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The streaming model

memory:
Lorem ipsum dolor sit amet, conse
ctetur adipiscing elit, sed do eiusm
od tempor incididunt ut labore et 
dolore magna aliqua. 

Stream, σ: a1, a2, a3, . . . of elements ai ∈ U from some universe.

Maintain a small working memory. When seeing element ai , update the

memory depending only on ai .

Goal: by the end of the stream, have completed some task.
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Last week: Frequent elements

234
1

if j ∈ keys(A) then
A[j]++;

else if |keys(A)| < k − 1

then
A[j] → 1;

else
decrement all A[j].

Task: Detect very common colours.

Misra-Gries: Keep track of the k − 1 most common colours.
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Communicating numbers

Here, Alice is thinking of a number between 0 and m − 1.

Alice wants to tell Bob this number using few bits.

Exact: dlgme bits.

dlgme − 1 bits? (Exercise)

dlg lgme bits? (Exercise)
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Counting

box no. ~ 223, 
box no. ~ 223

, 
           ...

Imagine you want to count the elements.

Space of exact count: log n bits memory needed.

Approx count: log log n bits. Challenge: when to update?

!
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Probabilistic counting

box no. ~ 223, 
box no. ~ 223

, 
           ...

X ← 0;

for ai in stream do
w. prob. 2−X :‘

| X++;

end

return 2X − 1

Keep an approximate count: store c such that 2c ' n

Update randomly with decreasing probability. Maintain 2c is n in

expectation.

Question: With which probability?

When c turns c0, n ' 2c0 , so it should stay there for circa 2c0 turns. ⇒
probability circa 1/2c0 .

(Question: smart way of rolling a 2m-sided dice?)
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Probabilistic counting

box no. ~ 223, 
box no. ~ 223

, 
           ...

X ← 0;

for ai in stream do
w. prob. 2−X :

| X++;

end

return 2X − 1

Space: logX bits ← expected lg lgm bits

Correctness:

Xi value of X after processing ai

Set Yi = 2Xi

Exercise: prove E[Ym] = m + 1 Hint: induction.
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Probabilistic counting

Induction start:

X0 = 0, Y0 = 2X0 = 1

Induction step:

Assume E [Ym−1] = m

X ← 0;

for ai in stream do
w. prob. 2−X :

| X++;

end

return 2X − 1
E [Ym] = E [2Xm ] =

∞∑
j=0

2jP[Xm = j]

=
∑
j

2j
(
P[Xm−1 = j] · (1 −

1

2j
) + P[Xm−1 = j − 1] ·

1

2j−1

)
=
∑
j

2jP[Xm−1 = j] +
∑
j

(−P[Xm−1 = j] + 2P[Xm−1 = j − 1])

= E [Ym−1] +
∑
j

P[Xm−1 = j]

= m + 1
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Distinct element count
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Reminder: hashing

h : U [m]

x

y

r

q

Kiddie definition: A hash function is a function from U to [m].

A hash function is a random variable in the set of functions U → [m].

Question: If |U| = u and |[m]| = m, how many functions U → [m]?

In practise, h is chosen uniform at random from a subset of f : U → [m].

2-independent hashing: For all x 6= y ∈ U, q, r ∈ [m],

P[h(x) = r ∧ h(y) = q] = 1
m2 .
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Distinct element count

  colour
no. ~210

z ← 0,

for ai in stream do
z =

max{z , 0s(h(ai ))}
end

return 2z+0.5

Imagine you want to count element types (e.g. colours, see figure).

Challenge: A random dice roll that depends on the input.

Solution: Hashing.

Take a 2-independent hash function h.

Use z = the number of trailing 0s in the hash values h(x) seen so far.

Note: h is uniform, so 1
2 end with 0, 1

4 end with 00, 1
8 with 000 etc.

Estimate: count ' 2z+ 1
2 . (we denote this d̂ , estimator of d)

Exercise: Bound P[d̂ ≥ 3d ] and P[d̂ ≤ d/3].
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Distinct element count

  colour
no. ~210

z ← 0,

for ai in stream do
z =

max{z , 0s(h(ai ))}
end

return 2z+0.5

Use z = the max n.o. trailing 0s in the hash values h(x) seen so far.

Estimate: count ' d̂ = 2z+ 1
2 .

Exercise: Bound P[d̂ ≥ 3d ] and P[d̂ ≤ d/3].

a: smallest integer s.t. 2a+ 1
2 ≥ 3d

b: largest integer s.t. 2b+ 1
2 ≤ d/3

Yr : nunber of distinct elements ai with 0s(h(ai )) ≥ r

Hint: P[d̂ ≥ 3d ] = P[z ≥ a] = P[Ya > 0] =?

Hint: P[d̂ ≤ d/3] = P[z ≤ b] = P[Yb+1 = 0] =?
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The Median Trick

Lemma: d̂ deviates from d by a factor 3 with prob. ≤ 2
√

2
3 .

Not very impressive. Still interesting!

What if we run k independent copies of the algorithm and return the

median, m?

m > 3d means k/2 of the copies exceed 3d .

Expected: only k
√

2
3 exceed 3d .

Since they are independent, we can use Chernoff. ⇒ prob. 2−Ω(k).
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Distinct element count: Analysis.

How well does d̂ = 2z+ 1
2 estimate d?

Xr ,j : indicator variable for ≥ r zeros in the hash value h(j).

E[Xr ,j ] = P[r coinflips turn head] =
(

1
2

)r
.

Yr =
∑

j∈stream Xr ,j : number of seen elements with ≥ r 0s.

E[Yr ] = d · E[Xr ,∗] = d
2r

Var [Yr ] =
∑

j Var [Xr ,j ] ≤
∑

j E[X 2
r ,j ] =

∑
j E[Xr ,j ] = d

2r (j∈stream)

P[Yr > 0] = P[Yr ≥ 1]
Markov

≤ E[Yr ]
1 = d

2r

P[Yr = 0] ≤ P[|Yr − E[Yr ]| ≥ d
2r ]

Chebysh.

≤ E[Yr ]
(d/2r )2 ≤ 1

(d/2r )

Now, the probability of d̂ being within a factor 3 of d .

P[d̂ ≥ 3d ] = P[z ≥ a] for some a with 2a+1/2 ≥ 3d .

= P[Ya > 0] ≤ d
2a = 3·d·

√
2

3·2a·
√

2
=
√

2
3 ·

3d

2a+ 1
2
≤
√

2
3 .

Similarly, P[d̂ ≤ d/3] ≤
√

2
3 .
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A Lower Bound

Assume we have an algorithm taking up s bits space and

deterministically, exactly able to report the number of distinct elements.

Then, given any binary sequence x of length n, we can do the following:

Let the algorithm stream through a sequence consisting of i : xi = 1.

Example: x = 1001101 Stream: 1, 4, 5, 7.

Then, the state of the algorithm must be some configuration reflecting

this information.

Now, regardless of what x was, we can recover x by streaming the

following sequence: 1, 2, 3, 4, . . ., each time noticing whether the number

of distinct elements goes up.

Thus, the state of the algorithm must have been able to distinguish

between all different strings of length n.⇒ s = n.

Exercise: spend 2 minutes convincing yourself/your neighbour about this.
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