Approximate Near Neighbor Search: Locality Sensitive Hashing

Inge Li Gørtz

Nearest Neighbor

- Nearest Neighbor. Given a set of points P in a metric space, build a data structure which given a query point x returns the point in P closest to x.
- Metric. Distance function d is a metric:

1. $d(x, y) \geq 0$
2. $d(x, y)=0$ if and only if $x=y$
3. $d(x, y)=d(y, x)$
4. $d(x, y) \leq d(x, z)+d(z, y)$

- Warmup. 1D: Real line

Approximate Near Neighbors

- ApproximateNearNeighbor(x): Return a point y such that $d(x, y) \leq c \cdot \min _{z \in P} d(x, z)$
- c-Approximate r -Near Neighbor: Given a point x if there exists a point z in P $d(x, z) \leq r$ then return a point y such that $d(x, y) \leq c \cdot r$. If no such point z exists return Fail.
- Randomised version: Return such an y with probability δ.

Locality Sensitive Hashing

- Locality sensitive hashing. A family of hash functions H is $\left(r, c r, p_{1}, p_{2}\right)$-sensitive with $p_{1}>p_{2}$ and $c>1$ if:
- $d(x, y) \leq r \quad \Rightarrow P[h(x)=h(y)] \geq p_{1} \quad$ (close points)
- $d(x, y) \geq c r \Rightarrow P[h(x)=h(y)] \leq p_{2} \quad$ (distant points)

Hamming Distance

- P set of n bit strings each of length d.
- Hamming distance. the number of bits where x and y differ:

$$
d(x, y)=\left|\left\{i: x_{i} \neq y_{i}\right\}\right|
$$

- Example.

$$
\begin{array}{l|l|llll|l|l}
\mathrm{x}=\begin{array}{|l|llll}
1 & 0 & 1 & 0 & 0 \\
& 1 & 0 & 0 \\
\mathrm{y}= & 0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 & 0
\end{array} \quad \text { Hamming distance }=3
\end{array}
$$

- Hash function. Chose $i \in\{1, \ldots, d\}$ uniformly at random and set $h(x)=x_{i}$.
- What is the probability that $h(x)=h(y)$?
- $d(x, y) \leq r \Rightarrow P[h(x)=h(y)] \geq 1-r / d$
- $d(x, y) \geq c r \Rightarrow P[h(x)=h(y)] \leq 1-c r / d$

LSH with Hamming Distance

- Pick k random indexes uniformly and independently with replacement. Let
- $g(x)=x_{i_{1}} x_{i_{2}} \cdots x_{i_{k}}$
- Example. $\mathrm{k}=3 . g(x)=x_{2} x_{3} x_{6}$

$$
\begin{array}{ll|l|lll|llll}
\mathrm{x}=\begin{array}{ll|llll}
1 & 0 & 1 & 0 & 0 & 1 \\
0 & 0 & g(x)=011 \\
\mathrm{y}= & 0 & 1 & 1 & 0 & 0 \\
1 & 1 & 0 & g(y)=111
\end{array} ~
\end{array}
$$

- Probability that $\mathrm{g}(\mathrm{x})=\mathrm{g}(\mathrm{y})$?
- $d(x, y) \leq r \Rightarrow P[g(x)=g(y)] \geq(1-r / d)^{k}$
- $d(x, y) \geq c r \Rightarrow P[h(x)=h(y)] \leq(1-c r / d)^{k}$
y hashes to same value as x with probability at most p_{2}^{k}

LSH with Hamming Distance

- Pick k random indexes uniformly and independently with replacement. Let
- $g(x)=x_{i_{1}} x_{i_{2}} \cdots x_{i_{k}}$
- Bucket: Strings with same hash value $g(x)$.

$$
\begin{array}{ll}
g(x)=011 & g(u)=101 \\
g(y)=111 & g(v)=011 \\
g(z)=000 & g(w)=111
\end{array}
$$

LSH with Hamming Distance

- Pick k random indexes uniformly and independently with replacement. Let
- $g(x)=x_{i_{1}} x_{i_{2}} \cdots x_{i_{k}}$
- Bucket: Strings with same hash value $g(x)$.
- Save buckets in a hash table T.

$$
\begin{array}{ll}
g(x)=011 & g(u)=101 \\
g(y)=111 & g(v)=011 \\
g(z)=000 & g(w)=111
\end{array}
$$

$$
\begin{aligned}
& h_{T}(011)=1 \\
& h_{T}(111)=6 \\
& h_{T}(000)=9 \\
& h_{T}(101)=1
\end{aligned}
$$

LSH with Hamming Distance: Amplification

- Construct L hash tables T_{j}. Each table T_{j} has its own independently chosen hash function h_{j} and its own independently chosen locality sensitive hash function g_{j}.
- Insert(x): Insert x in the list of $g_{j}(x)$ in T_{j}.
- Query(x): For all $1 \leq j \leq L$ check each element in bucket $g_{j}(x)$ in T_{j}. Return the one closest to x.

LSH with Hamming Distance

Let $k=\frac{\lg n}{\lg \left(1 / p_{2}\right)}, \rho=\frac{\lg \left(1 / p_{1}\right)}{\lg \left(1 / p_{2}\right)}$, and $L=\left\lceil 2 n^{\rho}\right\rceil$, where $p_{1}=1-r / d$ and $p_{2}=1-c r / d$.

- Claim 1. If there exists a string z^{*} in P with $d\left(x, z^{*}\right) \leq r$ then with probability at least 5/6 we will return some z in P for which $d(x, z) \leq r$.
- Probability that z^{*} collides with x :
- $P\left[\exists \ell: g_{\ell}(x)=g_{\ell}\left(z^{*}\right)\right]=1-P\left[g_{\ell}(x) \neq g_{\ell}\left(z^{*}\right)\right.$ for all $\left.\ell\right]$
z^{*} hashes to
same value as x
with probability
at least p_{1}^{k}
$=1-\prod_{\ell=1}^{L} P\left[g_{\ell}(x) \neq g_{\ell}\left(z^{*}\right)\right]$
$=1-\prod_{\ell=1}^{L}\left(1-P\left[g_{\ell}(x)=g_{\ell}\left(z^{*}\right)\right]\right)$
$\geq 1-\prod_{\ell=1}^{L}\left(1-p_{1}^{k}\right)=1-\left(1-p_{1}^{k}\right)^{L} \geq 1-e^{-L p_{1}^{k}}$
$\geq 1-\frac{1}{e^{2}} \geq 1-1 / 6=5 / 6$

LSH with Hamming Distance

- Check strings in buckets until we find one that is at most Cr away from x. Return closest.
- To ensure a query time of $O(L)$ we stop checking strings in the buckets after we have checked 6L+1 and return FAIL.
- Theorem. If there exists a string z^{*} in P with $d\left(x, z^{*}\right) \leq r$ then with probability at least $2 / 3$ we will return some y in P for which $d(x, y) \leq c r$.
- Proof idea.
- Show that with probability at least $5 / 6$ there are at most 6L strings far away that collides with x.
- Already showed the probability that z^{*} is in the same bucket as x in at least one of the L hash tables is at least $5 / 6$.

Locality Sensitive Hashing

- Locality sensitive hashing. A family of hash functions \mathscr{H} is $\left(r, c r, p_{1}, p_{2}\right)$-sensitive with $p_{1}>p_{2}$ and $c>1$ if:
- $d(x, y) \leq r \quad \Rightarrow P[h(x)=h(y)] \geq p_{1} \quad$ (close points)
- $d(x, y) \geq c r \Rightarrow P[h(x)=h(y)] \leq p_{2} \quad$ (distant points)
- Amplification.
- Choose L hash functions $g_{j}(x)=h_{1, j}(x) \cdot h_{2, j}(x) \cdots h_{k, j}(x)$, where $h_{i, j}$ is chosen independently and uniformly at random from \mathscr{H}.

Jaccard distance and Min Hash

. Jaccard distance. Jaccard similarity: $\operatorname{Jsim}(A, B)=\frac{|A \cap B|}{|A \cup B|}$

- Jaccard distance: 1- Jsim(A,B).
- Hash function: Min Hash. (exercise)

Angular Distance and Sim Hash

- Collection of vectors.
- Distance between two vectors is the angular distance between them $\operatorname{dist}(u, v)=\angle(u, v) / \pi$.
- Assume u and v are unit vectors. Then $u \cdot v=\cos (\angle(u, v))$
- Hash function: Sim Hash.
- Random projection: Take a random vector r and set $h_{r}(u)=\operatorname{sign}(r \cdot u)$

Angular Distance and Sim Hash

- Collection of vectors.
- Distance between two vectors is the angular distance between them $\operatorname{dist}(u, v)=\angle(u, v) / \pi$.
- Assume u and v are unit vectors. Then $u \cdot v=\cos (\angle(u, v))$
- Hash function: Sim Hash.
- Random projection: Take a random vector r and set $h_{r}(u)=\operatorname{sign}(r \cdot u)$

a					
b					
c					
d					
e					

Angular Distance and Sim Hash

- Collection of vectors.
- Distance between two vectors is the angular distance between them $\operatorname{dist}(u, v)=\angle(u, v) / \pi$.
- Assume u and v are unit vectors. Then $u \cdot v=\cos (\angle(u, v))$
- Hash function: Sim Hash.
- Random projection: Take a random vector r and set $h_{r}(u)=\operatorname{sign}(r \cdot u)$

Angular Distance and Sim Hash

- Collection of vectors.
- Distance between two vectors is the angular distance between them $\operatorname{dist}(u, v)=\angle(u, v) / \pi$.
- Assume u and v are unit vectors. Then $u \cdot v=\cos (\angle(u, v))$
- Hash function: Sim Hash.
- Random projection: Take a random vector r and set $h_{r}(u)=\operatorname{sign}(r \cdot u)$

a					
b					
c					
d					
e					

Angular Distance and Sim Hash

- Collection of vectors.
- Distance between two vectors is the angular distance between them $\operatorname{dist}(u, v)=\angle(u, v) / \pi$.
- Assume u and v are unit vectors. Then $u \cdot v=\cos (\angle(u, v))$
- Hash function: Sim Hash.
- Random projection: Take a random vector r and set $h_{r}(u)=\operatorname{sign}(r \cdot u)$

Angular Distance and Sim Hash

- Collection of vectors.
- Distance between two vectors is the angular distance between them $\operatorname{dist}(u, v)=\angle(u, v) / \pi$.
- Assume u and v are unit vectors. Then $u \cdot v=\cos (\angle(u, v))$
- Hash function: Sim Hash.
- Random projection: Take a random vector r and set $h_{r}(u)=\operatorname{sign}(r \cdot u)$

Angular Distance and Sim Hash

- Collection of vectors.
- Distance between two vectors is the angular distance between them $\operatorname{dist}(u, v)=\angle(u, v) / \pi$.
- Assume u and v are unit vectors. Then $u \cdot v=\cos (\angle(u, v))$
- Hash function: Sim Hash.
- Random projection: Take a random vector r and set $h_{r}(u)=\operatorname{sign}(r \cdot u)$

Angular Distance and Sim Hash

- Collection of vectors.
- Distance between two vectors is the angular distance between them $\operatorname{dist}(u, v)=\angle(u, v) / \pi$.
- Assume u and v are unit vectors. Then $u \cdot v=\cos (\angle(u, v))$
- Hash function: Sim Hash.
- Random projection: Take a random vector r and set $h_{r}(u)=\operatorname{sign}(r \cdot u)$

- Can show that $P[h(u)=h(v)]=1-\angle(u, v) / \pi$.

