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Grammar Compression

« Statistical compression.

- Huffman, arithmetic encoding,...
« Dictionary compression.

- Lempel-Ziv, ...

- Grammar compression.

+ Repair, sequitur, greedy, bisection, ...

- Kolmogorov complexity.



Grammar Compression

« Grammar compression. Encode string S as an grammar

G that generates S.

- Straight-line program. Assume G is a straight-line

program.
- Gis acyclic.

« Each production in G is either X; = XjXx or Xi = T.
« Encoding. Re-pair, bisection, greedy, ...
« Decoding. Unfold productions top-down.

Xi1

X1 Xo X1 Xo X1 Xo Xj
@ @ @ @ @ (U
@ @ @ @ @ @ @ @
a b C a b C a b

X12 = X11Xg Xe — X5Xs5
X11 = XeX10 X5 = X4X3
X10 = X7Xs Xa— X1Xo
Xo — XaXs Xz3— C
Xs — X1X3 Xo—=b
Xi1— a
abcabcababacababc
A X2
X10 Xo
@ ()
Xs Xs
() ()
4 Xig HXs Xag Xs X3 o
Xo X1 X2 Xj Xo
o ® ® ® ®
O O O O O O O O
b a C a b a b C



Grammar Compression
« Re-pair compression [Larsson and Moffat 2000].
- Start with string S.

« Replace a most frequent pair ab by new character Xi. Add production Xi — ab.
- Repeat until string is a single character.
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Grammar Compression

« Grammar compression properties.
- Many dictionary schemes can be viewed as grammar compressors.
- Smallest grammar is NP-hard.
- LZ77 is lower bound on the smallest grammar.
- LZ77 can be converted to grammar with blowup by logarithmic factor.
« Grammar very useful for compressed computation.



Random Access

« Random Access Problem. Represent grammar G of size n generating string S of
length N to support

« access(i): return SJi
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Random Access

« Applications.
« Most basic computational task on compressed data.

- Component in most algorithms and data structures that work directly on
compressed data (compressed computing).

* Interesting selection of elegant and useful data structural techniques.



Random Access

« Goal. Random access with O(n) space O(log N) query time.
 Solution in 4 steps.

« Top-down search. Slow but only linear space.

- Heavy-path decompositions. Almost fast but too much space.

- Heavy-path redundancy. Almost fast with linear space.
* Interval-biased search. Fast and linear space.



Solution 1: Top Down Search
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Data structure. Store size of string generated by each node.

Access(x): Top-down search for x.
Time. O(h) = O(n)
Space. O(n)



Solution 2: Heavy Path Decomposition
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« Heavy-path decomposition.

- Start at root. Choose a child of maximum size repeatedly until we reach leaf.

- Repeat for subtrees hanging off tree.
« Lemma. O(log N) heavy paths on any root-to-leaf path.
« Proof: Size decrease by at least half on each light edge.



Solution 2: Heavy Path Decomposition
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Data structure. For each heavy path store list of values + char at end of heavy path.
Access(x): Predecessor search on each heavy-path on root-to-leaf path.

Time. O(log log N log N)
Space. O(n?)



Solution 3: Heavy-Path Redundancy
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Solution 3: Heavy-Path Redundancy
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* Predecessor on heavy path.

- Weighted ancestor problem on heavy path suffix fores
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Weigh each edge with size of off-path subtree.

Keep left and right edge weights separate.

Search for x to the left = closest ancestor of distance > x.
Similar for search to the right.
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Solution 3: Heavy-Path Redundancy
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- Lemma. For a tree with n nodes and edge weights from universe [0...N] we can solve
the weighted ancestor problem in O(n) space and O(log log N) time.

« Access(x): Weighted ancestor query on each heavy-path on root-to-leaf path.
« Time. O(log log N log N)
- Space. O(n)



Solution 4: Interval Biased Search
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- Lemma. For a tree with n nodes and edge weights from universe [0...N] we can solve
the weighted ancestor problem in O(n) space and O(log (N/S)) time, where S is size of

subtree hanging off path.
« Access(x): Weighted ancestor query on each heavy path on root to leaf path.

* Time. log (N/S1) + log (S1/S2) + log (S2/S3) + log (S3/S4) + ... + O(1)
* =log N -log S1+ log S1-log S2 + log S2-log Sz + log S3 + ... + O(1)
« = O(log N)



Random Access

Space Time
Top down search O(n) O(h) = O(n)
del_clzf)arl;/éc?:il’:irc])n O(n?) O(log N log log N)
Heavy path redundancy O(n) O(log N log log N)
Interval biased search O(n) O(log N)
Lower bound n log®® N Q(log™¢ N)
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