Streaming 2: (Distinct) element count

Philip Bille Inge Li Gørtz Eva Rotenberg

The streaming model

Stream, $\sigma: a_1, a_2, a_3, \ldots$ of elements $a_i \in U$ from some universe. Maintain a small working memory. When seeing element a_i , update the memory depending only on a_i .

Goal: by the end of the stream, have completed some task.

Last week: Frequent elements

 $\begin{array}{l} \text{if } \underline{j \in keys(A)} \text{ then} \\ \mid A[j]++; \\ \text{else if } |keys(A)| < k-1 \\ \text{ then} \\ \mid A[j] \rightarrow 1; \\ \text{else} \\ \mid \text{ decrement all } A[j]. \end{array}$

Task: Detect very common colours.

Misra-Gries: Keep track of the k - 1 most common colours.

Here, Alice is thinking of a number between 0 and m-1.

Alice wants to tell Bob this number using few bits.

Exact: $\lceil \lg m \rceil$ bits. $\lceil \lg m \rceil - 1$ bits? (Exercise)

 $\lceil \lg \lg m \rceil$ bits? (Exercise)

Counting

Imagine you want to count the elements.

Space of exact count: log *n* bits memory needed.

Approx count: $\log \log n$ bits. Challenge: when to update?

Probabilistic counting

 $X \leftarrow 0;$ for $\underline{a_i \text{ in stream } \mathbf{do}}$ $| \quad w. \text{ prob. } 2^{-X}:`$ $| \quad X^{++};$ end return $2^X - 1$

Keep an approximate count: store *c* such that $2^c \simeq n$ Update randomly with decreasing probability. Maintain 2^c is *n* in expectation.

Question: With which probability?

When c turns c_0 , $n \simeq 2^{c_0}$, so it should stay there for circa 2^{c_0} turns. \Rightarrow probability circa $1/2^{c_0}$.

(Question: smart way of rolling a 2^m -sided dice?)

Probabilistic counting

 $X \leftarrow 0;$ for $\underline{a_i}$ in stream do | w. prob. 2^{-X} : | X++; end return $2^X - 1$

Space: $\log X$ bits \leftarrow expected $\lg \lg m$ bits Correctness:

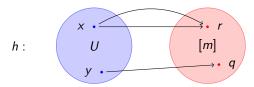
- X_i value of X after processing a_i
- Set $Y_i = 2^{X_i}$
- Exercise: prove $\mathbb{E}[Y_m] = m + 1$ Hint: induction.

Probabilistic counting

Induction start: $X \leftarrow 0$: $X_0 = 0, Y_0 = 2^{X_0} = 1$ for a_i in stream do w. prob. 2^{-X} : X++; Induction step: Assume $E[Y_{m-1}] = m$ end $E[Y_m] = E[2^{X_m}] = \sum_{i=1}^{\infty} 2^j P[X_m = j]$ return $2^{X} - 1$ $=\sum_{i}2^{j}\left(P[X_{m-1}=j]\cdot(1-\frac{1}{2^{j}})+P[X_{m-1}=j-1]\cdot\frac{1}{2^{j-1}}\right)$ $=\sum_{i} 2^{j} P[X_{m-1} = j] + \sum_{i} (-P[X_{m-1} = j] + 2P[X_{m-1} = j-1])$ $= E[Y_{m-1}] + \sum_{i} P[X_{m-1} = j]$ = m + 1

Distinct element count

Reminder: hashing



Kiddie definition: A hash function is a function from U to [m]. A hash function is a random variable in the set of functions $U \rightarrow [m]$. Question: If |U| = u and |[m]| = m, how many functions $U \rightarrow [m]$? In practise, h is chosen uniform at random from a subset of $f : U \rightarrow [m]$. 2-independent hashing: For all $x \neq y \in U$, $q, r \in [m]$, $P[h(x) = r \land h(y) = q] = \frac{1}{m^2}$.

Distinct element count

Imagine you want to count element types (e.g. colours, see figure).

Challenge: A random dice roll that depends on the input.

Solution: Hashing.

Take a 2-independent hash function h.

Use z = the number of trailing 0s in the hash values h(x) seen so far. Note: h is uniform, so $\frac{1}{2}$ end with 0, $\frac{1}{4}$ end with 00, $\frac{1}{8}$ with 000 etc. Estimate: count $\simeq 2^{z+\frac{1}{2}}$. (we denote this \hat{d} , estimator of d) Exercise: Bound $P[\hat{d} \ge 3d]$ and $P[\hat{d} \le d/3]$.

Distinct element count

 $z \leftarrow 0,$ for $\underline{a_i \text{ in stream}}$ do $\begin{vmatrix} z = \\ \max\{z, 0s(h(a_i))\} \end{vmatrix}$ end return $2^{z+0.5}$

Use z = the max n.o. trailing 0s in the hash values h(x) seen so far. Estimate: count $\simeq \hat{d} = 2^{z+\frac{1}{2}}$.

Exercise: Bound
$$P[\hat{d} \ge 3d]$$
 and $P[\hat{d} \le d/3]$.

- *a*: smallest integer s.t. $2^{a+\frac{1}{2}} \ge 3d$
- b: largest integer s.t. $2^{b+\frac{1}{2}} \leq d/3$

 $\begin{array}{l} Y_r: \text{ nunber of distinct elements } a_i \text{ with } 0s(h(a_i)) \geq r \\ \text{Hint: } P[\hat{d} \geq 3d] = P[z \geq a] = P[Y_a > 0] = ? \\ P[\hat{d} \leq d/3] = P[z \leq b] = P[Y_{b+1} = 0] = ? \end{array}$

Lemma: \hat{d} deviates from d by a factor 3 with prob. $\leq 2\frac{\sqrt{2}}{3}$. Not very impressive. Still interesting! What if we run k independent copies of the algorithm and return the median, m? m > 3d means k/2 of the copies exceed 3d. Expected: only $k\frac{\sqrt{2}}{3}$ exceed 3d. Since they are independent, we can use Chernoff. \Rightarrow prob. $2^{-\Omega(k)}$. How well does $\hat{d} = 2^{z+\frac{1}{2}}$ estimate d? $X_{r,i}$: indicator variable for > r zeros in the hash value h(i). $\mathbb{E}[X_{r,i}] = P[r \text{ coinflips turn head}] = \left(\frac{1}{2}\right)^{r}$. $Y_r = \sum_{i \in \text{stream}} X_{r,i}$: number of seen elements with $\geq r$ 0s. $\mathbb{E}[Y_r] = d \cdot \mathbb{E}[X_{r*}] = \frac{d}{2r}$ $Var[Y_r] = \sum_i Var[X_{r,j}] \le \sum_i \mathbb{E}[X_{r,j}^2] = \sum_i \mathbb{E}[X_{r,j}] = \frac{d}{2^r} (i \in \text{stream})$ $P[Y_r > 0] = P[Y_r > 1] \stackrel{\text{Markov}}{\leq} \frac{\mathbb{E}[Y_r]}{\mathbb{E}[Y_r]} = \frac{d}{2r}$ $P[Y_r = 0] \le P[|Y_r - \mathbb{E}[Y_r]| \ge \frac{d}{2^r}] \stackrel{\text{Chebysh.}}{\le} \frac{\mathbb{E}[Y_r]}{(d/2^r)^2} \le \frac{1}{(d/2^r)}$ Now, the probability of \hat{d} being within a factor 3 of d. $P[\hat{d} > 3d] = P[z > a]$ for some a with $2^{a+1/2} > 3d$. $= P[Y_a > 0] \le \frac{d}{2^a} = \frac{3 \cdot d \cdot \sqrt{2}}{3 \cdot 2^a \cdot \sqrt{2}} = \frac{\sqrt{2}}{3} \cdot \frac{3d}{2^{a+\frac{1}{2}}} \le \frac{\sqrt{2}}{3}.$ Similarly, $P[\hat{d} < d/3] < \frac{\sqrt{2}}{2}$.

Assume we have an algorithm taking up *s* bits space and deterministically, exactly able to report the number of distinct elements. Then, given any binary sequence *x* of length *n*, we can do the following: Let the algorithm stream through a sequence consisting of $i : x_i = 1$. Example: x = 1001101 Stream: 1,4,5,7.

Then, the state of the algorithm must be some configuration reflecting this information.

Now, regardless of what x was, we can recover x by streaming the following sequence: $1, 2, 3, 4, \ldots$, each time noticing whether the number of distinct elements goes up.

Thus, the state of the algorithm must have been able to distinguish between all different strings of length $n \Rightarrow s = n$.

Exercise: spend 2 minutes convincing yourself/your neighbour about this.