y) = |\{i : x_i \neq y_i\}|$

• Example.

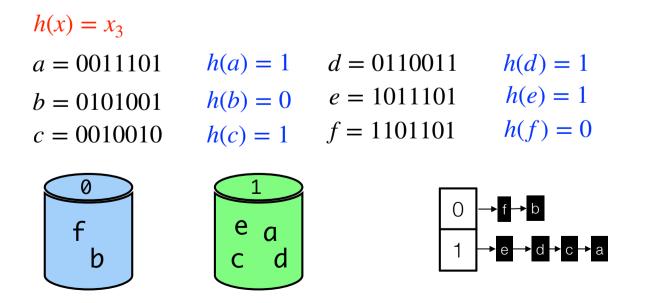
- Hash function. Chose $i \in \{1, ..., d\}$ uniformly at random and set $h(x) = x_i$.
- What is the probability that h(x) = h(y)?

•
$$d(x, y) \le r \Rightarrow P[h(x) = h(y)] \ge 1 - r/d$$

• $d(x, y) \ge cr \Rightarrow P[h(x) = h(y)] \le 1 - cr/d$

- Pick random index *i* uniformly at random. Let $h(x) = x_i$.
- Bucket: Strings with same hash value h(x).
- Insert(x): Insert x in the list A[h(x)]
- NearNeighbour(*x*): Compute Hamming distance from *x* to all bitstrings in A[h(x)] until find one that is at most *cr* away. If no such string found return FAIL.

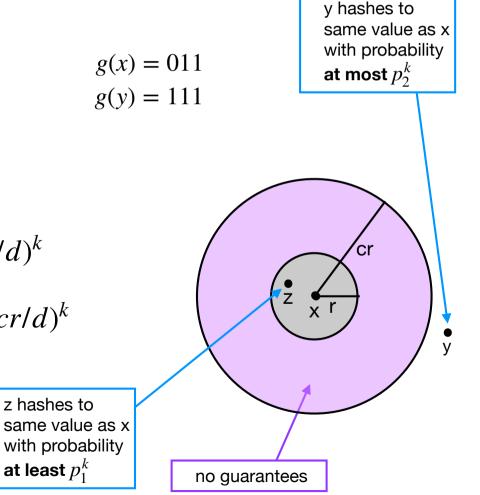
Query time: O(nd).



- Pick k random indexes uniformly and independently at random with replacement:
 - $g(x) = x_{i_1} x_{i_2} \cdots x_{i_k}$
- Example. k = 3. $g(x) = x_2 x_3 x_6$

X =	1	0	1	0	0	1	0	0
x = y =	0	1	1	0	0	1	1	0

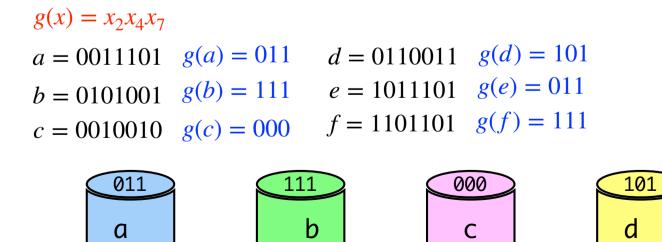
- Probability that g(x) = g(y)?
 - $d(x, y) \le r \Rightarrow P[g(x) = g(y)] \ge (1 r/d)^k$
 - $d(x, y) \ge cr \Rightarrow P[g(x) = g(y)] \le (1 cr/d)^k$



- Pick k random indexes uniformly and independently at random with replacement:
 - $g(x) = x_{i_1} x_{i_2} \cdots x_{i_k}$

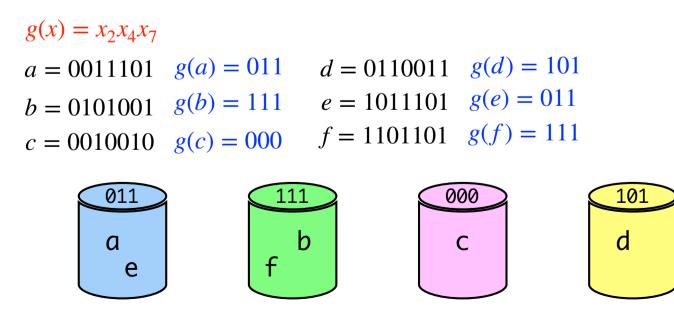
e

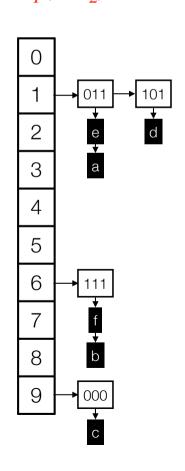
• Bucket: Strings with same hash value g(x).



- Pick k random indexes uniformly and independently at random with replacement:
 - $g(x) = x_{i_1} x_{i_2} \cdots x_{i_k}$
- Bucket: Strings with same hash value g(x).
- Save buckets in a hash table T with hash function h_T .

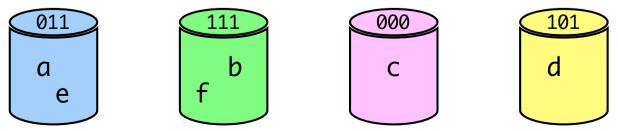
 $h_T(011_2) = 1$ $h_T(111_2) = 6$ $h_T(000_2) = 9$ $h_T(101_2) = 1$



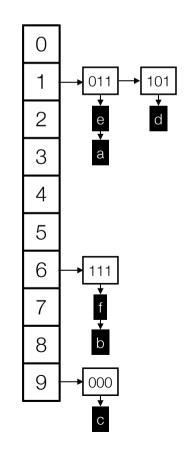


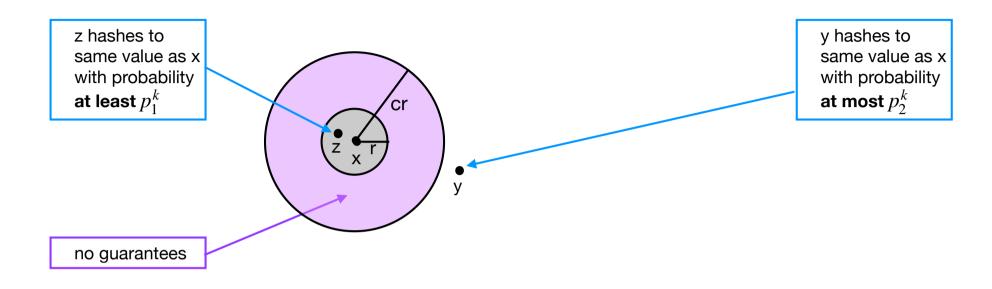
- Pick k random indexes uniformly and independently at random with replacement:
 - $g(x) = x_{i_1} x_{i_2} \cdots x_{i_k}$
- Bucket: Strings with same hash value g(x).
- Save buckets in a hash table T with hash function h_T .
- Insert(x): Insert x in the list of g(x) in T.
- NearNeighbour(*x*): Compute Hamming distance from *x* to all bitstrings in g(x) until find one that is at most *cr* away. If no such string found return FAIL.

 $g(x) = x_2 x_4 x_7$ $a = 0011101 \quad g(a) = 011 \qquad d = 0110011 \quad g(d) = 101$ $b = 0101001 \quad g(b) = 111 \qquad e = 1011101 \quad g(e) = 011$ $c = 0010010 \quad g(c) = 000 \qquad f = 1101101 \quad g(f) = 111$

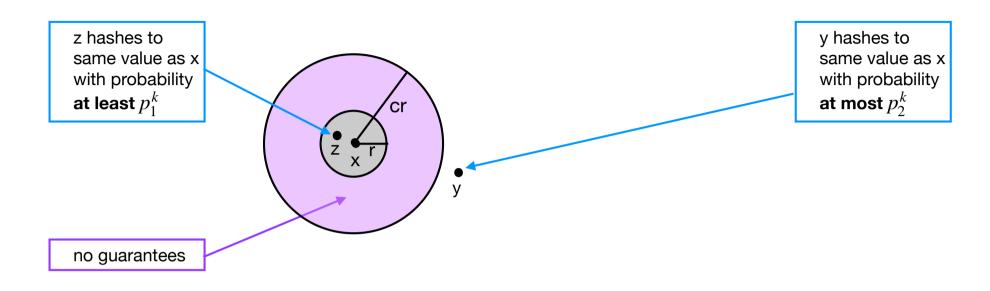


 $h_T(011_2) = 1$ $h_T(111_2) = 6$ $h_T(000_2) = 9$ $h_T(101_2) = 1$

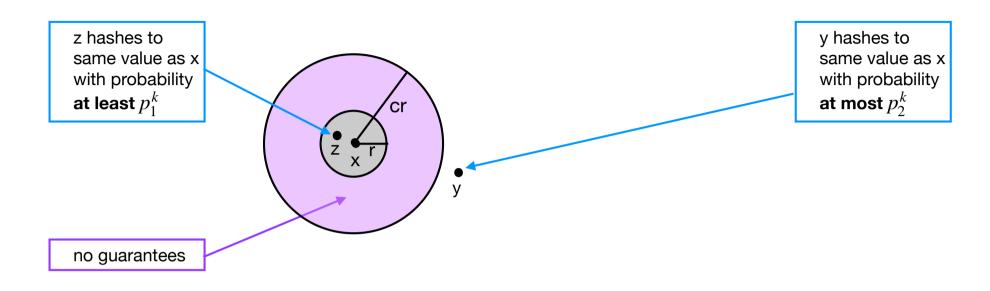




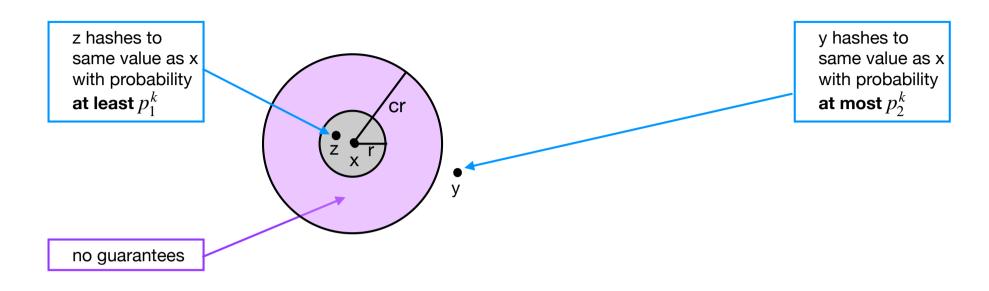
- What happens when we increase k?
 - Far away strings:



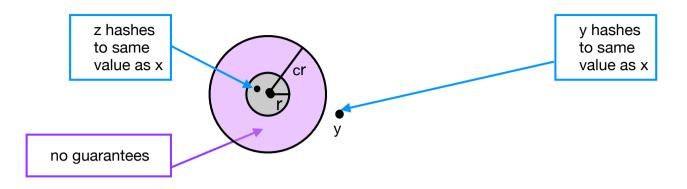
- What happens when we increase k?
 - Far away strings: Probability that a far away string hashes to the same bucket as x decrease.



- What happens when we increase k?
 - Far away strings: Probability that a far away string hashes to the same bucket as x decrease.
 - Close strings:



- What happens when we increase k?
 - Far away strings: Probability that a far away string hashes to the same bucket as x decrease.
 - Close strings: Probability that a close string hashes to the same as x decrease.



- Expected number of far away strings that hashes to same bucket as x:
 - $F = \{y : d(x, y) > cr\}.$
- For $y \in F$ we want $P[g(y) = g(x)] \le 1/n$:

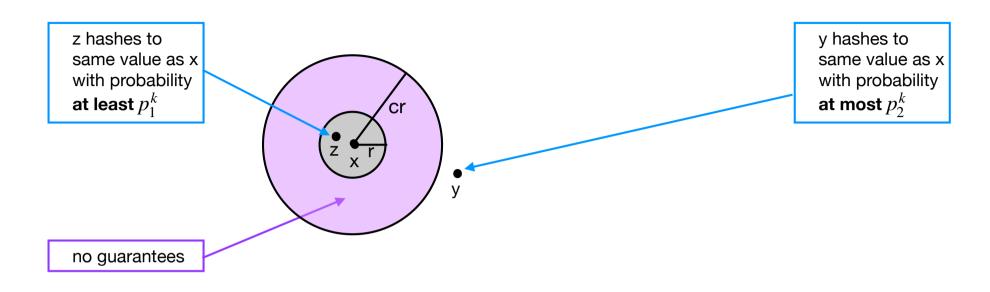
• Set
$$k = \lg n / \lg(1/p_2)$$

•
$$X_y = \begin{cases} 1 & y \text{ collides with } x \\ 0 & \text{otherwise} \end{cases}$$

• #far away strings colliding with x: $X = \sum_{y \in F} X_y$

•
$$E[X] = \sum_{y \in F} E[X_y] = \sum_{y \in F} 1/n \le 1.$$

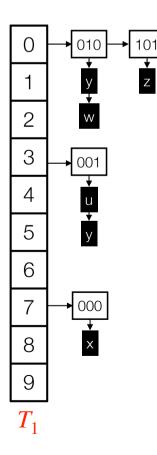
• Markov: $P[X > 6] < E[X]/6 \le 1/6$.

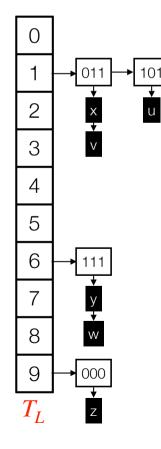


- What happens when we increase k?
 - Probability that a far away string hashes to the same bucket as x decrease.
 - $k = \lg n / \lg(1/p_2) \implies$ with probability $\ge 5/6$ at most 6 far away strings hashes to x's bucket.
 - Probability that a close string hashes to the same as x decrease.

LSH with Hamming Distance: Solution 3 (Amplification)

- Construct *L* hash tables T_j . Each table T_j has its own independently chosen hash function h_j and its own independently chosen locality sensitive hash function g_j .
- Insert(x): For all $1 \le j \le L$ insert x in the list of $g_j(x)$ in T_j .
- Query(x): For all 1 ≤ j ≤ L check each element in bucket g_j(x) in T_j. Return the one closest to x.





LSH with Hamming Distance

Let
$$k = \frac{\lg n}{\lg(1/p_2)}$$
, $\rho = \frac{\lg(1/p_1)}{\lg(1/p_2)}$, and $L = \lceil 2n^{\rho} \rceil$, where $p_1 = 1 - r/d$ and $p_2 = 1 - cr/d$.

- Claim 1. If there exists a string z* in P with d(x,z*) ≤ r then with probability at least 5/6 we will return some z in P for which d(x,z) ≤ r.
- Probability that z* collides with x:

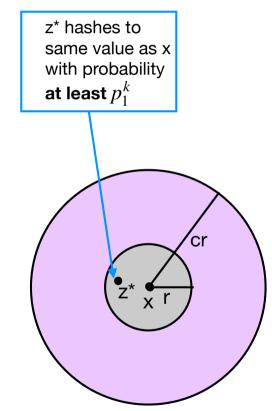
•
$$P[\exists i : g_i(x) = g_i(z^*)] = 1 - P[g_i(x) \neq g_i(z^*) \text{ for all } i]$$

$$= 1 - \prod_{i=1}^{L} P[g_i(x) \neq g_i(z^*)]$$

$$= 1 - \prod_{i=1}^{L} \left(1 - P[g_i(x) = g_i(z^*)]\right)$$

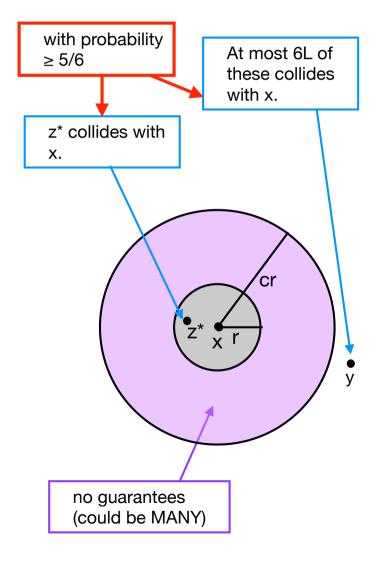
$$\ge 1 - \prod_{i=1}^{L} (1 - p_1^k) = 1 - (1 - p_1^k)^L \ge 1 - e^{-Lp_1^k}$$

$$\ge 1 - \frac{1}{e^2} \ge 1 - \frac{1}{6} = \frac{5}{6}$$



LSH with Hamming Distance

- Expected query time is O(L): Can show that the expected number of far away strings that collides with x is L.
- Claim. The expected number of far away strings that collides with x is L.



Locality Sensitive Hashing

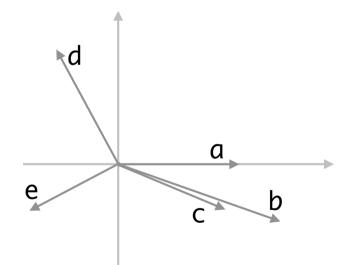
- Locality sensitive hash function. A family of hash functions \mathscr{H} is (r, cr, p_1, p_2) -sensitive with $p_1 > p_2$ and c > 1 if:
 - $d(x, y) \le r \implies P[h(x) = h(y)] \ge p_1$ (close points)
 - $d(x, y) \ge cr \implies P[h(x) = h(y)] \le p_2$ (distant points)
- Amplification.
 - Choose *L* hash functions $g_j(x) = h_{1,j}(x) \cdot h_{2,j}(x) \cdots h_{k,j}(x)$, where $h_{i,j}$ is chosen independently and uniformly at random from \mathscr{H} .
- Locality sensitive hashing scheme.
 - Construct L hash tables T_i .
 - Insert(x): For all $1 \le j \le L$ insert x in the list of $g_i(x)$ in T_j .
 - Query(x): For all 1 ≤ j ≤ L check each element in bucket g_j(x) in T_j. Return the one closest to x.

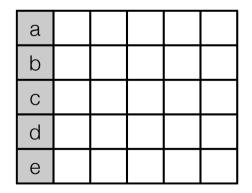
Jaccard distance and Min Hash

- Jaccard distance. Jaccard similarity: $Jsim(A, B) = \frac{|A \cap B|}{|A \cup B|}$
 - Jaccard distance: 1- Jsim(A,B).
 - Hash function: *Min Hash*. (exercise)

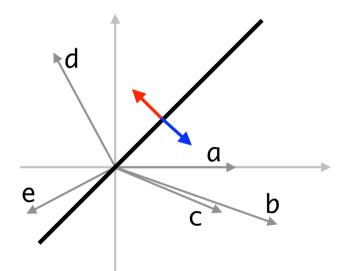
- Collection of vectors.
- Distance between two vectors is the angular distance between them $dist(u, v) = \angle (u, v) / \pi$.
 - Assume u and v are unit vectors. Then $u \cdot v = \cos(\angle(u, v))$
- Hash function: Sim Hash.
 - Random projection: Take a random vector r and set $h_r(u) = \operatorname{sign}(r \cdot u)$

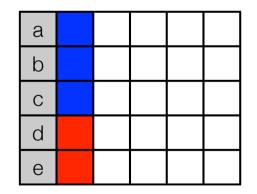
- Collection of vectors.
- Distance between two vectors is the angular distance between them $dist(u, v) = \angle (u, v) / \pi$.
 - Assume u and v are unit vectors. Then $u \cdot v = \cos(\angle(u, v))$
- Hash function: Sim Hash.
 - Random projection: Take a random vector r and set $h_r(u) = \operatorname{sign}(r \cdot u)$



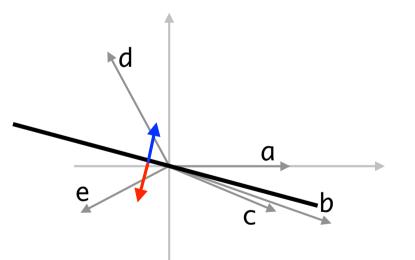


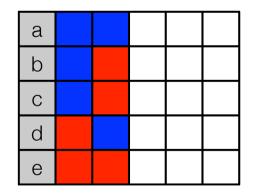
- Collection of vectors.
- Distance between two vectors is the angular distance between them $dist(u, v) = \angle (u, v)/\pi$.
 - Assume u and v are unit vectors. Then $u \cdot v = \cos(\angle(u, v))$
- Hash function: Sim Hash.
 - Random projection: Take a random vector r and set $h_r(u) = \operatorname{sign}(r \cdot u)$



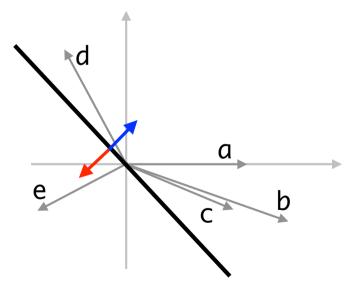


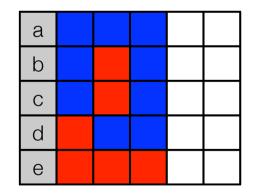
- Collection of vectors.
- Distance between two vectors is the angular distance between them $dist(u, v) = \angle (u, v) / \pi$.
 - Assume u and v are unit vectors. Then $u \cdot v = \cos(\angle(u, v))$
- Hash function: Sim Hash.
 - Random projection: Take a random vector r and set $h_r(u) = \operatorname{sign}(r \cdot u)$



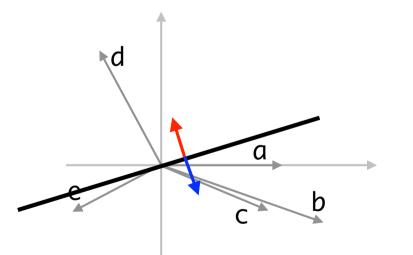


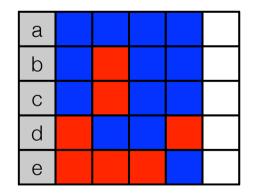
- Collection of vectors.
- Distance between two vectors is the angular distance between them $dist(u, v) = \angle (u, v)/\pi$.
 - Assume u and v are unit vectors. Then $u \cdot v = \cos(\angle(u, v))$
- Hash function: Sim Hash.
 - Random projection: Take a random vector r and set $h_r(u) = \operatorname{sign}(r \cdot u)$



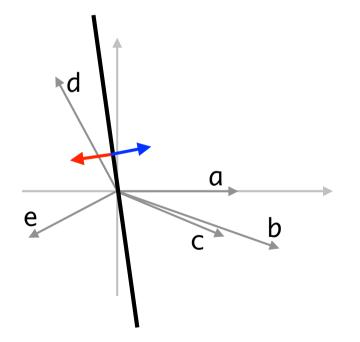


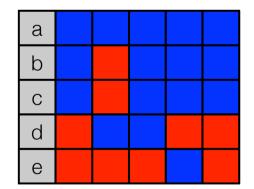
- Collection of vectors.
- Distance between two vectors is the angular distance between them $dist(u, v) = \angle (u, v) / \pi$.
 - Assume u and v are unit vectors. Then $u \cdot v = \cos(\angle(u, v))$
- Hash function: Sim Hash.
 - Random projection: Take a random vector r and set $h_r(u) = \operatorname{sign}(r \cdot u)$



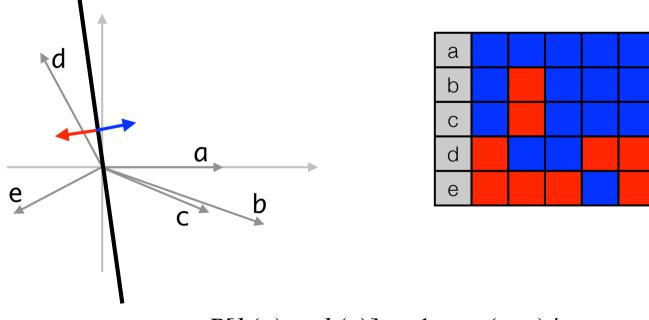


- Collection of vectors.
- Distance between two vectors is the angular distance between them $dist(u, v) = \angle (u, v)/\pi$.
 - Assume u and v are unit vectors. Then $u \cdot v = \cos(\angle(u, v))$
- Hash function: Sim Hash.
 - Random projection: Take a random vector r and set $h_r(u) = \operatorname{sign}(r \cdot u)$





- · Collection of vectors.
- Distance between two vectors is the angular distance between them $dist(u, v) = \angle (u, v)/\pi$.
 - Assume u and v are unit vectors. Then $u \cdot v = \cos(\angle(u, v))$
- Hash function: Sim Hash.
 - Random projection: Take a random vector r and set $h_r(u) = \operatorname{sign}(r \cdot u)$



• Can show that $P[h(u) = h(v)] = 1 - \angle (u, v) / \pi$.