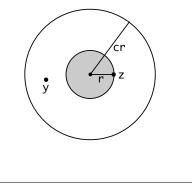
Approximate Near Neighbor Search: Locality Sensitive Hashing

Inge Li Gørtz

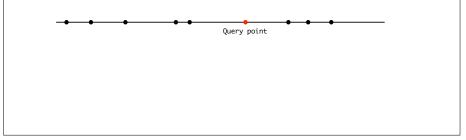
Approximate Near Neighbors

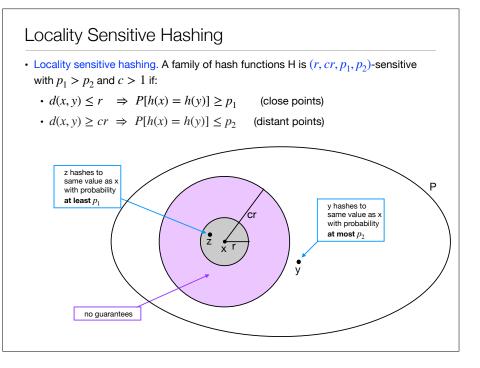
- . ApproximateNearNeighbor(x): Return a point y such that $d(x, y) \le c \cdot \min_{z \in P} d(x, z)$
- c-Approximate r-Near Neighbor: Given a point x if there exists a point z in P $d(x, z) \leq r$ then return a point y such that $d(x, y) \leq c \cdot r$. If no such point z exists return Fail.
- Randomised version: Return such an y with probability δ .

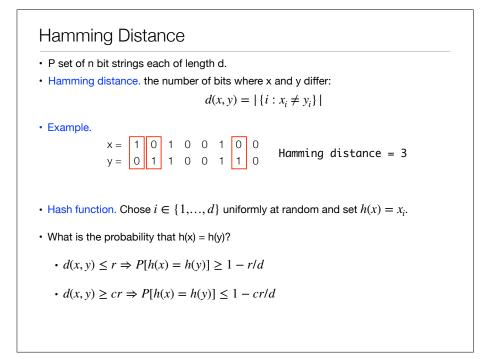


Nearest Neighbor

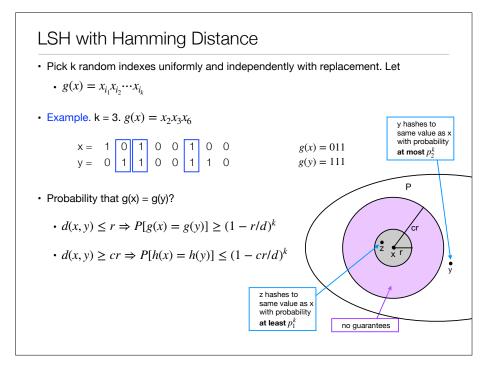
- Nearest Neighbor. Given a set of points P in a metric space, build a data structure which given a query point x returns the point in P closest to x.
- Metric. Distance function d is a metric:
 - 1. $d(x,y) \ge 0$
 - 2. d(x,y) = 0 if and only if x = y
 - 3. d(x,y) = d(y,x)
 - $4. \ d(x,y) \leq d(x,z) + d(z,y)$
- Warmup. 1D: Real line

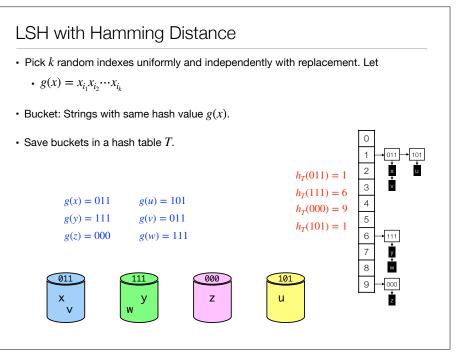






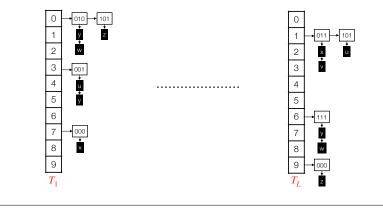
- Pick \boldsymbol{k} random indexes uniformly and independently with replacement. Let
 - $g(x) = x_{i_1} x_{i_2} \cdots x_{i_k}$
- Bucket: Strings with same hash value g(x).





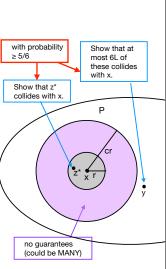
LSH with Hamming Distance: Amplification

- Construct *L* hash tables T_j . Each table T_j has its own independently chosen hash function h_j and its own independently chosen locality sensitive hash function g_j .
- **Insert(***x***):** Insert *x* in the list of $g_i(x)$ in T_i .
- Query(x): For all $1 \le j \le L$ check each element in bucket $g_j(x)$ in T_j . Return the one closest to x.



LSH with Hamming Distance

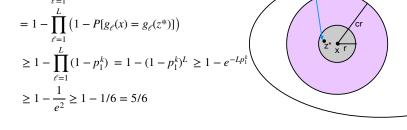
- Check strings in buckets until we find one that is at most Cr away from x. Return closest.
- To ensure a query time of O(L) we stop checking strings in the buckets after we have checked 6L+1 and return FAIL.
- Theorem. If there exists a string *z** in *P* with *d*(*x*,*z**) ≤ *r* then with probability at least 2/3 we will return some y in *P* for which *d*(*x*,*y*) ≤ *cr*.
- Proof idea.
 - Show that with probability at least 5/6 there are at most 6L strings far away that collides with *x*.
 - Already showed the probability that z* is in the same bucket as x in at least one of the *L* hash tables is at least 5/6.



LSH with Hamming Distance

Let
$$k = \frac{\lg n}{\lg(1/p_2)}$$
, $\rho = \frac{\lg(1/p_1)}{\lg(1/p_2)}$, and $L = \lceil 2n^{\rho} \rceil$, where $p_1 = 1 - r/d$ and $p_2 = 1 - cr/d$.

- Claim 1. If there exists a string *z** in *P* with *d*(*x*,*z**) ≤ *r* then with probability at least 5/6 we will return some *z* in *P* for which *d*(*x*,*z*) ≤ *r*.
- Probability that z^* collides with x: • $P[\exists \ell : g_{\ell}(x) = g_{\ell}(z^*)] = 1 - P[g_{\ell}(x) \neq g_{\ell}(z^*) \text{ for all } \ell]$ $= 1 - \prod_{\ell=1}^{L} P[g_{\ell}(x) \neq g_{\ell}(z^*)]$ $= 1 - \prod_{\ell=1}^{L} (1 - P[g_{\ell}(x) = g_{\ell}(z^*)])$



Р

Locality Sensitive Hashing

- Locality sensitive hashing. A family of hash functions $\mathscr H$ is (r,cr,p_1,p_2) -sensitive with $p_1>p_2$ and c>1 if:
 - $d(x, y) \le r \implies P[h(x) = h(y)] \ge p_1$ (close points)
 - $d(x, y) \ge cr \implies P[h(x) = h(y)] \le p_2$ (distant points)
- Amplification.
 - Choose *L* hash functions $g_j(x) = h_{1,j}(x) \cdot h_{2,j}(x) \cdots h_{k,j}(x)$, where $h_{i,j}$ is chosen independently and uniformly at random from \mathcal{H} .

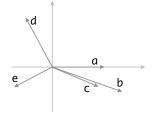
Jaccard distance and Min Hash

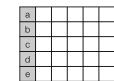
Jaccard distance. Jaccard similarity: $Jsim(A, B) = \frac{|A \cap B|}{|A \cup B|}$

- · Jaccard distance: 1- Jsim(A,B).
- Hash function: Min Hash. (exercise)

Angular Distance and Sim Hash

- · Collection of vectors.
- Distance between two vectors is the angular distance between them $dist(u, v) = \angle(u, v)/\pi$.
 - Assume u and v are unit vectors. Then $u \cdot v = \cos(\angle(u, v))$
- Hash function: Sim Hash.
 - Random projection: Take a random vector r and set $h_r(u) = \operatorname{sign}(r \cdot u)$





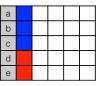
Angular Distance and Sim Hash

- · Collection of vectors.
- Distance between two vectors is the angular distance between them $dist(u, v) = \angle(u, v)/\pi$.
 - Assume u and v are unit vectors. Then $u \cdot v = \cos(\angle(u, v))$
- Hash function: Sim Hash.
 - Random projection: Take a random vector **r** and set $h_r(u) = \operatorname{sign}(r \cdot u)$

Angular Distance and Sim Hash

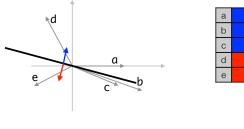
- · Collection of vectors.
- Distance between two vectors is the angular distance between them $dist(u, v) = \angle (u, v)/\pi$.
 - Assume u and v are unit vectors. Then $u \cdot v = \cos(\angle(u, v))$
- Hash function: Sim Hash.
 - Random projection: Take a random vector r and set $h_r(u) = \operatorname{sign}(r \cdot u)$





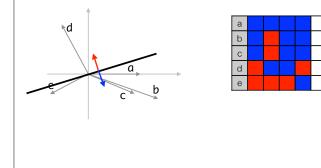
Angular Distance and Sim Hash

- · Collection of vectors.
- Distance between two vectors is the angular distance between them $dist(u, v) = \angle(u, v)/\pi$.
 - Assume u and v are unit vectors. Then $u \cdot v = \cos(\angle(u, v))$
- Hash function: Sim Hash.
 - Random projection: Take a random vector **r** and set $h_r(u) = \operatorname{sign}(r \cdot u)$



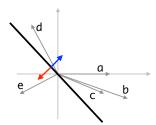
Angular Distance and Sim Hash

- · Collection of vectors.
- Distance between two vectors is the angular distance between them $\operatorname{dist}(u, v) = \angle(u, v)/\pi$.
 - Assume u and v are unit vectors. Then $u \cdot v = \cos(\angle(u, v))$
- Hash function: Sim Hash.
 - Random projection: Take a random vector **r** and set $h_r(u) = \operatorname{sign}(r \cdot u)$



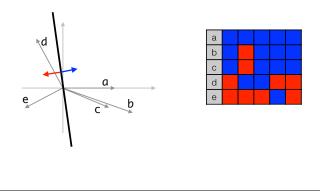
Angular Distance and Sim Hash

- · Collection of vectors.
- Distance between two vectors is the angular distance between them $dist(u, v) = \angle(u, v)/\pi$.
 - Assume u and v are unit vectors. Then $u \cdot v = \cos(\angle(u, v))$
- Hash function: Sim Hash.
 - Random projection: Take a random vector **r** and set $h_r(u) = \operatorname{sign}(r \cdot u)$



Angular Distance and Sim Hash

- · Collection of vectors.
- Distance between two vectors is the angular distance between them $\operatorname{dist}(u, v) = \angle(u, v)/\pi$.
 - Assume u and v are unit vectors. Then $u \cdot v = \cos(\angle(u, v))$
- Hash function: Sim Hash.
 - Random projection: Take a random vector **r** and set $h_r(u) = \operatorname{sign}(r \cdot u)$



Angular Distance and Sim Hash

- Collection of vectors.
- Distance between two vectors is the angular distance between them $dist(u, v) = \angle (u, v)/\pi$.
 - Assume u and v are unit vectors. Then $u \cdot v = \cos(\angle(u, v))$
- Hash function: Sim Hash.
 - Random projection: Take a random vector **r** and set $h_r(u) = \operatorname{sign}(r \cdot u)$

