Streaming 2: (Distinct) element count

Philip Bille Inge Li Gørtz Eva Rotenberg

The streaming model

Stream, $\sigma: a_{1}, a_{2}, a_{3}, \ldots$ of elements $a_{i} \in U$ from some universe.
Maintain a small working memory. When seeing element a_{i}, update the memory depending only on a_{i}.
Goal: by the end of the stream, have completed some task.

Last week: Frequent elements

$$
\begin{aligned}
& \text { if } \frac{j \in \operatorname{keys}(A)}{} \text { then } \\
& \text { else if } \mid \mathrm{j}]++; \\
& \text { theys }(A) \mid<k-1 \\
& \mid \mathrm{A}[j] \rightarrow 1 ; \\
& \text { else } \\
& \mid \text { decrement all } \mathrm{A}[\mathrm{j}] .
\end{aligned}
$$

Task: Detect very common colours.
Misra-Gries: Keep track of the $k-1$ most common colours.

Communicating numbers

Here, Alice is thinking of a number between 0 and $m-1$.

Alice wants to tell Bob this number using few bits.
Exact: $\lceil\lg m\rceil$ bits.
$\lceil\lg m\rceil-1$ bits? (Exercise)
$\lceil\lg \lg m\rceil$ bits? (Exercise)

Counting

Imagine you want to count the elements.
Space of exact count: $\log n$ bits memory needed.
Approx count: $\log \log n$ bits. Challenge: when to update?

$$
\begin{aligned}
& \bullet \bullet^{\circ} \div \text { ! } \because 88
\end{aligned}
$$

$$
\begin{aligned}
& \text { ! }
\end{aligned}
$$

Probabilistic counting

$$
X \leftarrow 0 ;
$$

for a_{i} in stream do
w. prob. 2^{-x} :

$$
X++;
$$

end
return $\underline{2^{x}-1}$

Keep an approximate count: store c such that $2^{c} \simeq n$
Update randomly with decreasing probability. Maintain 2^{c} is n in expectation.
Question: With which probability?
When c turns $c_{0}, n \simeq 2^{c_{0}}$, so it should stay there for circa $2^{c_{0}}$ turns. \Rightarrow probability circa $1 / 2^{c_{0}}$.
(Question: smart way of rolling a 2^{m}-sided dice?)

Probabilistic counting

$$
\begin{aligned}
& X \leftarrow 0 ; \\
& \text { for } a_{i} \text { in stream do } \\
& \text { w. prob. } 2^{-x} \text { : } \\
& \text { X++; } \\
& \text { end } \\
& \text { return } \underline{2^{x}-1}
\end{aligned}
$$

Space: $\log X$ bits
\leftarrow expected $\lg \lg m$ bits
Correctness:

- X_{i} value of X after processing a_{i}
- Set $Y_{i}=2^{X_{i}}$
- Exercise: prove $\mathbb{E}\left[Y_{m}\right]=m+1$

Hint: induction.

Probabilistic counting

Induction start:
$X_{0}=0, Y_{0}=2^{X_{0}}=1$
Induction step:
Assume $E\left[Y_{m-1}\right]=m$

$$
\begin{aligned}
E\left[Y_{m}\right]=E\left[2^{X_{m}}\right] & =\sum_{j=0}^{\infty} 2^{j} P\left[X_{m}=j\right] \quad \begin{array}{c}
\text { end } \\
\text { return } \\
\\
\end{array}=\sum_{j} 2^{j}\left(P\left[X_{m-1}=j\right] \cdot\left(1-\frac{1}{2^{j}}\right)+P\left[X_{m-1}=j-1\right] \cdot \frac{1}{2^{j-1}}\right) \\
& =\sum_{j} 2^{j} P\left[X_{m-1}=j\right]+\sum_{j}\left(-P\left[X_{m-1}=j\right]+2 P\left[X_{m-1}=j-1\right]\right) \\
& =E\left[Y_{m-1}\right]+\sum_{j} P\left[X_{m-1}=j\right] \\
& =m+1
\end{aligned}
$$

Distinct element count

Reminder: hashing

h :

Kiddic definition: A hash function is a function from U to $[m]$. A hash function is a random variable in the set of functions $U \rightarrow[m]$.
Question: If $|U|=u$ and $|[m]|=m$, how many functions $U \rightarrow[m]$?
In practise, h is chosen uniform at random from a subset of $f: U \rightarrow[m]$.
2-independent hashing: For all $x \neq y \in U, q, r \in[m]$,
$P[h(x)=r \wedge h(y)=q]=\frac{1}{m^{2}}$.

Distinct element count

$$
\begin{aligned}
& z \leftarrow 0, \\
& \text { for } \frac{a_{i} \text { in stream do }}{z=} \\
& \quad \max \left\{z, 0 s\left(h\left(a_{i}\right)\right)\right\} \\
& \text { end } \\
& \text { return } 2^{z+0.5}
\end{aligned}
$$

Imagine you want to count element types (e.g. colours, see figure).
Challenge: A random dice roll that depends on the input.
Solution: Hashing.
Take a 2-independent hash function h.
Use $z=$ the number of trailing 0 s in the hash values $h(x)$ seen so far. Note: h is uniform, so $\frac{1}{2}$ end with $0, \frac{1}{4}$ end with $00, \frac{1}{8}$ with 000 etc.
Estimate: count $\simeq 2^{z+\frac{1}{2}}$. (we denote this \hat{d}, estimator of d)
Exercise: Bound $P[\hat{d} \geq 3 d]$ and $P[\hat{d} \leq d / 3]$.

Distinct element count

$$
z \leftarrow 0,
$$

$$
\text { for } a_{i} \text { in stream do }
$$

$$
z=
$$

$$
\max \left\{z, 0 s\left(h\left(a_{i}\right)\right)\right\}
$$

end
return $\underline{2^{z+0.5}}$
Use $z=$ the max n.o. trailing 0 s in the hash values $h(x)$ seen so far.
Estimate: count $\simeq \hat{d}=2^{z+\frac{1}{2}}$.
Exercise: Bound $P[\hat{d} \geq 3 d]$ and $P[\hat{d} \leq d / 3]$.
a: smallest integer s.t. $2^{a+\frac{1}{2}} \geq 3 d$
b : largest integer s.t. $2^{b+\frac{1}{2}} \leq d / 3$
Y_{r} : nunber of distinct elements a_{i} with $0 s\left(h\left(a_{i}\right)\right) \geq r$
Hint: $P[\hat{d} \geq 3 d]=P[z \geq a]=P\left[Y_{a}>0\right]=$?

$$
P[\hat{d} \leq d / 3]=P[z \leq b]=P\left[Y_{b+1}=0\right]=?
$$

The Median Trick

Lemma: \hat{d} deviates from d by a factor 3 with prob. $\leq 2 \frac{\sqrt{2}}{3}$.
Not very impressive. Still interesting!
What if we run k independent copies of the algorithm and return the median, m ?
$m>3 d$ means $k / 2$ of the copies exceed $3 d$.
Expected: only $k \frac{\sqrt{2}}{3}$ exceed $3 d$.
Since they are independent, we can use Chernoff. \Rightarrow prob. $2^{-\Omega(k)}$.

Distinct element count: Analysis.

How well does $\hat{d}=2^{z+\frac{1}{2}}$ estimate d ?
$X_{r, j}$: indicator variable for $\geq r$ zeros in the hash value $h(j)$.
$\mathbb{E}\left[X_{r, j}\right]=P[r$ coinflips turn head $]=\left(\frac{1}{2}\right)^{r}$.
$Y_{r}=\sum_{j \in \text { stream }} X_{r, j}$: number of seen elements with $\geq r 0$ s.
$\mathbb{E}\left[Y_{r}\right]=d \cdot \mathbb{E}\left[X_{r, *}\right]=\frac{d}{2^{r}}$
$\operatorname{Var}\left[Y_{r}\right]=\sum_{j} \operatorname{Var}\left[X_{r, j}\right] \leq \sum_{j} \mathbb{E}\left[X_{r, j}^{2}\right]=\sum_{j} \mathbb{E}\left[X_{r, j}\right]=\frac{d}{2^{r}}$ ($j \in$ stream $)$
$P\left[Y_{r}>0\right]=P\left[Y_{r} \geq 1\right] \stackrel{\text { Marko }}{\leq} \frac{\mathbb{E}\left[Y_{r}\right]}{1}=\frac{d}{2^{r}}$
$P\left[Y_{r}=0\right] \leq P\left[\left|Y_{r}-\mathbb{E}\left[Y_{r}\right]\right| \geq \frac{d}{2^{r}}\right] \stackrel{\text { Cheovsh. }}{\leq} \frac{\mathbb{E}\left[Y_{r}\right]}{\left(d / 2^{r}\right)^{2}} \leq \frac{1}{\left(d / 2^{r}\right)}$
Now, the probability of \hat{d} being within a factor 3 of d.
$P[\hat{d} \geq 3 d]=P[z \geq a]$ for some a with $2^{a+1 / 2} \geq 3 d$.
$=P\left[Y_{a}>0\right] \leq \frac{d}{2^{a}}=\frac{3 \cdot d \cdot \sqrt{2}}{3 \cdot 2^{a} \cdot \sqrt{2}}=\frac{\sqrt{2}}{3} \cdot \frac{3 d}{2^{a+\frac{1}{2}}} \leq \frac{\sqrt{2}}{3}$.
Similarly, $P[\hat{d} \leq d / 3] \leq \frac{\sqrt{2}}{3}$.

A Lower Bound

Assume we have an algorithm taking up s bits space and deterministically, exactly able to report the number of distinct elements.
Then, given any binary sequence x of length n, we can do the following:
Let the algorithm stream through a sequence consisting of $i: x_{i}=1$.
Example: $x=1001101$ Stream: 1,4,5,7.
Then, the state of the algorithm must be some configuration reflecting this information.
Now, regardless of what x was, we can recover x by streaming the following sequence: $1,2,3,4, \ldots$, each time noticing whether the number of distinct elements goes up.
Thus, the state of the algorithm must have been able to distinguish between all different strings of length $n . \Rightarrow s=n$.
Exercise: spend 2 minutes convincing yourself/your neighbour about this.

