Approximate Near Neighbor Search: Locality Sensitive Hashing

Inge Li Gørtz

Nearest Neighbor

- Nearest Neighbor. Given a set of points P in a metric space, build a data structure which given a query point x returns the point in P closest to x.
- Metric. Distance function d is a metric:
 - 1. $d(x,y) \ge 0$
 - 2. d(x,y) = 0 if and only if x = y
 - 3. d(x,y) = d(y,x)
 - 4. $d(x,y) \le d(x,z) + d(z,y)$
- Warmup. 1D: Real line

Approximate Near Neighbors

- . ApproximateNearNeighbor(x): Return a point y such that $d(x, y) \le c \cdot \min_{z \in P} d(x, z)$
- c-Approximate r-Near Neighbor: Given a point x if there exists a point z in P $d(x,z) \le r$ then return a point y such that $d(x,y) \le c \cdot r$. If no such point z exists return Fail.
- Randomised version: Return such an y with probability δ .

Locality Sensitive Hashing

• Locality sensitive hashing. A family of hash functions H is (r, cr, p_1, p_2) -sensitive with $p_1 > p_2$ and c > 1 if:

•
$$d(x, y) \le r \Rightarrow P[h(x) = h(y)] \ge p_1$$
 (close points)

•
$$d(x, y) \ge cr \implies P[h(x) = h(y)] \le p_2$$
 (distant points)

Hamming Distance

- P set of n bit strings each of length d.
- Hamming distance. the number of bits where x and y differ:

$$d(x, y) = |\{i : x_i \neq y_i\}|$$

• Example.

$$x = \begin{bmatrix} 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\ y = & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 \end{bmatrix}$$
 Hamming distance = 3

- Hash function. Chose $i \in \{1,...,d\}$ uniformly at random and set $h(x) = x_i$.
- What is the probability that h(x) = h(y)?

•
$$d(x, y) \le r \Rightarrow P[h(x) = h(y)] \ge 1 - r/d$$

•
$$d(x, y) \ge cr \Rightarrow P[h(x) = h(y)] \le 1 - cr/d$$

- Pick k random indexes uniformly and independently with replacement. Let
 - $\bullet \ g(x) = x_{i_1} x_{i_2} \cdots x_{i_k}$
- Example. k = 3. $g(x) = x_2x_3x_6$

- g(x) = 011
- g(y) = 111

y hashes to same value as x with probability at most p_2^k

- Probability that g(x) = g(y)?
 - $d(x, y) \le r \Rightarrow P[g(x) = g(y)] \ge (1 r/d)^k$
 - $d(x, y) \ge cr \Rightarrow P[h(x) = h(y)] \le (1 cr/d)^k$

e as x billity
no guarantees

z hashes to same value as x with probability at least p_1^k

ullet Pick k random indexes uniformly and independently with replacement. Let

$$\bullet \ g(x) = x_{i_1} x_{i_2} \cdots x_{i_k}$$

• Bucket: Strings with same hash value g(x).

$$g(x) = 011$$
 $g(u) = 101$
 $g(y) = 111$ $g(v) = 011$
 $g(z) = 000$ $g(w) = 111$

- Pick k random indexes uniformly and independently with replacement. Let
 - $\bullet \ g(x) = x_{i_1} x_{i_2} \cdots x_{i_k}$
- Bucket: Strings with same hash value g(x).
- Save buckets in a hash table *T*.

$$g(x) = 011$$
 $g(u) = 101$
 $g(y) = 111$ $g(v) = 011$
 $g(z) = 000$ $g(w) = 111$

u

LSH with Hamming Distance: Amplification

- Construct L hash tables T_j . Each table T_j has its own independently chosen hash function h_j and its own independently chosen locality sensitive hash function g_j .
- Insert(x): Insert x in the list of $g_i(x)$ in T_i .
- Query(x): For all $1 \le j \le L$ check each element in bucket $g_j(x)$ in T_j . Return the one closest to x.

Let
$$k=\frac{\lg n}{\lg(1/p_2)}$$
 , $\rho=\frac{\lg(1/p_1)}{\lg(1/p_2)}$, and $L=\lceil 2n^\rho \rceil$, where $p_1=1-r/d$ and $p_2=1-cr/d$.

- Claim 1. If there exists a string z^* in P with $d(x,z^*) \le r$ then with probability at least 5/6 we will return some z in P for which $d(x,z) \le r$.
- Probability that z* collides with x:
 - $P[\exists \ell : g_{\ell}(x) = g_{\ell}(z^*)] = 1 P[g_{\ell}(x) \neq g_{\ell}(z^*) \text{ for all } \ell]$

 z^* hashes to same value as x with probability at least p_1^k

$$= 1 - \prod_{\ell=1}^{L} P[g_{\ell}(x) \neq g_{\ell}(z^{*})]$$

$$= 1 - \prod_{\ell=1}^{L} \left(1 - P[g_{\ell}(x) = g_{\ell}(z^{*})]\right)$$

$$\geq 1 - \prod_{\ell=1}^{L} (1 - p_{1}^{k}) = 1 - (1 - p_{1}^{k})^{L} \geq 1 - e^{-Lp_{1}^{k}}$$

$$\geq 1 - \frac{1}{e^{2}} \geq 1 - 1/6 = 5/6$$

- Check strings in buckets until we find one that is at most Cr away from x. Return closest.
- To ensure a query time of O(L) we stop checking strings in the buckets after we have checked 6L+1 and return FAIL.
- Theorem. If there exists a string z^* in P with $d(x,z^*) \le r$ then with probability at least 2/3 we will return some y in P for which $d(x,y) \le cr$.
- Proof idea.
 - Show that with probability at least 5/6 there are at most 6L strings far away that collides with x.
 - Already showed the probability that z^* is in the same bucket as x in at least one of the L hash tables is at least 5/6.

Locality Sensitive Hashing

- Locality sensitive hashing. A family of hash functions \mathscr{H} is (r, cr, p_1, p_2) -sensitive with $p_1 > p_2$ and c > 1 if:
 - $d(x, y) \le r \implies P[h(x) = h(y)] \ge p_1$ (close points)
 - $d(x, y) \ge cr \implies P[h(x) = h(y)] \le p_2$ (distant points)
- Amplification.
 - Choose L hash functions $g_j(x) = h_{1,j}(x) \cdot h_{2,j}(x) \cdots h_{k,j}(x)$, where $h_{i,j}$ is chosen independently and uniformly at random from \mathcal{H} .

Jaccard distance and Min Hash

- . Jaccard distance. Jaccard similarity: $\operatorname{Jsim}(A,B) = \frac{|A \cap B|}{|A \cup B|}$
 - Jaccard distance: 1- Jsim(A,B).
 - Hash function: Min Hash. (exercise)

- · Collection of vectors.
- Distance between two vectors is the angular distance between them $dist(u, v) = \angle(u, v)/\pi$.
 - Assume u and v are unit vectors. Then $u \cdot v = \cos(\angle(u, v))$
- Hash function: Sim Hash.
 - Random projection: Take a random vector r and set $h_r(u) = \text{sign}(r \cdot u)$

- · Collection of vectors.
- Distance between two vectors is the angular distance between them $dist(u, v) = \angle(u, v)/\pi$.
 - Assume u and v are unit vectors. Then $u \cdot v = \cos(\angle(u, v))$
- · Hash function: Sim Hash.
 - Random projection: Take a random vector r and set $h_r(u) = \text{sign}(r \cdot u)$

а			
b			
С			
d			
е			

- · Collection of vectors.
- Distance between two vectors is the angular distance between them $dist(u, v) = \angle(u, v)/\pi$.
 - Assume u and v are unit vectors. Then $u \cdot v = \cos(\angle(u, v))$
- · Hash function: Sim Hash.
 - Random projection: Take a random vector r and set $h_r(u) = \text{sign}(r \cdot u)$

- · Collection of vectors.
- Distance between two vectors is the angular distance between them $dist(u, v) = \angle(u, v)/\pi$.
 - Assume u and v are unit vectors. Then $u \cdot v = \cos(\angle(u, v))$
- · Hash function: Sim Hash.
 - Random projection: Take a random vector r and set $h_r(u) = \text{sign}(r \cdot u)$

- · Collection of vectors.
- Distance between two vectors is the angular distance between them $dist(u, v) = \angle(u, v)/\pi$.
 - Assume u and v are unit vectors. Then $u \cdot v = \cos(\angle(u, v))$
- · Hash function: Sim Hash.
 - Random projection: Take a random vector r and set $h_r(u) = \text{sign}(r \cdot u)$

- · Collection of vectors.
- Distance between two vectors is the angular distance between them $dist(u, v) = \angle(u, v)/\pi$.
 - Assume u and v are unit vectors. Then $u \cdot v = \cos(\angle(u, v))$
- · Hash function: Sim Hash.
 - Random projection: Take a random vector r and set $h_r(u) = \text{sign}(r \cdot u)$

- · Collection of vectors.
- Distance between two vectors is the angular distance between them $dist(u, v) = \angle(u, v)/\pi$.
 - Assume u and v are unit vectors. Then $u \cdot v = \cos(\angle(u, v))$
- · Hash function: Sim Hash.
 - Random projection: Take a random vector r and set $h_r(u) = \text{sign}(r \cdot u)$

- · Collection of vectors.
- Distance between two vectors is the angular distance between them $dist(u, v) = \angle(u, v)/\pi$.
 - Assume u and v are unit vectors. Then $u \cdot v = \cos(\angle(u, v))$
- Hash function: Sim Hash.
 - Random projection: Take a random vector r and set $h_r(u) = \text{sign}(r \cdot u)$

• Can show that $P[h(u) = h(v)] = 1 - \angle(u, v)/\pi$.